Formula di Weizsäcker
In fisica nucleare, la formula di Weizsäcker (o formula semiempirica per la massa nucleare, spesso abbreviata in SEMF o meglio SENMF, dall'inglese semi-empirical [nuclear] mass formula), è una formula usata per approssimare la massa ed alcune altre proprietà del nucleo atomico.
Come suggerito dal nome, i termini vengono da modelli teorici (modello a goccia sferica carica e modelli a particella singola), mentre i coefficienti si ricavano da un fit fatto con i dati sperimentali.
La prima formulazione è dovuta al fisico tedesco Carl Friedrich von Weizsäcker, poi in collaborazione con Hans Bethe, ed a parte piccole modifiche al valore dei coefficienti, l'espressione rimane impiegata ancora oggi.
La formula
modificaSia A il numero di nucleoni, Z il numero di protoni ed N il numero di neutroni. La massa di un nucleo atomico è data da:
dove ed sono le masse a riposo di protone e neutrone, ed è l'energia di legame del nucleo.
La formula semiempirica afferma che l'energia di legame sia data da:
Termine di volume
modificaIl primo termine è conosciuto come termine di volume, ed è proporzionale al volume del nucleo: esso non dipende da Z ed è dovuto all'interazione nucleare forte agente sui nucleoni. Tale proporzionalità è dovuta al fatto che l'interazione forte ha un piccolo raggio d'azione, ed un singolo nucleone interagisce significativamente solo con i nucleoni vicini. Se così non fosse, cioè il raggio d'azione fosse maggiore, essendo le coppie di nucleoni tra le quali agisce tale forza , tale termine sarebbe proporzionale ad .
Il coefficiente è più piccolo dell'energia di legame tra i nucleoni , che è dell'ordine di 40 MeV, questo perché l'energia cinetica è direttamente proporzionale al numero di nucleoni nel nucleo, a causa del principio di esclusione di Pauli: se si considera un nucleo, composto in ugual numero di protoni e neutroni, assumendo il modello di Fermi in cui l'energia cinetica totale è , con l'energia di Fermi di circa 38 MeV, il valore aspettato di è:
che è vicino al valore misurato.
Termine di superficie
modificaIl termine , conosciuto come termine di superficie, è una correzione al termine di volume, ed anch'esso dipende dall'interazione forte. Tale correzione è data dal fatto che i nucleoni sulla superficie del nucleo, rispetto a quelli all'interno, hanno meno nucleoni vicini con i quali interagire, il che provoca un effetto simile alla tensione superficiale nei liquidi. Il termine contiene a causa della proporzionalità tra la superficie ed il numero di massa.
Termine coulombiano
modificaIl termine
è detto termine coulombiano o termine elettrostatico, ed è dato dall'interazione elettromagnetica tra i protoni del nucleo, che subiscono una repulsione elettrostatica a causa della comune carica. Intuitivamente si può rappresentare il nucleo mediante una sfera con densità di carica uniforme: l'energia potenziale di tale distribuzione è
dove Q è la carica totale e R è il raggio della sfera. Identificando Q con , e sapendo che il raggio è proporzionale ad , è possibile ricavare il termine coulombiano. Dal momento che la repulsione elettrostatica esiste nel momento in cui si ha più di un protone, diventa , ed il valore di può essere calcolato approssimativamente dall'equazione sopra esposta sapendo che:
Sostituendo:
L'energia potenziale della distribuzione di carica è:
la costante di Coulomb è invece
mentre la costante di struttura fine fornisce il valore di :
dove è il raggio del nucleo, dato = 1.25 fm. Questo fornisce un valore teorico di 0.691 MeV ad , vicino al valore misurato.
Termine asimmetrico
modificaIl termine
è conosciuto come termine asimmetrico. Il principio di esclusione di Pauli afferma che uno stato quantico non può essere occupato da più di due fermioni; ad un dato livello energetico, inoltre, c'è un finito numero di stati quantici disponibili per le particelle: ciò implica che se aggiungiamo particelle ad un nucleo, esse occuperanno livelli energetici sempre più alti, incrementando l'energia totale del nucleo e facendo diminuire, dopo un certo valore di A, l'energia di legame.
