[go: up one dir, main page]

Skip to main content

An Approach to Feature Space Construction from Clustering Feature Tree

  • Conference paper
  • First Online:
Artificial Intelligence (RCAI 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 934))

Included in the following conference series:

Abstract

Generally, clustering feature tree consists of nodes given as vectors. In case of non-vector nodes a transformation into feature vectors is needed. Feature extraction algorithm determines the volume and quality of information enclosed in features and quality of clustering. Thus this kind of transformation is important part of clustering procedure. In this paper an approach to clustering feature space construction from clustering feature tree is proposed. Presented approach allows to save hierarchy information and reduce feature space dimension. An efficiency of proposed approach is shown in the experiment part with different clustering algorithms. Result analysis is provided at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amorim, R.: Feature weighting for clustering: using K-means and the Minkowski. LAP Lambert Academic Publishing (2012)

    Google Scholar 

  2. Ball, G.H., Hall, David J.: Isodata: a method of data analysis and pattern classification, Stanford Research Institute, Menlo Park, United States. Office of Naval Re-search, Information Sciences Branch (1965)

    Google Scholar 

  3. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  5. Dudarin, P., Pinkov, A., Yarushkina, N.: Methodology and the algorithm for clustering economic analytics object. Autom. Control. Process. 47(1), 85–93 (2017)

    Google Scholar 

  6. Dudarin, P., Yarushkina, N.: Features construction from hierarchical classifier for short text fragments clustering. Fuzzy Syst. Soft Comput. 12, 87–96 (2018). https://doi.org/10.26456/fssc26

    Article  Google Scholar 

  7. Dudarin, P.V., Yarushkina, N.G.: Algorithm for constructing a hierarchical classifier of short text fragments based on the clustering of a fuzzy graph. Radio Eng. 2017(6), 114–121 (2017)

    Google Scholar 

  8. Dudarin, P.V., Yarushkina, N.G.: An approach to fuzzy hierarchical clustering of short text fragments based on fuzzy graph clustering. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 679, pp. 295–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68321-8_30

    Chapter  Google Scholar 

  9. Ester M., Kriegel H. P., SanderJ., Xu X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland (1996)

    Google Scholar 

  10. Federal law “About strategic planning in Russian Federation" (2014). http://pravo.gov.ru/proxy/ips/?docbody=&nd=102354386

  11. Han, X., Ma, J., Wu, Y., Cui, C.: A novel machine learning approach to rank web forum posts. Soft Comput. 18(5), 941–959 (2014)

    Article  Google Scholar 

  12. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075

    Article  MATH  Google Scholar 

  13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  14. Jolliffe, I.T.: Principal Component Analysis, p. 487. Springer, Heidelberg (1986). https://doi.org/10.1007/b98835. ISBN 978-0-387-95442-4

    Book  MATH  Google Scholar 

  15. Li, J., Wang, K., Xu, L.: Chameleon based on clustering feature tree and its application in customer segmentation. Ann. Oper. Res. 168, 225 (2009). https://doi.org/10.1007/s10479-008-0368-4

    Article  MATH  Google Scholar 

  16. Mansoori, E.G.: GACH: a grid based algorithm for hierarchical clustering of high-dimensional data. Soft Comput. 18(5), 905–922 (2014)

    Article  Google Scholar 

  17. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learn. 52, 217 (2003). https://doi.org/10.1023/A:1024016609528

    Article  MATH  Google Scholar 

  18. Mikolov T., Sutskever I., Chen K., Corrado G., Dean J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, 05–10 December, Lake Tahoe, Nevada, pp. 3111–3119 (2013)

    Google Scholar 

  19. Pedregosa, F.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning, PMLR, vol. 32, no. 2, pp. 1188–1196 (2014)

    Google Scholar 

  21. Yeh, R.T., Bang, S.Y.: Fuzzy relation, fuzzy graphs and their applications to clustering analysis. In: Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp. 125–149. Academic Press (1975). ISBN 9780127752600

    Google Scholar 

  22. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15

    Chapter  MATH  Google Scholar 

  23. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy Sets and Their Applications to Cognitive and Decision Processes, pp. 77–95. Academic Press, New York (1975)

    Chapter  Google Scholar 

  24. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  25. Ruspini, E.H.: A new approach to clustering. Inform. Control 15(1), 22–32 (1969)

    Article  Google Scholar 

  26. Arthur, V., et al.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  27. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008)

    Article  Google Scholar 

  28. Zhang, J., Wang, Y., Feng, J.: A hybrid clustering algorithm based on PSO with dynamic crossover. Soft Comput. 18(5), 961–979 (2014)

    Article  Google Scholar 

  29. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data - SIGMOD 1996, pp. 103–114 (1996). https://doi.org/10.1145/233269.233324

Download references

Acknowledgment

This study was supported Ministry of Education and Science of Russia in framework of project No 2.1182.2017/4.6 and Russian Foundation of base Research in framework of project No 16-47-732120 r_ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Dudarin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudarin, P., Samokhvalov, M., Yarushkina, N. (2018). An Approach to Feature Space Construction from Clustering Feature Tree. In: Kuznetsov, S., Osipov, G., Stefanuk, V. (eds) Artificial Intelligence. RCAI 2018. Communications in Computer and Information Science, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-00617-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00617-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00616-7

  • Online ISBN: 978-3-030-00617-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics