[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/r/nbr/nberwo/4718.html
   My bibliography  Save this item

A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Burak Saltoglu, 2003. "Comparing forecasting ability of parametric and non-parametric methods: an application with Canadian monthly interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 169-176.
  2. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
  3. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
  4. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
  5. Clement, E. & Gourieroux, C. & Monfort, A., 2000. "Econometric specification of the risk neutral valuation model," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 117-143.
  6. Lin, Shao-Bin & Chen, Chun-Da, 2013. "Applying the Model Order Reduction method to a European option pricing model," Economic Modelling, Elsevier, vol. 33(C), pages 533-536.
  7. Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
  8. Lei Fan & Justin Sirignano, 2024. "Machine Learning Methods for Pricing Financial Derivatives," Papers 2406.00459, arXiv.org.
  9. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
  10. Amarda Cano, 2021. "Evolution of Public Debt in Albania during 1990-2017 and its impact on the Economic Growth," European Journal of Marketing and Economics Articles, Revistia Research and Publishing, vol. 4, ejme_v4_i.
  11. Jun Lu & Hiroshi Ohta, 2003. "A data and digital-contracts driven method for pricing complex derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 212-219.
  12. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
  13. Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation: With an Application to Option Pricing," Papers 2102.09209, arXiv.org.
  14. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
  15. Bossaerts, Peter & Hillion, Pierre, 2003. "Local parametric analysis of derivatives pricing and hedging," Journal of Financial Markets, Elsevier, vol. 6(4), pages 573-605, August.
  16. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
  17. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
  18. Kanazawa, Nobuyuki, 2020. "Radial basis functions neural networks for nonlinear time series analysis and time-varying effects of supply shocks," Journal of Macroeconomics, Elsevier, vol. 64(C).
  19. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
  20. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
  21. Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
  22. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
  23. Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
  24. Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
  25. Montagna, Guido & Morelli, Marco & Nicrosini, Oreste & Amato, Paolo & Farina, Marco, 2003. "Pricing derivatives by path integral and neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 189-195.
  26. Marc Chataigner & St'ephane Cr'epey & Matthew Dixon, 2020. "Deep Local Volatility," Papers 2007.10462, arXiv.org.
  27. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
  28. Jiří Witzany & Milan Fičura, 2023. "Machine Learning Applications to Valuation of Options on Non-liquid Markets," FFA Working Papers 5.001, Prague University of Economics and Business, revised 24 Jan 2023.
  29. Khurshid Kiani, 2011. "Fluctuations in Economic and Activity and Stabilization Policies in the CIS," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 193-220, February.
  30. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
  31. Gunter Meissner & Noriko Kawano, 2001. "Capturing the volatility smile of options on high-tech stocks—A combined GARCH-neural network approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 25(3), pages 276-292, September.
  32. Yang Qu & Ming-Xi Wang, 2019. "The option pricing model based on time values: an application of the universal approximation theory on unbounded domains," Papers 1910.01490, arXiv.org, revised Apr 2021.
  33. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 1997. "Pricing and Hedging Derivative Securities in Incomplete Markets: An E-Aritrage Model," NBER Working Papers 6250, National Bureau of Economic Research, Inc.
  34. Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
  35. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
  36. Khurshid M. KIANI & Terry L. KASTENS, 2006. "Using Macro-Financial Variables To Forecast Recessions. An Analysis Of Canada, 1957-2002," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 6(3).
  37. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
  38. Arifovic, Jasmina & Gençay, Ramazan, 2001. "Using genetic algorithms to select architecture of a feedforward artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 574-594.
  39. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
  40. José R. Aragonés & Carlos Blanco & Pablo García Estévez, 2007. "Neural network volatility forecasts," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 107-121, July.
  41. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
  42. Gan, Lirong & Wang, Huamao & Yang, Zhaojun, 2020. "Machine learning solutions to challenges in finance: An application to the pricing of financial products," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
  43. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.
  44. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
  45. Gurupdesh S. Pandher, 2007. "Regression-based modeling of market option prices: with application to S&P500 options," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 475-496.
  46. Shu‐Heng Chen & Wo‐Chiang Lee & Chia‐Hsuan Yeh, 1999. "Hedging derivative securities with genetic programming," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 8(4), pages 237-251, December.
  47. Chen, Rui & Ren, Jinjuan, 2022. "Do AI-powered mutual funds perform better?," Finance Research Letters, Elsevier, vol. 47(PA).
  48. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
  49. Ali Hirsa & Tugce Karatas & Amir Oskoui, 2019. "Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes," Papers 1902.05810, arXiv.org.
