
HAL Id: hal-03778738
https://laas.hal.science/hal-03778738v1

Preprint submitted on 16 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Whole-Body MPC without Foot References for the
Locomotion of an Impedance-Controlled Robot

Alessandro Assirelli, Fanny Risbourg, Gianni Lunardi, Thomas Flayols,
Nicolas Mansard

To cite this version:
Alessandro Assirelli, Fanny Risbourg, Gianni Lunardi, Thomas Flayols, Nicolas Mansard. Whole-
Body MPC without Foot References for the Locomotion of an Impedance-Controlled Robot. 2022.
�hal-03778738�

https://laas.hal.science/hal-03778738v1
https://hal.archives-ouvertes.fr

Whole-Body MPC without Foot References
for the Locomotion of an Impedance-Controlled Robot

Alessandro Assirelli1, Fanny Risbourg1, Gianni Lunardi2, Thomas Flayols1,3, Nicolas Mansard1,3

Abstract— With the fast progress of quadruped robots, we
also see the rise of advanced controllers able to take whole-
body decisions without any model reduction. Recently, whole-
body model predictive control have been demonstrated on
several legged robots. Based on these results, this paper
presents a novel walking controller. Contrary to previously
demonstrated approaches, our controller does not require the
pre-computation of guide trajectories for the foot, nor of
specific foot location, but rather decides on the flight the
best foot movement using an original cost formulation. The
predictive controller is then applied at the actuator level using
an impedance controller, without requiring the more costly
low-level torque controller that previous methods used. The
method is validated on the real robot Solo, using an open-source
implementation based on the solver Crocoddyl. We evaluate
in depth the quality of the produced walk, despite external
disturbance, and provide longer experiments in the companion
video.

I. INTRODUCTION

As more quadruped robots are built over the world,
and impressive videos show dynamic motions in a wide
range of environments, the problem of quadruped locomotion
also becomes more trending, with a wide variety of
approaches experimented. Hardware and computation times
improvements allow the exploration of new frameworks
and tools. Among them, Optimal Control Problems (OCP)
are popular to formulate the robot controllers by scoring,
using tailored objective functions and a prediction of the
future behaviour of the robot. The definition of objectives
and constraints is adapted to locomotion problems. OCPs
can be used for trajectory optimization or for guiding the
exploration process of Reinforcement Learning algorithms
[2]. Trajectory optimization was once reserved for offline
computation but can now be used online in real-time thanks
to Model Predictive Control (MPC) frameworks [3]–[5].
MPC consists in successively solving finite-time OCPs over
a receding horizon. The OCPs are typically initialized with
a current estimate of the robot state.

The great number of variables that come from the
discretization of the time horizon and the number of degrees
of freedom of the system leads to challenges in meeting
the computation time objectives. Thus MPC has been firstly
used on systems with few degrees of freedom [6]–[8].
For quadruped robots which usually have twelve motors,
reduced-models have been widely studied, but require the

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2Industrial Engineering Department, University of Trento
3Artificial and Natural Intelligence Toulouse Institute, France
An extended video and the software implementing the proposed method

are available on the project web page [1].

use of an additional whole-body controller to compute joint
controls [9], [10]. They demonstrated the ability to plan
robust motions in constrained environments while optimizing
contact timings or locations [11].

To further simplify the OCP some pre-computations are
typically done, such as the flying feet trajectories. They
can be simple polynomials [12], or require more advanced
computations to take into account obstacles on the way
[13]. In any case, it is typically given as an input to the
OCP in the form of a foot position tracking cost [14].
Different approaches [15], [16] have been studied, giving
to the controller the freedom to choose the feet trajectories,
at the cost of slower computations. In [17], the whole-body
solver is guided by a centroidal trajectory [18], optimized in
alternance to the kinematic trajectory. By only using simple
cost guidance, the author shown that the whole-body solver
is able to produce nice foot movements. In this paper, we
propose a more complete way to describe the foot movement
by an effective cost for the OCP, which enables the solver
to find on its own the swing feet trajectories.

