[go: up one dir, main page]

函数解析学における B*-環(ビー・スターかん、英: B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。

Property Value
dbo:abstract
  • 函数解析学における B*-環(ビー・スターかん、英: B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。 (ja)
  • 函数解析学における B*-環(ビー・スターかん、英: B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。 (ja)
dbo:wikiPageID
  • 3403594 (xsd:integer)
dbo:wikiPageLength
  • 2911 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 59950096 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 函数解析学における B*-環(ビー・スターかん、英: B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。 (ja)
  • 函数解析学における B*-環(ビー・スターかん、英: B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。 (ja)
rdfs:label
  • B*-環 (ja)
  • B*-環 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of