  50. Panayiotis Andreou & Chris Charalambous & Spiros Martzoukos, 2006. "Robust Artificial Neural Networks for Pricing of European Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 329-351, May.
  51. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
  52. Ming Yuan, 2009. "State price density estimation via nonparametric mixtures," Papers 0910.1430, arXiv.org.
  53. Weijia Peng & Chun Yao, 2023. "Sector-level equity returns predictability with machine learning and market contagion measure," Empirical Economics, Springer, vol. 65(4), pages 1761-1798, October.
  54. N. K. Chidambaran & Chi-Wen Jevons Lee & Joaguin R. Trigueros, 1998. "An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-086, New York University, Leonard N. Stern School of Business-.
  55. Bossaerts, P.L.M. & Hillion, P., 1995. "Local Parametric Analysis of Hedging in Discrete Time," Discussion Paper 1995-23, Tilburg University, Center for Economic Research.
  56. Bertsimas, Dimitris. & Kogan, Leonid, 1974- & Lo, Andrew W., 1997. "Pricing and hedging derivative securities in incomplete markets : an e-arbitrage approach," Working papers WP 3973-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  57. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
  58. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
  59. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
  60. Carine Brasseur & Marcelo Espinoza & Johan A. K. Suykens & Tony Van Gestel & Bart Baesens & Bart De Moor, 2006. "A Bayesian nonlinear support vector machine error correction model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 77-100.
  61. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
  62. Radosław Puka & Bartosz Łamasz & Iwona Skalna & Beata Basiura & Jerzy Duda, 2023. "Knowledge Discovery to Support WTI Crude Oil Price Risk Management," Energies, MDPI, vol. 16(8), pages 1-14, April.
  63. Cheng Few Lee, 2020. "Financial econometrics, mathematics, statistics, and financial technology: an overall view," Review of Quantitative Finance and Accounting, Springer, vol. 54(4), pages 1529-1578, May.
  64. Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
  65. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
  66. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
  67. repec:wyi:journl:002108 is not listed on IDEAS
  68. Masanori Hirano & Kentaro Imajo & Kentaro Minami & Takuya Shimada, 2023. "Efficient Learning of Nested Deep Hedging using Multiple Options," Papers 2305.12264, arXiv.org.
  69. Nikola Gradojevic, 2021. "Brexit and foreign exchange market expectations: Could it have been predicted?," Annals of Operations Research, Springer, vol. 297(1), pages 167-189, February.
  70. Huseyin Ince, 2006. "Non-Parametric Regression Methods," Computational Management Science, Springer, vol. 3(2), pages 161-174, April.
  71. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
  72. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
  73. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
  74. Reesor, R. Mark & Stentoft, Lars & Zhu, Xiaotian, 2024. "A critical analysis of the Weighted Least Squares Monte Carlo method for pricing American options," Finance Research Letters, Elsevier, vol. 64(C).
  75. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
  76. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
  77. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
  78. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Post-Print hal-03910122, HAL.
  79. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
  80. Shota Imaki & Kentaro Imajo & Katsuya Ito & Kentaro Minami & Kei Nakagawa, 2021. "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging," Papers 2103.01775, arXiv.org.
  81. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
  82. Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
  83. Yi-Hsien Wang, 2009. "Using neural network to forecast stock index option price: a new hybrid GARCH approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 833-843, September.
  84. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
  85. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  86. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
  87. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
  88. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
  89. Yuji Shinozaki, 2024. "A Review of New Developments in Finance with Deep Learning: Deep Hedging and Deep Calibration," IMES Discussion Paper Series 24-E-02, Institute for Monetary and Economic Studies, Bank of Japan.
  90. Panayotis G. Michaelides & Efthymios G. Tsionas & Angelos T. Vouldis & Konstantinos N. Konstantakis & Panagiotis Patrinos, 2018. "A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 637-675, March.
  91. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
  92. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  93. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
  94. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
  95. John Board & Charles Sutcliffe & William T. Ziemba, 2003. "Applying Operations Research Techniques to Financial Markets," Interfaces, INFORMS, vol. 33(2), pages 12-24, April.
  96. Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
  97. Efe Arin & A. Murat Ozbayoglu, 2022. "Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 39-58, January.
  98. Darrat, Ali F & Zhong, Maosen, 2000. "On Testing the Random-Walk Hypothesis: A Model-Comparison Approach," The Financial Review, Eastern Finance Association, vol. 35(3), pages 105-124, August.
  99. Alois Weigand, 2019. "Machine learning in empirical asset pricing," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(1), pages 93-104, March.