Recently, whole-body MPCs have been developed for
legged robots [19]–[21]. The choice of Optimal Control
numerical solver is decisive to reach the computation time
limits. The OCP computes joint torque and state trajectories
over an horizon, but can still not be solved at a frequency
high enough to match the low-level controller of the robots
[22]. To alleviate this limitation, Riccatti gains [23] can be
used to adjust the torques sent to the servo controllers of the
robot. For robots with torque feedback it is sufficient. Other
robots, such as the Solo quadruped [24], require impedance
control to efficiently control the joints. In this case, joint
state targets are sent as well as the feed-forward torques to
the low-level controller.

How can whole-body MPC be implemented on real robots
without torque feedback ? This paper proposes a solution that
was experimentally validated on the Solo quadruped robot. It
presents two methods to compute the joint states necessary to
impedance control. The first one is a spline interpolation of
the discretized state computed by the OCP. The second one
is the integration of the torques computed with the Riccatti
gains. The two methods are tested in simulation and their
performances are compared. The interpolation is used for
experiments on the robot.

Firstly, the underlying concepts and mathematical theories
are presented in Sec. II. Secondly in Sec. III the computation
of low-level targets for an impedance based robot, first
contribution of the paper is detailed. In Sec. IV, the focus
is made on the OCP formulation with an emphasis on the

second contribution, the flying foot cost design. Finally the
experimental evaluation and results are presented in Sec. V.

II. WHOLE-BODY CONTROL FOR LEGGED LOCOMOTION:
THE THEORY BEHIND IT

In this section the OCP framework used to implement our
locomotion controller is briefly presented, see [19] for details
with stiff contacts.

A. Rigid-Body dynamics

The robot is described as a rigid-body system. Thus the
dynamics with its environment is the following [25]:[

M JT
c

Jc 0

][
q̈
−λ

]
=

[
ST τ −b
−J̇cq̇

]
(1)

where q ∈ SE(3)×Rn j is the configuration vector of the
robot, containing the free-flyer position (base of the robot
for example) and the n j joint positions; q̇ and q̈ are
respectively the velocity and acceleration vectors of the
robot, laying in the tangent space of SE(3)× Rn j ; τ is
the torque vector and S a selection matrix for the actuated
joints; λ is the concatenation of the contact forces and Jc
the concatenation on the contact Jacobians; M is the inertia
matrix of the robot and b gathers the generalized non-
linear forces. In the considered case of quadruped robots,
the contacts are punctual and the forces λ are modeled as
3D forces constrained to lie in a friction cone.

The state of the robot is x = (q, q̇) and the control u = τ .
From (1) we deduce that the contact forces can be computed
from the state and control and hence do not need to be
variables of the problem. The dynamics ẋ can be deduces
as a function f (·) of x and u:

ẋ = f (x,u) (2)

B. Optimal Control

Our OCP is formulated as an optimality problem on a
time horizon where the variables are trajectories for state
and control over the horizon:

min
x,u

∫ T

0
l(x(t),u(t), t)+ lT (x(T))

s.t. e(x(0),u(0),x(T),u(T)) = 0
∀ t ∈ [0,T] :

ẋ(t) = f (x(t),u(t), t)
h(x(t),u(t), t)≤ 0

(3)

where x : t 7→ x(t) and u : t 7→ u(t) are respectively the state
and control, both functions of time t; h(·) encompasses the
paths constraints and e(·) the endpoint conditions.

A common approach to solve an OCP is to rely on
direct methods [26], which discretize the problem to obtain
a nonlinear optimization problem that is a finite-dimensional
approximation of the original OCP. First, time is discretized
in n + 1 so-called nodes: [t0, ..., tn]; then X and U are
discretizations of x and u at each node:

X =

x(t0)≜ x0

x(t1)≜ x1
...

x(tn)≜ xn

 U =

u(t0)≜ u0

u(t1)≜ u1
...

u(tn−1)≜ un−1

 (4)

The formulation of the discretized problem is:

min
X,U

n−1

∑
t=0

ℓt(xt ,ut)+ ℓT (xn)

s.t. e(x0,u0,xn,un−1) = 0
∀ t ∈ J0,n−1K :

xt+1 = ft(xt ,ut)

ht(xt ,ut)≤ 0

(5)

where ft(·) is a discretized version of the continuous-
time dynamics obtained by numerical integration [27] (e.g.,
Runge-Kutta methods).

