[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/f/pch1197.html
   My authors  Follow this author

Efthymia Chrysanthidou

Personal Details

First Name:Efthymia
Middle Name:
Last Name:Chrysanthidoy
Suffix:
RePEc Short-ID:pch1197
Terminal Degree: Department of Economics; Democritus University of Thrace (from RePEc Genealogy)

Affiliation

Department of Economics
Democritus University of Thrace

Komotini, Greece
http://www.econ.duth.gr/
RePEc:edi:didutgr (more details at EDIRC)

Research output

as
Jump to: Working papers

Working papers

  1. Gogas, Periklis & Papadimitriou , Theophilos & Matthaiou, Maria- Artemis & Chrysanthidou, Efthymia, 2014. "Yield Curve and Recession Forecasting in a Machine Learning Framework," DUTH Research Papers in Economics 8-2014, Democritus University of Thrace, Department of Economics.
  2. Chrysanthidou, Efthimia & Gogas, Periklis & Papadimitriou, Theophilos, 2012. "Optimum Currency Areas within the US and Canada a Data Analysis Approach," DUTH Research Papers in Economics 4-2012, Democritus University of Thrace, Department of Economics.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Gogas, Periklis & Papadimitriou , Theophilos & Matthaiou, Maria- Artemis & Chrysanthidou, Efthymia, 2014. "Yield Curve and Recession Forecasting in a Machine Learning Framework," DUTH Research Papers in Economics 8-2014, Democritus University of Thrace, Department of Economics.

    Cited by:

    1. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
    2. Plakandaras, Vasilios & Gupta, Rangan & Papadimitriou, Theophilos & Gogas, Periklis, 2014. "Forecasting the U.S. Real House Price Index," DUTH Research Papers in Economics 10-2014, Democritus University of Thrace, Department of Economics.
    3. Yasmeen Idilbi-Bayaa & Mahmoud Qadan, 2021. "Forecasting Commodity Prices Using the Term Structure," JRFM, MDPI, vol. 14(12), pages 1-39, December.
    4. Lulin Xu & Zhongwu Li, 2021. "A New Appraisal Model of Second-Hand Housing Prices in China’s First-Tier Cities Based on Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 617-637, February.
    5. Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020. "Artificial intelligence in asset management," Working Papers 20202001, Cambridge Judge Business School, University of Cambridge.
    6. Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
    7. N. Loukeris & I. Eleftheriadis & E. Livanis, 2016. "The Portfolio Heuristic Optimisation System (PHOS)," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 627-648, December.
    8. Oguzhan Cepni & Rangan Gupta & Cenk C. Karahan & Brian M. Lucey, 2020. "Oil Price Shocks and Yield Curve Dynamics in Emerging Markets," Working Papers 202036, University of Pretoria, Department of Economics.
    9. Jaehyuk Choi & Desheng Ge & Kyu Ho Kang & Sungbin Sohn, 2021. "Yield Spread Selection in Predicting Recession Probabilities: A Machine Learning Approach," Papers 2101.09394, arXiv.org, revised Jan 2022.
    10. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
    11. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    12. Cheng-Feng Wu & Shian-Chang Huang & Chei-Chang Chiou & Tsangyao Chang & Yung-Chih Chen, 2022. "The Relationship Between Economic Growth and Electricity Consumption: Bootstrap ARDL Test with a Fourier Function and Machine Learning Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1197-1220, December.
    13. Maas, Benedikt, 2019. "Nowcasting and forecasting US recessions: Evidence from the Super Learner," MPRA Paper 96408, University Library of Munich, Germany.
    14. Knut Lehre Seip & Dan Zhang, 2021. "The Yield Curve as a Leading Indicator: Accuracy and Timing of a Parsimonious Forecasting Model," Forecasting, MDPI, vol. 3(2), pages 1-16, May.
    15. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    16. Christos Alexakis & Michael Dowling & Konstantinos Eleftheriou & Michael Polemis, 2021. "Textual Machine Learning: An Application to Computational Economics Research," Post-Print hal-03182910, HAL.
    17. Bouri, Elie & Demirer, Riza & Gupta, Rangan & Wohar, Mark E., 2021. "Gold, platinum and the predictability of bond risk premia," Finance Research Letters, Elsevier, vol. 38(C).
    18. Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
    19. David Mayer-Foulkes, 2018. "Efficient Urbanization for Mexican Development," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(10), pages 1-1, October.
    20. Kian Tehranian, 2023. "Can Machine Learning Catch Economic Recessions Using Economic and Market Sentiments?," Papers 2308.16200, arXiv.org.
    21. Andreas Psimopoulos, 2020. "Forecasting Economic Recessions Using Machine Learning:An Empirical Study in Six Countries," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 18(1), pages 40-99.
    22. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    23. Jaehyuk Choi & Desheng Ge & Kyu Ho Kang & Sungbin Sohn, 2023. "Yield spread selection in predicting recession probabilities," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1772-1785, November.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 2 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-MAC: Macroeconomics (2) 2012-10-13 2014-02-15
  2. NEP-FOR: Forecasting (1) 2014-02-15
  3. NEP-MON: Monetary Economics (1) 2012-10-13
  4. NEP-SOG: Sociology of Economics (1) 2014-02-15

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Efthymia Chrysanthidoy should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.