  100. Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2004. "Neural network based approximations to posterior densities: a class of flexible sampling methods with applications to reduced rank models," Econometric Institute Research Papers EI 2004-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  101. Anindya Goswami & Sharan Rajani & Atharva Tanksale, 2020. "Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning," Papers 2008.00462, arXiv.org, revised Dec 2020.
  102. Yasuhiko Nakamura, 2008. "On Forecasting Recessions via Neural Nets," Economics Bulletin, AccessEcon, vol. 3(13), pages 1-15.
  103. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
  104. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
  105. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
  106. Barletta, Andrea & Santucci de Magistris, Paolo & Sloth, David, 2019. "It only takes a few moments to hedge options," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 251-269.
  107. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
  108. Johannes Ruf & Weiguan Wang, 2020. "Hedging with Linear Regressions and Neural Networks," Papers 2004.08891, arXiv.org, revised Jun 2021.
  109. Nowman, K. Ben & Saltoglu, Burak, 2003. "Continuous time and nonparametric modelling of U.S. interest rate models," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 25-34.
  110. Fathi Abid & Wafa Abdelmalek & Sana Ben Hamida, 2020. "Dynamic Hedging using Generated Genetic Programming Implied Volatility Models," Papers 2006.16407, arXiv.org.
  111. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
  112. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
  113. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
  114. Haoran Wang & Xun Yu Zhou, 2019. "Continuous-Time Mean-Variance Portfolio Selection: A Reinforcement Learning Framework," Papers 1904.11392, arXiv.org, revised May 2019.
  115. Jozef Baruník, 2008. "How Do Neural Networks Enhance the Predictability of Central European Stock Returns?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(07-08), pages 358-376, Oktober.
  116. repec:wyi:journl:002097 is not listed on IDEAS
  117. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
  118. Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
  119. Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
  120. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
  121. Jaydip Sen & Tamal Datta Chaudhuri, 2017. "A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector," Papers 1705.01144, arXiv.org.
  122. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
  123. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
  124. Anna Grodecka‐Messi, 2019. "Subprime borrowers, securitization and the transmission of business cycles," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(4), pages 1600-1654, November.
  125. Robert G. Biscontri, 2012. "A Radial Basis Function Approach To Earnings Forecast," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(1), pages 1-18, January.
  126. Daglish, Toby & Neely, Chris, 2008. "Optimal discrete hedging in the Heston Stochastic Volatility Model," Working Paper Series 4007, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
  127. de Cos, Javier & Sanchez, Fernando & Ortega, Francisco & Montequin, Vicente, 2008. "Rapid cost estimation of metallic components for the aerospace industry," International Journal of Production Economics, Elsevier, vol. 112(1), pages 470-482, March.
  128. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
  129. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
  130. Ortíz Arango Francisco & Cabrera Llanos Agustín Ignacio & López Herrera Francisco, 2013. "Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 58(3), pages 203-225, julio-sep.
  131. Philippe Paquet, 1997. "L'utilisation des réseaux de neurones artificiels en finance," Working Papers 1997-1, Laboratoire Orléanais de Gestion - université d'Orléans.
  132. Haven, Emmanuel & Liu, Xiaoquan & Ma, Chenghu & Shen, Liya, 2009. "Revealing the implied risk-neutral MGF from options: The wavelet method," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 692-709, March.
  133. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
  134. Eric Jacquier & Robert Jarrow, "undated". "Model Error in Contingent Claim Models (Dynamic Evaluation)," Rodney L. White Center for Financial Research Working Papers 7-96, Wharton School Rodney L. White Center for Financial Research.
  135. Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
  136. Kiani, K.M., 2009. "Neural Networks to Detect Nonlinearities in Time Series: Analysis of Business Cycle in France and the United Kingdom," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 9(1).
  137. Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014. "A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities," Papers 1409.1956, arXiv.org.
  138. Vouldis, Angelos T. & Michaelides, Panayotis G. & Tsionas, Efthymios G., 2010. "Estimating semi-parametric output distance functions with neural-based reduced form equations using LIML," Economic Modelling, Elsevier, vol. 27(3), pages 697-704, May.
  139. Yige Wang & Leyao Tong & Yueshu Zhao, 2024. "Revolutionizing Hedge Fund Risk Management: The Power of Deep Learning and LSTM in Hedging Illiquid Assets," JRFM, MDPI, vol. 17(6), pages 1-16, May.
  140. Justin Sirignano & Apaar Sadhwani & Kay Giesecke, 2016. "Deep Learning for Mortgage Risk," Papers 1607.02470, arXiv.org, revised Mar 2018.