C. Feasibility-driven Differential Dynamic Programming

A recent solver for multiple-shooting OCP is the
Feasibility-driven Differential Dynamic Programming
(FDDP) [20] algorithm. Given the difference between the
new and actual values

(δxt ,δut) = (x̂t −xt , ût −ut), (6)

the Value function Vt is locally approximated as:

Vt(δxt) = min
δut

ℓ(δxt ,δut)+Vt+1(ft(δxt ,δut)) (7)

With respect to the traditional DDP [28], FDDP introduces
intermediate shooting nodes as further decision variables.
The objective is to close the gaps (also called defects [29])
f̄t+1 between the rollout of the dynamics and the state
trajectory:

f̄t+1 = f (xt ,ut)−xt+1 (8)

The local approximation of the Hamiltonian Q writes:

Qxt = ℓℓℓxt + f T
xt V

+
xt+1

Qut = ℓℓℓut + f T
ut V

+
xt+1

Qxxt = ℓℓℓxxt + f T
xt Vxxt+1 fxt

Qxut = ℓℓℓxut + f T
xt Vxxt+1 fut

Quut = ℓℓℓuut + f T
ut Vxxt+1 fut

(9)

where ℓℓℓxt , ℓℓℓut and ℓℓℓxxt , ℓℓℓxut , ℓℓℓuut are the Linear Quadratic
approximations of the cost function; fxt , fut are the Jacobians
of the dynamics. Vxt+1 and Vxxt+1 are respectively the
gradient and the Hessian of the Value function, with V+

xt+1
=

Vxt+1 +Vxxt+1 f̄t+1 being the gradient after the deflection due
to the gap f̄t+1. The new trajectory x is achieved through the
integration of the dynamics with the forward pass:

ût = ut +αkt +Kt(x̂t −xt)

x̂t+1 = ft(x̂t , ût)− (1−α) f̄t+1
(10)

where α ∈ [0,1] is the step of the line search, while kt and

Whole-Body
 MPC

IMU
Estimator

100Hz

1kHz 10kHz

10kHz

+
+

+

-

-

IMU

100Hz

1kHz

+
+

+

Whole-Body
 Linear
 Feedback

Whole-Body
 Linear
 Feedback

Integration

Interpolation

Whole-Body
 MPC

Estimator

Robot

Robot

Fig. 1. Solo walking controller architecture, using the integration (Sec. III-C.1 (top) or the interpolation (Sec. III-C.2 (bottom).

Kt are respectively the feed-forward and feedback (Riccatti)
gains computed from the backward pass (9):

kt = Q−1
uut Qut , Kt = Q−1

uut Qxut (11)

We check the Goldstein condition to accept the trial step
length. For the quadruped locomotion problems used in the
experiments, the solver can iterate at 100HZ.

D. Riccati gains

The optimal control policy of (5) computed by the DDP
can be expressed as a function π of the state, whose
derivative is the Riccati gain [23]:

ut = πt(x),
∂πt

∂x

∣∣∣∣
x=xt

= Kt (12)

These gains will be used to compute the optimal torques
to apply, using a linear feedback on the state, as detailed in
Sec. III-B.

III. IMPEDANCE TARGETS COMPUTATION

Most OCP for locomotion are written, as ours, at torque
level. Following, the previously proposed whole-body MPC
is built assuming the robot is able to properly track the
reference torques u0 = πx. Yet only few robots are equipped
with torque sensors and low-level torque feedback. Rather,
like the robot Solo used for the experiments of this paper, the
actuators are driven by impedance, tracking a given reference
state. In this section, we propose a method to bridge the
whole-body MPC to the low-level impedance control.

A. Actuator feedback

The robot is controlled by impedance, in the form of
a Proportional-Derivative (PD) plus feed-forward controller.
The target joint torques τ∗, positions q∗ and velocities q̇∗

are sent to the motor control board every millisecond. The
boards compute the torques to apply using joint positions q
and velocities q̇ measured by the encoders:

τ = τ
∗+Kp(q∗−q)+Kd(q̇∗− q̇) (13)

The impedance loop (13) is embedded and cycles at
10kHz. Impedance targets τ∗, q∗ and q̇∗ are updated at 1kHz.
Recall that the whole-body MPC iterates at 100Hz. We now
describe the proposed mehods to compute the reference τ∗,
q∗ and q̇∗, summarized in Fig 1.

