[go: up one dir, main page]

Skip to main content
Log in

On rank-monotone graph operations and minimal obstruction graphs for the Lovász–Schrijver SDP hierarchy

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász–Schrijver SDP operator \({{\,\textrm{LS}\,}}_+\), with a particular focus on finding and characterizing the smallest graphs with a given \({{\,\textrm{LS}\,}}_+\)-rank (the needed number of iterations of the \({{\,\textrm{LS}\,}}_+\) operator on the fractional stable set polytope to compute the stable set polytope). We introduce a generalized vertex-stretching operation that appears to be promising in generating \({{\,\textrm{LS}\,}}_+\)-minimal graphs and study its properties. We also provide several new \({{\,\textrm{LS}\,}}_+\)-minimal graphs, most notably the first known instances of 12-vertex graphs with \({{\,\textrm{LS}\,}}_+\)-rank 4, which provides the first advance in this direction since Escalante, Montelar, and Nasini’s discovery of a 9-vertex graph with \({{\,\textrm{LS}\,}}_+\)-rank 3 in 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aguilera, N.E., Escalante, M.S., Fekete, P.G.: On the facets of lift-and-project relaxations under graph operations. Discrete Appl. Math. 164(part 2), 360–372 (2014)

    Article  MathSciNet  Google Scholar 

  2. Au, Y.H., Tunçel, L.: A comprehensive analysis of polyhedral lift-and-project methods. SIAM J. Discrete Math. 30(1), 411–451 (2016)

    Article  MathSciNet  Google Scholar 

  3. Au, Y.H., Tunçel, L.: Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators. Discrete Optim. 27, 103–129 (2018)

    Article  MathSciNet  Google Scholar 

  4. Au, Y.H., Tunçel, L.: Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator. Math. Program. (2024)

  5. Bianchi, S.M., Escalante, M.S., Nasini, G.L., Tunçel, L.: Lovász–Schrijver SDP-operator and a superclass of near-perfect graphs. Electron. Not. Discrete Math. 44, 339–344 (2013)

    Article  Google Scholar 

  6. Bianchi, S.M., Escalante, M.S., Nasini, G.L., Tunçel, L.: Lovász-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs. Math. Program. 162(1-2, Ser. A), 201–223 (2017)

  7. Bianchi, S.M., Escalante, M.S., Nasini, G.L., Wagler, A.K.: Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs. Discrete Appl. Math. 332, 70–86 (2023)

    Article  MathSciNet  Google Scholar 

  8. Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0–1 integer programming. SIAM J. Optim. 15(1), 63–95 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. (2) 164(1), 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  10. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  MathSciNet  Google Scholar 

  11. Dobre, C., Vera, J.: Exploiting symmetry in copositive programs via semidefinite hierarchies. Math. Program. 151(2), 659–680 (2015)

    Article  MathSciNet  Google Scholar 

  12. Escalante, M.S., Montelar, M.S., Nasini, G.L.: Minimal \(N_+\)-rank graphs: progress on Lipták and Tunçel’s conjecture. Oper. Res. Lett. 34(6), 639–646 (2006)

    Article  MathSciNet  Google Scholar 

  13. Grant, M.C., Boyd, S.P.: Graph implementations for nonsmooth convex programs. In: Recent Advances in Learning and Control, Volume 371 of Lect. Notes Control Inf. Sci., pp. 95–110. Springer, London (2008)

  14. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1 (2014). http://cvxr.com/cvx

  15. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    Article  MathSciNet  Google Scholar 

  16. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint help in lifting procedures? Math. Oper. Res. 26(4), 796–815 (2001)

    Article  MathSciNet  Google Scholar 

  17. Knuth, D.E.: The sandwich theorem. Electron. J. Combin. 1:Article 1, approx. 48 (1994)

  18. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In: Integer programming and combinatorial optimization (Utrecht, 2001), Volume 2081 of Lecture Notes in Comput. Sci., pp. 293–303. Springer, Berlin (2001)