  141. Philippe Paquet, 1997. "L'utilisation des réseaux de neurones artificiels en finance," Post-Print halshs-02096266, HAL.
  142. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
  143. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
  144. Salzano Massimo, 2005. "Neural Networks as tools for increasing the forecast and control of complex economic systems. Economics & Complexity - 1999\Vol2 N2 Spec. NEU 99-a," Macroeconomics 0501012, University Library of Munich, Germany.
  145. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
  146. Bildirici, Melike & Alp, Aykaç, 2008. "The Relationship Between Wages and Productivity: TAR Unit Root and TAR Cointegration Approach," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 5(1), pages 93-110.
  147. Henrik Amilon, 2003. "A neural network versus Black-Scholes: a comparison of pricing and hedging performances," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 317-335.
  148. Wolff, Christian & Bams, Dennis & Lehnert, Thorsten, 2005. "Loss Functions in Option Valuation: A Framework for Model Selection," CEPR Discussion Papers 4960, C.E.P.R. Discussion Papers.
  149. Purba Banerjee & Srikanth Iyer & Shashi Jain, 2023. "Multi-period static hedging of European options," Papers 2310.01104, arXiv.org, revised Oct 2023.
  150. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Risks, MDPI, vol. 8(3), pages 1-18, August.
  151. Khurshid M. Kiani, 2007. "Asymmetric Business Cycle Fluctuations and Contagion Effects in G7 Countries," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 6(3), pages 237-253, December.
  152. Yuji Yamada, 2012. "Properties of Optimal Smooth Functions in Additive Models for Hedging Multivariate Derivatives," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(2), pages 149-179, May.
  153. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
  154. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
  155. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Nonparametric pricing and hedging of exotic derivatives," Papers 1905.00711, arXiv.org.
  156. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
  157. Ryan Ferguson & Andrew Green, 2018. "Deeply Learning Derivatives," Papers 1809.02233, arXiv.org, revised Oct 2018.
  158. repec:wyi:journl:002092 is not listed on IDEAS
  159. Julia Jiang & Weidong Tian, 2019. "Semi-nonparametric approximation and index options," Annals of Finance, Springer, vol. 15(4), pages 563-600, December.
  160. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
  161. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
  162. Jaegi Jeon & Kyunghyun Park & Jeonggyu Huh, 2021. "Extensive networks would eliminate the demand for pricing formulas," Papers 2101.09064, arXiv.org.
  163. Zhonghao Xian & Xing Yan & Cheuk Hang Leung & Qi Wu, 2024. "Risk-Neutral Generative Networks," Papers 2405.17770, arXiv.org.
  164. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
  165. Sidra Mehtab & Jaydip Sen, 2020. "A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models," Papers 2004.11697, arXiv.org, revised May 2021.
  166. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
  167. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  168. Nawaf Almaskati, 2022. "Machine learning in finance: Major applications, issues, metrics, and future trends," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-32, September.
  169. Nian, Ke & Coleman, Thomas F & Li, Yuying, 2021. "Learning sequential option hedging models from market data," Journal of Banking & Finance, Elsevier, vol. 133(C).
  170. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
  171. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
  172. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
  173. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
  174. Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
  175. Timotej Jagric & Sebastjan Strasek, 2011. "Behavioural patterns as determinants of market movements: evidence from an emerging market," Applied Financial Economics, Taylor & Francis Journals, vol. 21(7), pages 481-491.
  176. Malik, Farooq & Nasereddin, Mahdi, 2006. "Forecasting output using oil prices: A cascaded artificial neural network approach," Journal of Economics and Business, Elsevier, vol. 58(2), pages 168-180.
  177. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
  178. Tsionas, Efthymios G. & Michaelides, Panayotis G. & Vouldis, Angelos, 2008. "Neural Networks for Approximating the Cost and Production Functions," MPRA Paper 74448, University Library of Munich, Germany.
  179. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
  180. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
  181. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
  182. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2024. "Deep Learning and American Options via Free Boundary Framework," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 979-1022, August.
  183. J. R. Aragonés & C. Blanco & P. García Estévez, 2005. "Improving expected tail loss estimates with neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 13(2), pages 81-94, June.
  184. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
  185. Chen Zhang, 2022. "Asset Pricing and Deep Learning," Papers 2209.12014, arXiv.org.
  186. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
  187. Bossaerts, P.L.M. & Hillion, P., 1995. "Local Parametric Analysis of Hedging in Discrete Time," Other publications TiSEM 77cdfe27-8732-4f09-bf89-f, Tilburg University, School of Economics and Management.
