[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/f/pvi529.html
   My authors  Follow this author

Miklós Virág

Personal Details

First Name:Miklos
Middle Name:
Last Name:Virag
Suffix:
RePEc Short-ID:pvi529
[This author has chosen not to make the email address public]
Terminal Degree: Corvinus Institute for Advanced Studies; Budapesti Corvinus Egyetem (from RePEc Genealogy)

Affiliation

Vállalkozás és Innováció Intézet
Budapesti Corvinus Egyetem

Budapest, Hungary
https://www.uni-corvinus.hu/fooldal/egyetemunkrol/intezetek/vallalkozas-es-innovacio-intezet/
RePEc:edi:vicorhu (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Tamás Kristóf & Attila Virág & Miklós Virág, 2024. "Sectoral Performance Trends and Differences in the Balkan and Eastern European Region," Economies, MDPI, vol. 12(4), pages 1-16, April.
  2. Kristóf, Tamás & Virág, Miklós, 2022. "EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks," Research in International Business and Finance, Elsevier, vol. 61(C).
  3. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
  4. Nyitrai, Tamás & Virág, Miklós, 2019. "The effects of handling outliers on the performance of bankruptcy prediction models," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 34-42.
  5. Virág, Miklós & Nyitrai, Tamás, 2017. "Magyar vállalkozások felszámolásának előrejelzése pénzügyi mutatóik idősorai alapján [Predicting the liquidation of Hungarian firms using a time series of their financial ratios]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 305-324.
  6. Miklós Virág & Tamás Nyitrai, 2014. "Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model," Acta Oeconomica, Akadémiai Kiadó, Hungary, vol. 64(4), pages 419-440, December.
  7. Miklós Virág & Tamás Nyitrai, 2014. "The application of ensemble methods in forecasting bankruptcy," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 13(4), pages 178-193.
  8. Miklós Virag & Tamás Nyitrai, 2013. "Application of support vector machines on the basis of the first Hungarian bankruptcy model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 35(2), pages 227-248, August.
  9. Tamás Kristóf & Miklós Virág, 2012. "Data reduction and univariate splitting — Do they together provide better corporate bankruptcy prediction?," Acta Oeconomica, Akadémiai Kiadó, Hungary, vol. 62(2), pages 205-228, June.
  10. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.

    Cited by:

    1. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.

  2. Nyitrai, Tamás & Virág, Miklós, 2019. "The effects of handling outliers on the performance of bankruptcy prediction models," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 34-42.

    Cited by:

    1. Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
    2. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    3. Ghafariasl, Parviz & Mahmoudan, Alireza & Mohammadi, Mahmoud & Nazarparvar, Aria & Hoseinzadeh, Siamak & Fathali, Mani & Chang, Shing & Zeinalnezhad, Masoomeh & Garcia, Davide Astiaso, 2024. "Neural network-based surrogate modeling and optimization of a multigeneration system," Applied Energy, Elsevier, vol. 364(C).
    4. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    5. Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    6. Fedorova, Elena & Ledyaeva, Svetlana & Drogovoz, Pavel & Nevredinov, Alexandr, 2022. "Economic policy uncertainty and bankruptcy filings," International Review of Financial Analysis, Elsevier, vol. 82(C).
    7. Kristóf, Tamás & Márton, András & Fiáth, Attila, 2023. "Állami energiavállalatok pénzügyi teljesítménye Magyarországon a koronavírus-járvány előtt és alatt [Financial performance of publicly owned energy companies in Hungary before and during the COVID ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1057-1076.
    8. Dong, Weijia & Dong, Xinyang & Lv, Xin, 2022. "How does ownership structure affect corporate environmental responsibility? Evidence from the manufacturing sector in China," Energy Economics, Elsevier, vol. 112(C).
    9. Lidiya Guryanova & Olena Bolotova & Vitalii Gvozdytskyi & Sergienko Olena, 2020. "Long-term financial sustainability: An evaluation methodology with threats considerations," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(1), pages 47-69.
    10. Mário S. Céu & Raquel M. Gaspar, 2023. "Financial Distress in European Vineyards and Olive Groves," Working Papers REM 2023/0266, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    11. Vadlamani Ravi & Vadlamani Madhav, 2020. "Optimizing the reliability of a bank with Logistic Regression and Particle Swarm Optimization," Papers 2004.11122, arXiv.org.

  3. Miklós Virág & Tamás Nyitrai, 2014. "Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model," Acta Oeconomica, Akadémiai Kiadó, Hungary, vol. 64(4), pages 419-440, December.

    Cited by:

    1. Sylvia Jenčová & Róbert Štefko & Petra Vašaničová, 2020. "Scoring Model of the Financial Health of the Electrical Engineering Industry’s Non-Financial Corporations," Energies, MDPI, vol. 13(17), pages 1-17, August.
    2. Misankova Maria & Zvarikova Katarina & Kliestikova Jana, 2017. "Bankruptcy Practice in Countries of Visegrad Four," Economics and Culture, Sciendo, vol. 14(1), pages 108-118, June.
    3. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).

  4. Miklós Virág & Tamás Nyitrai, 2014. "The application of ensemble methods in forecasting bankruptcy," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 13(4), pages 178-193.

    Cited by:

    1. Mohammad Shamsu Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib & Kunpeng Yuan, 2022. "Modeling credit risk with a multi‐stage hybrid model: An alternative statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1386-1415, November.
    2. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.

  5. Miklós Virag & Tamás Nyitrai, 2013. "Application of support vector machines on the basis of the first Hungarian bankruptcy model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 35(2), pages 227-248, August.

    Cited by:

    1. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
    2. Nyitrai, Tamás, 2014. "Növelhető-e a csőd-előrejelző modellek előre jelző képessége az új klasszifikációs módszerek nélkül? [Can the predictive capacity of bankruptcy forecasting models be increased without new classific," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 566-585.
    3. Botond Benedek & Balint Zsolt Nagy, 2023. "Traditional versus AI-Based Fraud Detection: Cost Efficiency in the Field of Automobile Insurance," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 22(2), pages 77-98.
    4. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.

  6. Tamás Kristóf & Miklós Virág, 2012. "Data reduction and univariate splitting — Do they together provide better corporate bankruptcy prediction?," Acta Oeconomica, Akadémiai Kiadó, Hungary, vol. 62(2), pages 205-228, June.

    Cited by:

    1. Nyitrai, Tamás, 2014. "Növelhető-e a csőd-előrejelző modellek előre jelző képessége az új klasszifikációs módszerek nélkül? [Can the predictive capacity of bankruptcy forecasting models be increased without new classific," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 566-585.

  7. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.

    Cited by:

    1. Nyitrai, Tamás, 2014. "Növelhető-e a csőd-előrejelző modellek előre jelző képessége az új klasszifikációs módszerek nélkül? [Can the predictive capacity of bankruptcy forecasting models be increased without new classific," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 566-585.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Miklos Virag should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.