  19. Laurent, M.: Tighter linear and semidefinite relaxations for max-cut based on the Lovász–Schrijver lift-and-project procedure. SIAM J. Optim. 12(2), 345–375 (2001/02)

  20. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003)

    Article  MathSciNet  Google Scholar 

  21. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979)

    Article  MathSciNet  Google Scholar 

  22. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and \(0\)-\(1\) optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  MathSciNet  Google Scholar 

  23. Lipták, L., Tunçel, L.: The stable set problem and the lift-and-project ranks of graphs. Math. Program. 98(1–3, Ser. B), 319–353 (2003). Integer programming (Pittsburgh, PA, 2002)

  24. Laurent, M., Vargas, L.F.: Exactness of Parrilo’s conic approximations for copositive matrices and associated low order bounds for the stability number of a graph. Math. Oper. Res. 48(2), 1017–1043 (2023)

    Article  MathSciNet  Google Scholar 

  25. Peña, J., Vera, J., Zuluaga, L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)

    Article  MathSciNet  Google Scholar 

  26. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MathSciNet  Google Scholar 

  27. Stephen, T., Tunçel, L.: On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

    Article  MathSciNet  Google Scholar 

  28. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999). Interior point methods

  29. Vargas, L.F.: Sum-of-squares representations for copositive matrices and independent sets in graphs. PhD thesis, Tilburg University (2023)

  30. Wagler, A.K.: On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets. Discrete Appl. Math. 308, 209–219 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hin Au.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Tunçel: Research of this author was supported in part by an NSERC Discovery Grant.

Proofs of Lemmas 39, 40, and 41

Proofs of Lemmas 3940, and 41

The following lemmas provide the deferred technical details from the proof of Theorem 26. To reduce cluttering, given \(S \subseteq [n]\) we will let \(\hat{\chi }_S\) denote the vector \(\begin{bmatrix} 1 \\ \chi _S \end{bmatrix} \in \mathbb {R}^{n+1}\).

Lemma 39

Let \(Y_0\) be as defined in the proof of Theorem 26. Then

$$\begin{aligned} Y_0(e_0 - e_1) \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G_{4,1})). \end{aligned}$$

Proof

First, notice that \([Y_0(e_0 - e_1)]_{1} = 0\). Thus, let \(G' :=G_{4,1} - 1\) and v be the restriction of \(Y_0(e_0 - e_1)\) to the coordinates indexed by \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G'))\). Then, by Lemma 4, it suffices to show that \(v \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G'))\). Consider the matrix

We claim that \(Y_2 \in \widehat{{{\,\textrm{LS}\,}}}_+^2(G')\). First, one can verify that \(Y_2 \succeq 0\) (a UV-certificate is provided in Table 1). Also, notice that the function \(f_2\) (restricted to \(V(G')\)) is an automorphism of \(G'\). Moreover, observe that for all \(i,j \in V(G')\), \(Y_2[i,j] = Y_2[f_2(i), f_2(j)]\). Thus, by symmetry, it only remains to prove the conditions \(Y_2e_i, Y_2(e_0-e_i) \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\) for \(i \in \left\{ 2,4_1,4_0,4_2,6_1,6_0\right\} \).

First, notice that

  • \([Y_2e_{4_0}]_{0} = [Y_2e_{4_0}]_{4_0}\), \([Y_2e_{4_0}]_{4_1} = [Y_2e_{4_0}]_{4_2} = 0\), and that the following matrix certifies that \(Y_2e_{4_0}\) (with the entries corresponding to vertices \(4_1, 4_0, 4_2\) removed) belongs to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G' \ominus 4_0))\).

  • \([Y_2e_{6_0}]_{0} = [Y_2e_{6_0}]_{6_0}\), \([Y_2e_{6_0}]_{6_1} = [Y_2e_{6_0}]_{6_2} = 0\), and that the following matrix certifies that \(Y_2e_{6_0}\) (with the entries corresponding to vertices \(6_1, 6_0, 6_2\) removed) belongs to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G' \ominus 6_0))\).

