Abstract
This work focuses on visual-based target tracking of drone via visual simulation system. A simulation platform is particularly designed to simulate the environments in real-world applications. The platform follows a modular design. In this platform, Unreal Engine is chosen as the rendering platform, Airsim is employed to construct sensor models and acquire the kinematic state of drone body and environmental information. The drone is controlled by PX4 autopilot, and trajectory is planned by EGO-Planner. The target recognition and tracking is achieved by a siamese-based tracking algorithm. Four flight simulation experiments are conducted to verify the use of the developed framework for vision-based tracking, which demonstrate the usefulness and applying method of the simulation system for UAVs in disturbance scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27
Bondi, E., Dey, D., Kapoor, A., Piavis, J., et al.: AirSim-W: a simulation environment for wildlife conservation with UAVs. In: ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 1–12. ACM, New York (2018). https://doi.org/10.1145/3209811.3209880
Li, S., Yeung, D.-Y.: Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, vol. 31, pp. 4140–4146. AAAI (2017)
Yu, H., Li, G., Zhang, W., et al.: The unmanned aerial vehicle benchmark: object detection, tracking and baseline. Int. J. Comput. Vis. 128, 1141–1159 (2020). https://doi.org/10.1007/s11263-019-01266-1
Huang, X., Cai, Y., Deng, H., Peng, Z.: Integrated virtual simulation and test system for vision-based applications of UAVs. In: Fu, W., Gu, M., Niu, Y. (eds.) ICAUS 2022. LNCS, vol. 1010, pp. 994–1003. Springer, Singapore (2022). https://doi.org/10.1007/978-981-99-0479-2_90
Ji, J., Pan, N., Xu, C., Gao, F.: Elastic tracker: a spatio-temporal trajectory planner for flexible aerial tracking. In: 2022 International Conference on Robotics and Automation, pp. 47–53. IEEE (2022). https://doi.org/10.1109/ICRA46639.2022.9811688
Zhu, P., Wen, L., Du, D., et al.: Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7380–7399 (2022)
Zhang, C., Huang, G., Liu, L., et al.: WebUAV-3M: a benchmark for unveiling the power of million-scale deep UAV tracking. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 9186–9205 (2023)
Zhou, X., Wang, Z., Ye, H., et al.: EGO-planner: an ESDF-free gradient based local planner for quadrotors. IEEE Robotics and Automation Letters 6(2), 478–485 (2021)
Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40
Javed, S., Danelljan, M., Khan, F.S., et al.: Visual object tracking with discriminative filters and Siamese networks: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 6552–6574 (2023)
Dai, B., He, Y., Zhang, G., Gu, F., et al.: Wind disturbance rejection for unmanned aerial vehicle based on acceleration feedback method. In: 2018 IEEE Conference on Decision and Control, pp. 4680–4686. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Beijing HIWING Scientific and Technological Information Institute
About this paper
Cite this paper
Zhu, R., Sun, M. (2024). A Simulation Framework for Vision-Based Target Tracking Control of UAVs. In: Qu, Y., Gu, M., Niu, Y., Fu, W. (eds) Proceedings of 3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023). ICAUS 2023. Lecture Notes in Electrical Engineering, vol 1170. Springer, Singapore. https://doi.org/10.1007/978-981-97-1107-9_51
Download citation
DOI: https://doi.org/10.1007/978-981-97-1107-9_51
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-1106-2
Online ISBN: 978-981-97-1107-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)