B. Whole-Body Linear Feedback for Reference Torques
Computation

The OCP provides discretized reference joint torque
trajectories. The discretization step is 12ms. To compute
the reference torques to send at 1kHz, whole-body linear
feedback is realized using the Riccatti gains Ki:

τ
∗ = τ0 +K0(x−x0) (14)

where τ0 = π0(x0) is the initial reference torque computed
by the OCP, x0 the initial state given to the OCP at 100Hz,
x is the measured state estimated at 1kHz.

C. Joint state targets re-sampling for impedance control
There are several ways to compute the joint state targets

sent to the low-level controller in (13). Two possibilities are
presented in the following sections.

1) Integration: The first one is the integration of the
reference torques. The acceleration a is obtained by
computing the forward dynamics (implemented in the
Pinocchio library [30] using the Articulated Body Algorithm,
ABA), from the current joint state measurements, and
reference torques τ∗ in (14).

a = ABA(q, q̇,τ∗,λ) (15)
q̇∗ = q̇+a ·dt (16)
q∗ = q+ q̇∗ ·dt (17)

where λ is a by product of the OCP solver following (1)
(and is void when the robot runs without contact).

2) Interpolation: The second proposition is to chose x as a
polynomial interpolation of the discretized state trajectory X
computed by the OCP. The Krogh interpolator [31] computes
an interpolation of the trajectory points and their associated
derivatives. The first three samples x0,x1,x2 of the state
trajectory are used to constrain the interpolation.

IV. OPTIMAL CONTROL PROBLEM FORMULATION FOR
LOCOMOTION

This section presents the definition of the OCP used in
our locomotion controller. It is implemented with Crocoddyl
[20]. The dynamics equations have been presented in Section
II. The contact timings are predefined and passed along to
define the contact constraints used for each node of the OCP.
To simplify the notation of cost weights, they will appear as:

∥ξ∥2
w =

n

∑
i=1

wiξ
2
i , w = (w1, . . . ,wn) (18)

where the weights w will often be reduced to a scalar.
The running cost ℓt(x,u) is defined as the sum of the

following costs.

A. Flying foot cost

In typical locomotion problem [14], [20], a quadruped
follows predefined swing feet trajectories. In this work we
substitute the foot desired trajectory with the following cost
model:

ℓ f
f ly(x) =

1
eγ hf

∥∥v f
xy
∥∥2

w f ly
(19)

where f is a foot that is not in contact; v f
xy = (v f

x ,v
f
y) ∈ R2

contains the longitudinal and lateral components of the foot
linear velocity; h f is the height of the foot; w f ly = 5 ·104, γ =
50 are hyper-parameters. The solver will seek to raise the
altitude when high velocity v f is needed, while keeping
the velocity small close to the ground. We will show in
the experiments that this cost produces bell-shaped foot
trajectories without needing (as done in previous whole-
body OCPs) to impose a reference trajectory or even contact
locations.

B. Impact costs

Two costs are used to handle properly the impact of a
foot on the ground. They are activated only when a foot f
changes from a no contact to a contact phase. The first one
imposes the height of the foot at contact h f to be the height
h0 of the foot at initialization. The second one imposes the
linear velocity of the foot v f ∈ R3 to be 0 when it creates
the contact.

ℓ f
h(x) =

∥∥h f −h0
∥∥

wh
, wh = 104

ℓ f
i (x) =

∥∥v f∥∥
wi
, wi = 104

(20)

C. Regularization

Three costs are used to regularize (thus limit) the state,
control and contact forces:

ℓx(x) = ∥(x−x∗)∥2
wx
, wx = [07 3 ·102

12 06 2012]
T

ℓu(u) = ∥u∥2
wu

, wu = 104

ℓλ (x,u) = ∥λ −λ
∗∥2

wλ
, wλ = 102

(21)
where x∗ = [q0 0nv]

T with q0 the initial configuration of the
robot. And for the feet in contact the reference force is a
fraction of the robot weight:

λ
∗ =

[
0, 0,

mg
ncts

]T

with ncts the number of feet in contact. otherwise λ ∗ = 03.
The joint velocity is also regularized with a terminal cost:

ℓT (x) = ∥(xT)∥2
wterm

, wterm = [0nq 103
nv]

T (22)

with nq the dimension of the state position.