  • \([Y_2(e_0-e_2)]_{2} =0\), and that the following matrix certifies that \(Y_2(e_0-e_2)\) (with the entry corresponding to vertex 2 removed) belongs to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G' - 2))\).

  • \([Y_2(e_0-e_{4_1})]_{4_1} =0\), and that the following matrix certifies that \(Y_2(e_0-e_{4_1})\) (with the entry corresponding to vertex \(4_1\) removed) belongs to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G' - 4_1))\).

Also, notice that \(Y_{21}e_0 = Y_{21}(e_{5_0} + e_{5_2})\). Thus, if we let \(Y'_{21}\) be the matrix obtained from \(Y_{21}\) by removing the \(0^{\text {th}}\) row and column, then we see that \(Y'_{21} \succeq 0 \Rightarrow Y_{21} \succeq 0\). The UV-certificates of \(Y'_{21}, Y_{22}, Y_{23}\), and \(Y_{24}\) are provided in Table 1.

Next, observe that

$$\begin{aligned} Y_2e_2&\le 8291 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_1 \right\} } + 8873 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_0 \right\} } + 72 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_1 \right\} } \\&\quad + 8104 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_0 \right\} } ,\\ Y_2e_{4_1}&\le 6365 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_0 \right\} } + 1811 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_2 \right\} } + 342 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_1 , 6_0 \right\} } \\&\quad + 7361 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 , 6_0 \right\} } \\&\quad + 617 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 , 6_2 \right\} } + 4 \hat{\chi }_{\left\{ 4_1 , 5_0 , 6_1 , 6_2 \right\} } ,\\ Y_2e_{4_2}&\le 642 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_1 , 6_0 \right\} } + 7678 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 , 6_0 \right\} } + 342 \hat{\chi }_{\left\{ 4_2 , 5_1 , 5_2 , 6_0 \right\} } ,\\ Y_2e_{6_1}&\le 6764 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_1 \right\} } + 1599 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_1 \right\} } + 4 \hat{\chi }_{\left\{ 4_1 , 5_0 , 6_1 , 6_2 \right\} } \\&\quad + 7300 \hat{\chi }_{\left\{ 4_0 , 5_0 , 6_1 , 6_2 \right\} } + 833 \hat{\chi }_{\left\{ 4_0 , 5_2 , 6_1 , 6_2 \right\} } ,\\ Y_2(e_0-e_{4_0})&\le 7254 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_0 \right\} } + 1004 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_2 \right\} } + 489 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_1 , 6_0 \right\} } \\&\quad + 6472 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 , 6_0 \right\} } \\&\quad + 1291 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 , 6_2 \right\} } + 137 \hat{\chi }_{\left\{ 4_1 , 5_0 , 6_1 , 6_2 \right\} } + 495 \hat{\chi }_{\left\{ 4_2 , 5_1 , 5_2 , 6_0 \right\} } ,\\ Y_2(e_0-e_{4_2})&\le 832 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_1 \right\} } + 3414 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_0 \right\} } + 496 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_1 \right\} } \\&\quad + 919 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_0 \right\} } \\&\quad + 5480 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_0 \right\} } + 2094 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_2 \right\} } + 2827 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_0 \right\} }\\&\quad + 1634 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_2 \right\} } \\&\quad + 700 \hat{\chi }_{\left\{ 4_1 , 5_0 , 6_1 , 6_2 \right\} } + 526 \hat{\chi }_{\left\{ 4_0 , 5_1 , 5_2 , 6_1 \right\} } + 1070 \hat{\chi }_{\left\{ 4_0 , 5_1 5_2 , 6_0 \right\} } \\&\quad + 690 \hat{\chi }_{\left\{ 4_0 , 5_0 , 6_1 , 6_2 \right\} } \\&\quad + 455 \hat{\chi }_{\left\{ 4_0 , 5_2 , 6_1 , 6_2 \right\} } + 126 \hat{\chi }_{\left\{ 4_2 , 5_1 , 5_2 , 6_0 \right\} } + \frac{44735}{57518}Y_2e_{4_0} ,\\ Y_2(e_0-e_{6_1})&\le 275 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_0 \right\} } \\&\quad + 186 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_0 \right\} } + 2333 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_2 \right\} } + 186 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_0 \right\} } \\&\quad + 5933 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_2 \right\} } + 140 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 , 6_2 \right\} } + 227 \hat{\chi }_{\left\{ 4_0 , 5_1 , 5_2 , 6_0 \right\} } \\&\quad + \frac{48880}{49680}Y_2e_{6_0} ,\\ Y_2(e_0-e_{6_0})&\le 7474 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_1 \right\} } + 978 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_1 \right\} } + 978 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 , 6_2 \right\} } \\&\quad + 7474 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_2 \right\} } \\&\quad + 1454 \hat{\chi }_{\left\{ 4_1 , 5_0 , 6_1 , 6_2 \right\} } + 5168 \hat{\chi }_{\left\{ 4_0 , 5_0 , 6_1 , 6_2 \right\} } + 1454 \hat{\chi }_{\left\{ 4_0 , 5_2 , 6_1 , 6_2 \right\} }. \end{aligned}$$