  188. Bossaerts, Peter & Hillion, Pierre, 1997. "Local parametric analysis of hedging in discrete time," Journal of Econometrics, Elsevier, vol. 81(1), pages 243-272, November.
  189. Healy, J.V. & Dixon, M. & Read, B.J. & Cai, F.F., 2004. "Confidence limits for data mining models of options prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 162-167.
  190. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
  191. Glasscock, Robson & Harless, David W. & Dorminey, Jack, 2017. "The curious case of Level 3 instruments," Research in Accounting Regulation, Elsevier, vol. 29(1), pages 52-68.
  192. Saerom Park & Jaewook Lee & Youngdoo Son, 2016. "Predicting Market Impact Costs Using Nonparametric Machine Learning Models," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
  193. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
  194. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  195. Daglish, Toby & Neely, Chris, 2008. "Optimal discrete hedging in the Heston Stochastic Volatility Model," Working Paper Series 19108, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
  196. Jasmina Hasanhodzic & Andrew Lo & Emanuele Viola, 2011. "A computational view of market efficiency," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1043-1050.
  197. Anders, Ulrich & Korn, Olaf & Schmitt, Christian, 1996. "Improving the pricing of options: a neural network approach," ZEW Discussion Papers 96-04, ZEW - Leibniz Centre for European Economic Research.
  198. Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
  199. Xianhua Peng & Xiang Zhou & Bo Xiao & Yi Wu, 2024. "A Risk Sensitive Contract-unified Reinforcement Learning Approach for Option Hedging," Papers 2411.09659, arXiv.org.
  200. Christian Haefke & Christian Helmenstein, 2002. "Index forecasting and model selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 119-135, April.
  201. Morelli, Marco J & Montagna, Guido & Nicrosini, Oreste & Treccani, Michele & Farina, Marco & Amato, Paolo, 2004. "Pricing financial derivatives with neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 160-165.
  202. Wee Ling Tan & Stephen Roberts & Stefan Zohren, 2024. "Deep Learning for Options Trading: An End-To-End Approach," Papers 2407.21791, arXiv.org.
  203. Jang, H. & Lee, J., 2019. "Machine learning versus econometric jump models in predictability and domain adaptability of index options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 74-86.
  204. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
  205. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
  206. Lai, Tze Leung & Lim, Tiong Wee, 2009. "Option hedging theory under transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 33(12), pages 1945-1961, December.
  207. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
  208. Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
  209. Olivier Bardou & Yoshua Bengio, 2002. "Régularisation du prix des options : Stacking," CIRANO Working Papers 2002s-44, CIRANO.
  210. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
  211. repec:vuw:vuwscr:19108 is not listed on IDEAS
  212. Jacquier, Eric & Jarrow, Robert, 2000. "Bayesian analysis of contingent claim model error," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 145-180.
  213. Thibault Collin, 2023. "Using Deep Learning to Hedge Rainbow Options," Working Papers hal-04060013, HAL.
  214. Antal Ratku & Dirk Neumann, 2022. "Derivatives of feed-forward neural networks and their application in real-time market risk management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 947-965, September.
  215. Nicolas Boursin & Carl Remlinger & Joseph Mikael, 2022. "Deep Generators on Commodity Markets Application to Deep Hedging," Risks, MDPI, vol. 11(1), pages 1-18, December.
  216. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  217. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
  218. Nikola Gradojevic & Dragan Kukolj & Ramazan Gencay, 2011. "Clustering and Classification in Option Pricing," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 109-128, October.
  219. Roberto Daluiso & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning," Papers 2312.14044, arXiv.org.
  220. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
  221. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
  222. Li, Gang & Zhang, Chu, 2013. "Diagnosing affine models of options pricing: Evidence from VIX," Journal of Financial Economics, Elsevier, vol. 107(1), pages 199-219.
  223. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
  224. Zheng Gong & Carmine Ventre & John O'Hara, 2021. "The Efficient Hedging Frontier with Deep Neural Networks," Papers 2104.05280, arXiv.org.
  225. J Lu & H Ohta, 2003. "Digital contracts-driven method for pricing complex derivatives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(9), pages 1002-1010, September.
  226. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
  227. Cabrera Llanos Agustín Ignacio & Ortíz Arango Francisco, 2012. "Pronóstico del rendimiento del IPC (Índice de Precios y Cotizaciones)mediante el uso de redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 57(2), pages 63-81, abril-jun.
  228. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
  229. João A. Bastos, 2023. "Conformal prediction of option prices," Working Papers REM 2023/0304, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  230. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.