D. Boundaries
FDDP cannot enforce any other constraint than (1).

Boundaries on the joint velocities and control, are
implemented with the following penalties:

ℓbv(x) = ∥min(max(x,x),x)∥2
wbx

, wbx = [0nq+6 10nv−6]
T

ℓbu(u) = ∥min(max(u,u),u)∥2
wbu

, wbu = 104

(23)
where x, x, u and u are the velocity and torque boundaries
adapted to the robot.

An addition boundary cost was added on the height of
each flying foot f to prevent the OCP to select solutions
where a flying foot would penetrate the ground:

ℓg(x) =
∥∥max(h f ,h0)

∥∥2
wg

, wg = 103 (24)

E. Reference base velocity tracking
Finally, the robot velocity is tracked using a dedicated

cost:
ℓt(x) = ∥vbase −v∗base∥

2
wt
, wv = 8 ·105 (25)

in which vbase ∈R6 is the spatial velocity of the robot’s base
and v∗base ∈R6 a reference velocity obtained from a gamepad
for example (see Fig 1).

V. EXPERIMENTAL RESULTS

Experiments were realized to compare some design
choices and assess the performances of the controller. They
were realized with the Solo quadruped robot.

A. The Solo quadruped
1) Hardware: Solo [24] is a 4-legged robot, developed by

the Open Dynamic Robot Initiative. It is a light and small
(22 cm high for 2.5 kg) robot, rather cheap and easy to
maintain thanks to its 3D-printed parts and off-the-shelves
components. Its 12 actuated degrees of freedom are equipped
with brushless outrunner motors and low ratio timing belt
gearbox, adapted to open loop torque control. The sensors
mounted on the robot are 12 encoders located at each joint
and an IMU embedding an extended Kalman filter [12].

2) Controller framework: The control loop runs on
a distant computer (Intel(R) Core(TM) i5-9500 CPU @
3.00GHz) to compute the impedance targets τ∗, q∗ and
q̇∗. Simulation tests were realized using the PyBullet [32]
physics engine.

The controller framework is shown in Fig. 1. A gamepad
is used to decide the reference velocity of the base of the
robot (x, y and yaw), expressed in the local frame. The MPC
computes at 100Hz the state and torques over an horizon of
480ms. The joint states and torque impedance targets are
then computed at 1kHz and sent to the control boards of
the robot. The estimator provides an estimation of the base
position and velocity of the robot.

3) Base velocity estimator: The estimator combines
forward kinematics data and IMU measurements to estimate
the base 6d velocity.

The inertial measurement unit (IMU) used on the
Solo quadruped includes an extended Kalman filter (EKF)
that estimates the body angular velocity, orientation and
linear acceleration unbiased from gravity. Leg kinematic is
measured by high resolution optical encoder. Joint velocity
is obtained by finite differentiation.

The base angular velocity is directly measured by the
IMU’s gyroscopes. The base linear velocity however needs
to be estimated by sensor fusion. For this, we use a simple
linear complementary filter as described in [12] and briefly
summarised below.

a) Low frequency source: For each foot in contact,
assuming a rigid point contact without slipping, the leg
kinematic can give a partial information about the base
velocity with respect to the contact point. Using base
orientation and angular velocity estimates from IMU’s
embeded EKF, we can fully reconstruct the base velocity.
Once averaged over each contact point, this data source give
a noisy but un-biased estimate.

b) High frequency source: Since the IMU’s EKF
provide linear acceleration with gravity removed, we can
integrate this quantity to estimate base velocity. This will
capture the rapid changes in the velocity, but suffer from
integration drift, making it a good high frequency source.

The complementary filter combines this two data sources
as the sum of 1st order low pass filter estimation from
the kinematics, and 1st order high pass filter of the IMU
integration.

For all experiment, the cutoff filter frequencies are set to
5Hz.

B. Joint states targets comparison

1) Reduced model experiments: To investigate how the re-
sampling of the state trajectories impacts the behaviour of the
robot (see Section III), we designed an OCP that can run at
1kHz, using a reduced model of the robot, with only three
degrees of freedom. The objective of the MPC is to track
a foot position trajectory (sinus in y and z). It enabled us
to compare the tracking performance of the MPC evaluated
at 1kHz using directly the targets computed by the OCP,
with the same MPC evaluated at 100Hz using Riccatti gains

Fig. 2. Experiment V-B.1. Foot tracking comparison in 3DOF experiment

Fig. 3. Experiment V-B.2. Joint velocity references

and re-sampling. The torques and joint states were computed
using Riccatti gains and either interpolation or integration,
as described in part V-A.2. Fig. 2 shows the foot position
trajectories of these three controllers during an experiment
on the real robot. We can see that they are rather similar. The
impact of running the MPC at a lower frequency and using
Riccatti gains and re-sampling did not degrade the behaviour
of the robot. Integration shows a slightly worse tracking than
interpolation.