Since all incidence vectors above correspond to stable sets in \(G'\), and we already showed earlier that \(Y_2e_{4_0}, Y_2e_{6_0} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\), we obtain that all the vectors above belong to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\). Thus, we conclude that \(Y_0(e_0-e_1) \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G_{4,1}))\). \(\square \)

Lemma 40

Let \(Y_0\) be as defined in the proof of Theorem 26. Then

$$\begin{aligned} Y_0e_{6_0} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G_{4,1})). \end{aligned}$$

Proof

First, notice that \([Y_0e_{6_0}]_{0} = [Y_0e_{6_0}]_{6_0}\), and \([Y_0e_{6_0}]_{6_1} = [Y_0e_{6_0}]_{6_2} = 0\). Thus, let \(G' :=G_{4,1} \ominus 6_0\) and v be the restriction of \(Y_0e_{6_0}\) to the coordinates indexed by \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G'))\). Then, by Lemma 4, it suffices to show that \(v \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G'))\). Consider the matrix

We claim that \(Y_1 \in \widehat{{{\,\textrm{LS}\,}}}_+^2(G')\). First, one can verify that \(Y_1 \succeq 0\) (a UV-certificate is provided in Table 1). Also, notice that the function \(f_2\) (restricted to \(V(G')\)) is an automorphism of \(G'\). Moreover, observe that for all \(i,j \in V(G')\), \(Y_1[i,j] = Y_1[f_2(i), f_2(j)]\). Thus, by symmetry, it only remains to prove the conditions \(Y_1e_i, Y_1(e_0-e_i) \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\) for \(i \in \left\{ 1,2,4_1,4_0,4_2\right\} \).

Table 1 UV-certificates for matrices in the proofs of Theorem 26 and Lemmas 3940, and 41

First, notice that \([Y_1e_{4_0}]_{0} = [Y_1e_{4_0}]_{4_0}\), \([Y_1e_{4_0}]_{4_1} = [Y_1e_{4_0}]_{4_2} = 0\), and that the following matrix certifies that \(Y_1e_{4_0}\) (with the entries corresponding to vertices \(4_1, 4_0, 4_2\) removed) belongs to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G' \ominus 4_0))\). (See Table 1 for a UV-certificate.)

