Quantum dot solar cells are promising for next-generation photovoltaics owing to their potential for improved device efficiency related to bandgap tailoring and quantum confinement of charge carriers. Yet implementing effective photon management to increase the absorptivity of the quantum dots is instrumental. To this end, the performance of thin-film InAs/GaAs quantum dot solar cells with planar and structured back reflectors is reported. The experimental thin-film solar cells with planar reflectors exhibited a bandgap-voltage offset of 0.3 V with an open circuit voltage of 0.884 V, which is one of the highest values reported for quantum dot solar cells grown by molecular beam epitaxy to our knowledge. Using measured external quantum efficiency and current-voltage characteristics, we parametrize a simulation model that was used to design an advanced reflector with diffractive pyramidal gratings revealing a 12-fold increase of the photocurrent generation in the quantum dot layers.
Thin-film InAs/GaAs quantum dot solar cell with planar and pyramidal back reflectors / Aho, T.; Elsehrawy, F.; Tukiainen, A.; Ranta, S.; Raappana, M.; Isoaho, R.; Aho, A.; Hietalahti, A.; Cappelluti, F.; Guina, M.. - In: APPLIED OPTICS. - ISSN 1559-128X. - ELETTRONICO. - 59:21(2020), pp. 6304-6308. [10.1364/AO.396590]
Thin-film InAs/GaAs quantum dot solar cell with planar and pyramidal back reflectors
Elsehrawy F.;Cappelluti F.;
2020
Abstract
Quantum dot solar cells are promising for next-generation photovoltaics owing to their potential for improved device efficiency related to bandgap tailoring and quantum confinement of charge carriers. Yet implementing effective photon management to increase the absorptivity of the quantum dots is instrumental. To this end, the performance of thin-film InAs/GaAs quantum dot solar cells with planar and structured back reflectors is reported. The experimental thin-film solar cells with planar reflectors exhibited a bandgap-voltage offset of 0.3 V with an open circuit voltage of 0.884 V, which is one of the highest values reported for quantum dot solar cells grown by molecular beam epitaxy to our knowledge. Using measured external quantum efficiency and current-voltage characteristics, we parametrize a simulation model that was used to design an advanced reflector with diffractive pyramidal gratings revealing a 12-fold increase of the photocurrent generation in the quantum dot layers.File | Dimensione | Formato | |
---|---|---|---|
ao-59-21-6304.pdf
accesso riservato
Descrizione: articolo principale pubblicato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Manuscript_Timo Aho_Revised.pdf
Open Access dal 14/07/2021
Descrizione: articolo principale nella versione Author Accepted manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
893.49 kB
Formato
Adobe PDF
|
893.49 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2855677