2) Locomotion experiments in simulation: To further
study the differences between integration and interpolation,
we performed locomotion experiments. On the robot, the
integration framework did not work, so we realized the
experiments in simulation. We compared the interpolation
III-C.2 and integration III-C.1 schemes to compute the target
joint states between two nodes of the OCP. Fig. 3 shows the
joint velocity targets computed by each mean, in a simulation
with no noise. We can see that the interpolated velocities
are smoother than the integrated, which have bigger peaks.
The velocity tracking of the base of the robot looks slightly
more efficient for the interpolation, as can be seen in figure
4. Moreover, when we add noise in the simulation (in the

Fig. 4. Experiment V-B.2. Base velocity tracking comparison between
interpolation and integration

Fig. 5. Experiment V-B.2. Joint velocity references in a simulation with
noise

torques applied to the joints and the measured data), we
observe that the integrated velocity target become noisier,
as can be show in figure 5.

These experiments lead us to select the interpolation
framework for the locomotion experiments on the robot.

C. Walking

The walking experiments conducted on the robot
demonstrated the robustness of the controller. The robot
was able to follow linear velocity references up to 0.5m/s,
as well as angular ones up to 1rad/s. Push recovery tests
were successfully experimented, with the controller able to
recover from an impact, and adapting to a constant force
pushing it. The companion video shows some footage of
these experiments.

Fig. 6 shows the base velocity tracking performance. The
foot clearance can be seen in Fig. 7. We can observe that
when the linear velocity of the base increases, the swing foot
moves higher.

Fig. 6. Experiment V-C. Base velocity tracking during walking test

Fig. 7. Experiment V-C. Base velocity and foot clearance during
locomotion

VI. CONCLUSION AND FUTURE WORK

Through this paper we presented our work on a novel
locomotion controller for legged robots, based on whole-
body MPC. Traditional polynomial foot trajectory targets
where replaced in the OCP by an innovative cost, hence
letting full freedom to the solver to choose the best foot
movement. We also proposed a generic solution to implement
the MPC on a robot without low-level torque control,
by computing the impedance references using polynomial
interpolation. Experiments in simulation and on the Solo
quadruped were realized to justify some of the design
choices: with the reduced three degrees of freedom model,
the interpolation of the joint states ensures no loss of
performances with respect to an OCP running at higher
frequencies. Finally the robustness of the controller was
assessed during walking experiments with perturbations. The
novel flying foot cost led to proper reactive foot motion,
where higher base velocity implies bigger swing foot height,
as expected.

Future works will provide improvements on the flying
cost, such that it will include distance measurements between
obstacles rather than only height form the ground. This
feature will lead to walking experiments in more complex
environments (e.g. with stairs).

REFERENCES

[1] “Project page,” https://gepettoweb.laas.fr/articles/assirelli 2022.html.
[2] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of the

30th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, S. Dasgupta and D. McAllester, Eds.,
vol. 28, no. 3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1–
9. [Online]. Available: https://proceedings.mlr.press/v28/levine13.html

[3] E. F. Camacho and C. B. Alba, Model predictive control. Springer
science & business media, 2013.

[4] J. Rawlings, E. Meadows, and K. Muske, “Nonlinear model predictive
control: A tutorial and survey,” IFAC Proceedings Volumes, vol. 27,
no. 2, pp. 185–197, 1994.

[5] R. Findeisen and F. Allgöwer, “An introduction to nonlinear model
predictive control,” 01 2002.

[6] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in IEEE ICRA, 2016.

[7] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based
systems using numerical optimal control,” in IEEE ICRA, 2016.

[8] B. Houska and M. Diehl, “Robustness and stability optimization of
power generating kite systems in a periodic pumping mode,” in IEEE
International Conference on Control Applications, 2010.

[9] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic foot step
placement,” Advanced Robotics, vol. 24, pp. 719–737, 04 2010.