Now consider the following vectors:

$$\begin{aligned} \begin{array}{rccccccccccl} & & 1 & 2 & 3 & 4_1 & 4_0 & 4_2 & 5_1 & 5_0 & 5_2\\ z^{(1)} :=[& 51150 & 17400 & 17502 & 9571 & 0 & 51150 & 0 & 5485 & 27920 & 14933 & ]^{\top }\\ z^{(2)} :=[& 51150 & 17502 & 17400 & 9571 & 0 & 51150 & 0 & 14933 & 27920 & 15485 & ]^{\top }\\ z^{(3)} :=[& 57518 & 25340 & 0 & 17164 & 14068 & 34970 & 16496 & 16158 & 41360 & 7678 & ]^{\top }\\ z^{(4)} :=[& 49680 & 0 & 16977 & 16977 1 & 4068 3 & 4970 & 8662 & 8662 & 34970 & 14068 & ]^{\top } \end{array} \end{aligned}$$

Notice that \(z^{(1)} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\) follows from \(Y_1e_{4_0} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\) as shown above. Then it follows from the symmetry of \(G'\) that \(z^{(2)} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\) as well. \(z^{(3)}, z^{(4)} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\) follows respectively from \(Y_2e_{4_0}, Y_2e_{6_0} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G_{4,1} - 1))\), as shown in Lemma 39. Next, observe that

$$\begin{aligned} Y_1e_1&\le 17400 \hat{\chi }_{\left\{ 1 , 4_0 , 5_0 \right\} } + 7940 \hat{\chi }_{\left\{ 1 , 4_2 , 5_1 \right\} } ,\\ Y_1e_2&\le 9571 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0\right\} } + 7931 \hat{\chi }_{\left\{ 2, 4_0 , 5_2\right\} } ,\\ Y_1e_{4_1}&\le 7931 \hat{\chi }_{\left\{ 3 ,4_1 , 5_0 \right\} } + 396 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_1\right\} } + 7092 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0\right\} } ,\\ Y_1e_{4_2}&\le 414 \hat{\chi }_{\left\{ 1 , 4_0 , 5_1 \right\} } + 7523 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 \right\} } + 7974 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 \right\} } ,\\ Y_1(e_0-e_1)&\le 874 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 \right\} } + 3160 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 \right\} } + 3160 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 \right\} } + 874 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 \right\} } \\&\quad + 1100 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 \right\} } \\&\quad + 1100 \hat{\chi }_{\left\{ 4_0 , 5_1 , 5_2 \right\} } + \frac{39412}{49680}z^{(4)} ,\\ Y_1(e_0-e_{2})&\le 1729 \hat{\chi }_{\left\{ 1 , 4_0 , 5_1 \right\} } + 6165 \hat{\chi }_{\left\{ 1 , 4_0 , 5_0 \right\} } + 626 \hat{\chi }_{\left\{ 1 , 4_2 , 5_1 \right\} } + 1749 \hat{\chi }_{\left\{ 1 , 4_2 , 5_0 \right\} } \\&\quad + 4298 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 \right\} } + 2999 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 \right\} } + 1009 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_1 \right\} } \\&\quad + 1751 \hat{\chi }_{\left\{ 4_1 , 4_2 , 5_0 \right\} } \\&\quad + 1959 \hat{\chi }_{\left\{ 4_0 , 5_1 , 5_2 \right\} } + 971 \hat{\chi }_{\left\{ 4_2 , 5_1 , 5_2 \right\} } + \frac{34235}{57518}z^{(3)}+ 27\hat{\chi }_{\emptyset } ,\\ Y_1(e_0-e_{4_1})&\le 498 \hat{\chi }_{\left\{ 1 , 4_0 , 5_1 \right\} } + 2500 \hat{\chi }_{\left\{ 1 , 4_0 , 5_0 \right\} } + 639 \hat{\chi }_{\left\{ 1 , 4_2 , 5_1 \right\} } + 6832 \hat{\chi }_{\left\{ 1 , 4_2 , 5_0 \right\} } \\&\quad + 1613 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 \right\} } + 1022 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 \right\} } + 1421 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 \right\} } + 478 \hat{\chi }_{\left\{ 4_0 , 5_1 , 5_2 \right\} } \\&\quad + 952 \hat{\chi }_{\left\{ 4_2 , 5_1 , 5_2 \right\} } + \frac{20799}{51150}z^{(1)} + \frac{22819}{51150}z^{(2)} + 28 \hat{\chi }_{\emptyset } ,\\ Y_1(e_0-e_{4_0})&\le 452 \hat{\chi }_{\left\{ 1 , 4_0 , 5_1 \right\} } + 7504 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 \right\} } + 7931 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 \right\} }\\&\quad + 7955 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 \right\} } + 28 \hat{\chi }_{\emptyset } ,\\ Y_1(e_0-e_{4_2})&\le 234 \hat{\chi }_{\left\{ 1 , 4_0 , 5_1 \right\} } + 195 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 \right\} } + 7935 \hat{\chi }_{\left\{ 3 , 4_1 , 5_0 \right\} } + 93 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 \right\} } \\&\quad + \frac{46278}{51150} z^{(1)}+ \frac{4354}{51150}z^{(2)}+ 20\hat{\chi }_{\emptyset }. \end{aligned}$$