Protoni e neutroni, essendo tipi diversi di particelle, occupano stati quantici differenti, che intuitivamente possono essere visti come due recipienti, uno per i protoni e l'altro per i neutroni: ad esempio, se ci sono molti più neutroni che protoni, alcuni dei neutroni occuperanno, nel loro recipiente, un livello energetico più alto dei protoni. Se si potessero trasformare alcuni neutroni in eccesso in protoni, trasferendoli quindi nel recipiente di questi ultimi, l'energia diminuirebbe significativamente. Lo squilibrio tra i numeri dei due tipi di nucleoni causa quindi un eccesso di energia, e questo sta alla base del termine asimmetrico.
Usando il modello di Fermi, l'energia cinetica totale è
dove ed sono il numero di protoni e neutroni, mentre ed sono le loro energie di Fermi. Dal momento che tali energie sono proporzionali a e , allora:
con C costante. Lo sviluppo della differenza è:
Al primo ordine dell'espansione l'energia cinetica è l'energia di Fermi moltiplicata per .
Si ottiene così:
Il primo termine contribuisce al termine di volume precedentemente descritto, il secondo termine è l'opposto del termine asimmetrico. è 38 MeV, così, calcolando dalla precedente, si ottiene solo metà del valore misurato. La discrepanza tra i due valori è dovuta al fatto che i nucleoni non sono distribuiti uniformemente su tutto il nucleo, ma le loro funzioni d'onda si sovrappongono fornendo un'elevata energia di legame, e ciò porta protoni e neutroni ad avere gli stessi numeri quantici (oltre allo spin), incrementando l'intensità dell'asimmetria fra loro.
Termine di accoppiamento
modificaIl termine è detto termine di accoppiamento, e descrive l'effetto dello spin dei nucleoni. Esso è dato da:
dove
A causa del principio di esclusione di Pauli il nucleo ha energia minore se il numero di protoni con spin "up" è pari al numero di quelli con spin "down", e lo stesso vale per i neutroni. Quindi solo se Z e N sono pari sia protoni che neutroni hanno lo stesso numero di particelle con spin "up" e "down". Ciò spiega il motivo per cui la maggior parte dei nuclei presenti in natura siano pari-pari.
Il fattore deriva dal fatto che due nucleoni con identico spin hanno energia di legame maggiore, come detto precedentemente per il termine asimmetrico, e ciò porta i nucleoni ad accoppiarsi formando coppie di spin opposto.
Misura dei coefficienti
modificaI coefficienti sono stati misurati fittando i dati sperimentali delle misure della massa del nucleo. Il loro valore cambia a seconda del metodo usato; di seguito si riportano i risultati secondo il metodo dei minimi quadrati, la misura di Wapstra-Springer e quella di James William Rohlf-Wiley, in cui l'unità di misura è il MeV:
Metodo dei minimi quadrati | Wapstra[1] | Rohlf[2] | |
---|---|---|---|
15.8 | 14.1 | 15.75 | |
18.3 | 13 | 17.8 | |
0.714 | 0.595 | 0.711 | |
23.2 | 19 | 23.7 | |
12 | n/a | n/a | |
(pari-pari) | n/a | -33.5 | +11.18 |
(dispari-dispari) | n/a | +33.5 | -11.18 |
(pari-dispari) | n/a | 0 | 0 |
Note
modificaBibliografia
modifica- R.Freedman, H.Young (2004), University Physics with Modern Physics, 11th international edition, Sears and Zemansky, 1633-4. ISBN 0-8053-8768-4.
- S.E.Liverhant (1960), Elementary Introduction to Nuclear Reactor Physics, John Wiley & Sons, 58-62.
- RADIOCHEMISTRY and NUCLEAR CHEMISTRY, Gregory Choppin, Jan-Olov Liljenzin, and Jan Rydberg, 3rd Edition, 2002, the chapter on nuclear stability[collegamento interrotto] (PDF)
Altri progetti
modifica- Wikimedia Commons contiene immagini o altri file su formula di Weizsäcker
Collegamenti esterni
modifica- Nuclear liquid drop model, su hyperphysics.phy-astr.gsu.edu.
- The semi-empirical mass formula, su phy.uct.ac.za. URL consultato il 13 ottobre 2009 (archiviato dall'url originale il 1º maggio 2009).
- Liquid drop model in the hyperphysics online reference at Georgia State University.
- Liquid drop model with parameter fit from First Observations of Excited States in the Neutron Deficient Nuclei 160,161W and 159Ta, Alex Keenan, PhD thesis,
- https://drive.google.com/file/d/1uXyiA1VVi7yy31UjKBXIXkXtN1F6R1lw/view?usp=sharing