[10] T. Corbères, T. Flayols, P.-A. Léziart, R. Budhiraja, P. Souères,
G. Saurel, and N. Mansard, “Comparison of predictive controllers for
locomotion and balance recovery of quadruped robots,” in IEEE ICRA,
2021.

[11] A. Herdt, N. Perrin, and P.-B. Wieber, “Walking without thinking about
it,” in IEEE IROS, 2010.

[12] P.-A. Léziart, T. Flayols, F. Grimminger, N. Mansard, and P. Souères,
“Implementation of a reactive walking controller for the new open-
hardware quadruped solo-12,” in IEEE ICRA, 2021.

[13] F. Risbourg, T. Corberes, P.-A. Leziart, T. Flayols, N. Mansard, and
S. Tonneau, “Real time footstep planning and control of the solo
quadruped robot in 3d environments,” in IEEE IROS, 2022.

[14] E. L. Dantec, M. Naveau, N. Mansard, P. Fernbach, N. Villa,
G. Saurel, O. Stasse, and M. Taı̈x, “Whole-Body Model Predictive
Control for Biped Locomotion on a Torque-Controlled Humanoid
Robot,” Jul. 2022, working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03724019

[15] A. W. Winkler, D. C. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE RA-L, 2018.

[16] O. Melon, M. Geisert, D. Surovik, I. Havoutis, and M. Fallon,
“Reliable trajectories for dynamic quadrupeds using analytical costs
and learned initializations,” 2020.

[17] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” 2022.

[18] J. Carpentier and N. Mansard, “Multicontact locomotion of legged
robots,” IEEE Transactions on Robotics, 2018.

[19] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse,
P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon et al., “Whole
body model predictive control with a memory of motion: Experiments
on a torque-controlled talos,” IEEE ICRA, 2021.

[20] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” in IEEE ICRA, 2020.

[21] S. Katayama and T. Ohtsuka, “Whole-body model predictive control
with rigid contacts via online switching time optimization,” in IEEE
IROS, 2022.

[22] P. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim,
“Proprioceptive actuator design in the mit cheetah: Impact mitigation
and high-bandwidth physical interaction for dynamic legged robots,”
IEEE Transactions on Robotics, 2017.

[23] E. L. Dantec, M. Taix, and N. Mansard, “First Order Approximation
of Model Predictive Control Solutions for High Frequency Feedback,”
in IEEE ICRA, 2022.

[24] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols et al.,
“An open torque-controlled modular robot architecture for legged
locomotion research,” IEEE RA-L, 2020.

[25] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential
dynamic programming for multi-phase rigid contact dynamics,” in
IEEE Humanoids, 2018.

[26] E. Trélat, “Optimal control and applications to aerospace: some results
and challenges,” Journal of Optimization Theory and Applications, vol.
154, no. 3, pp. 713–758, 2012.

[27] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

[28] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” in Control and dynamic
systems, 1973, vol. 10.

[29] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[30] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library: A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” in IEEE/SICE International Symposium
on System Integration, 2019.

[31] F. T. Krogh, “Efficient algorithms for polynomial interpolation and
numerical differentiation,” Mathematics of Computation, vol. 24, pp.
185–190, 1970.

[32] E. Coumans and Y. Bai, “PyBullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, 2016–2021.

https://gepettoweb.laas.fr/articles/assirelli_2022.html
https://proceedings.mlr.press/v28/levine13.html
https://hal.archives-ouvertes.fr/hal-03724019
http://pybullet.org
http://pybullet.org

	Introduction
	Whole-Body control for Legged Locomotion: The Theory Behind It
	Rigid-Body dynamics
	Optimal Control
	Feasibility-driven Differential Dynamic Programming
	Riccati gains

	Impedance targets computation
	Actuator feedback
	Whole-Body Linear Feedback for Reference Torques Computation
	Joint state targets re-sampling for impedance control
	Integration
	Interpolation

	Optimal Control Problem Formulation for Locomotion
	Flying foot cost
	Impact costs
	Regularization
	Boundaries
	Reference base velocity tracking

	Experimental Results
	The Solo quadruped
	Hardware
	Controller framework
	Base velocity estimator

	Joint states targets comparison
	Reduced model experiments
	Locomotion experiments in simulation

	Walking

	Conclusion and Future work
	References