Since all incidence vectors above correspond to stable sets in \(G'\), we obtain that all the vectors above belong to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+(G'))\). Thus, we conclude that \(Y_0e_{6_0} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G_{4,1}))\). \(\square \)

Lemma 41

Let \(Y_0\) be as defined in the proof of Theorem 26. Then

$$\begin{aligned} Y_0(e_0 - e_{4_1}) \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G_{4,1})). \end{aligned}$$

Proof

For convenience, let \(G :=G_{4,1}\) throughout this proof. Using \(Y_0e_{6_0} \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G))\) from Lemma 40 and the symmetry of G, we know that the vector

$$\begin{aligned} \begin{array}{rcccccccccccccl} & & 1 & 2 & 3 & 4_1 & 4_0 & 4_2 & 5_1 & 5_0 & 5_2& 6_1 & 6_0 & 6_2\\ z :=[& 75020 & 17502 & 25340 & 17502 & 0 & 75020 & 0 & 15419 & 51150 & 15911 & 15911 & 51150 & 15419 & ]^{\top } \end{array} \end{aligned}$$

belongs to \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^2(G))\). Now observe that

$$\begin{aligned}&Y_0(e_0-e_{4_1}) \le \frac{2}{3} z + \frac{1}{3} \Big ( 7726 \hat{\chi }_{\left\{ 1 , 4_0 , 5_1 , 6_0 \right\} } + 17105 \hat{\chi }_{\left\{ 1 , 4_0 , 5_0 , 6_0 \right\} } + 16187 \hat{\chi }_{\left\{ 1 , 4_2 , 5_0 , 6_0 \right\} } \\&\quad + 8509 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_1 \right\} } + 8324 \hat{\chi }_{\left\{ 2 , 4_0 , 5_0 , 6_0 \right\} } + 8509 \hat{\chi }_{\left\{ 2 , 4_0 , 5_2 , 6_0 \right\} } + 9486 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_0 \right\} } \\&\quad + 8017 \hat{\chi }_{\left\{ 3 , 4_0 , 5_0 , 6_2 \right\} } + 7403 \hat{\chi }_{\left\{ 4_0 , 5_0 , 6_1 , 6_2 \right\} } + 9170 \hat{\chi }_{\left\{ 4_2 , 5_1 , 5_2 , 6_0 \right\} } + 24\hat{\chi }_{\emptyset } \Big ). \end{aligned}$$

Notice that all incidence vectors above correspond to stable sets in G. Since \({{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^{2}(G))\) is a lower-comprehensive convex cone, it follows that \(Y_0(e_0-e_{4_1}) \in {{\,\textrm{cone}\,}}({{\,\textrm{LS}\,}}_+^{2}(G))\). \(\square \)

Finally, we provide in Table 1 the UV-certificates of all PSD matrices used in Theorem 26 and Lemmas 3940, and 41.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au, Y.H., Tunçel, L. On rank-monotone graph operations and minimal obstruction graphs for the Lovász–Schrijver SDP hierarchy. Math. Program. (2024). https://doi.org/10.1007/s10107-024-02166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10107-024-02166-0

Keywords

Mathematics Subject Classification

Navigation