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Résumé

Un problème majeur lors du passage de la simulation à la
réalité est le retard sur le robot physique qui peut détério-
rer les performances de l’agent déployé. En outre, une fois
qu’une politique de contrôle basée sur l’apprentissage a été
entraînée avec succès, la réaffectation des connaissances
acquises par l’agent pour permettre à un agent structurel-
lement distinct d’effectuer la même tâche est dangereuse
si elle est effectuée naïvement. Dans ce travail, nous abor-
dons les problèmes ci-dessus avec une seule méthode, le
DA-UNN (Delay Aware Universal Notice Network), qui dé-
compose les connaissances en modules spécifiques au robot
et à la tâche pour un transfert rapide. Notre méthode traite
les retards immanents aux systèmes physiques afin d’amé-
liorer le transfert sim2réel. Nous évaluons l’efficacité de
notre approche en utilisant des robots simulés et réels sur
une tâche de manipulation dynamique où la gestion des dé-
lais est cruciale.

Abstract

One major issue for the simulation to real world transfer
is the delay on the physical robot that may deteriorate the
performance of the deployed agent. Furthermore, once a
successfully trained learning-based control policy is avai-
lable, re-purposing the knowledge acquired by the agent
to enable a structurally distinct agent to perform the same
task is hazardous if done naively. In this work, we address
the above issues with a single method, the DA-UNN (Delay
Aware Universal Notice Network), which decomposes the
knowledge into robot-specific and task-specific modules for
fast transfer. Our framework deals with delays immanent to
physical systems in order to improve sim2real transfer. We
evaluate the efficiency of our approach using simulated and
actual robots on a dynamic manipulation task where delay
management is crucial.
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1 Introduction
The Reinforcement Learning (RL) field has been success-
fully applied to a wide range of problems in the past years,
demonstrating both its versatility and efficiency. The ro-
botic domain in particular benefited from the tremendous
progresses made in RL as shown in recent work for qua-
druped robots[1] even succeeding in very intricate manipu-
lation tasks such as solving a rubik’s cube with a shadow
hand [2]. However, despite great achievements, RL suffers
from very low sample efficiency, which means that a large
amount of interactions with the environment is needed to
obtain a high-performance policy. One way to mitigate this
issue is through the use of transfer learning which alleviates
the burden of training models from scratch by re-purposing
knowledge acquired on another domain.
Nevertheless, in the context of RL, the neural network ar-
chitectures are too shallow and do not encourage know-
ledge segmentation as it is often the case in large Computer
Vision models [3]. As a consequence, if no particular pre-
caution is taken, the unconstrained backpropagation proce-
dure may result in an entangled knowledge representation.
In this setting, it is difficult to determine which part of the
network is relative to the task or the robot, making a par-
tial or total transfer of the policy network hazardous if done
naively and with very low chances of success.
The UNN (Universal Notice Network) framework introdu-
ced in [4] tackles this issue by implementing the idea of
knowledge segmentation between the agent and the task.
More precisely, the purpose of the UNN framework is to
enable multi-task and multi-robot transfer by creating a reu-
sable and robot-agnostic module of skills. Previous work
[4] already demonstrated the efficiency of UNN transfer in
simulation on a wide variety of tasks and robots morpho-
logy, exhibiting zero-shot performance in some cases. By
applying the same transfer method on real world robots, we
wish to find out if results obtained in simulation generalize
well to the real world.
However, simulation to real world transfer (also called
sim2real in the literature) is still an open problem. In gene-
ral, simulations are imperfect and difficult to calibrate. The
resulting modeling discrepancies cause a reality gap, which



FIGURE 1 – Transfers considered. UNN module is trained
with the BAM robot and then transferred to all robots. Va-
nilla agents are trained directly on the simulated robots and
then transferred on the corresponding physical robots.

makes the transfer of RL policies from simulation to the
real-world non-trivial. Sim2real is especially appealing as
offers an efficient alternative to expansive real world data
collections for learning complex robotic skills by training
in a general-purpose simulator. However, most of the time,
methods focus solely on domain adaptation between the
real world and the simulation [5],[6]. They tend to ignore
troublesome hardware specific issues such as control la-
tency. Consequently, the policy obtained by training in si-
mulation could be drastically disturbed once transferred in
the real world if the task requires short reaction time.
In this paper, we consider the time delay associated with the
physical system as another model’s input by including it in
the observed state. At training time, we randomize the value
of the delay and show that the agent is able to adapt to mul-
tiple delays on a dynamic and delay-sensitive manipulation
task.
Our contributions are as follows :

1. We present and evaluate a delay-aware method to
deal with the immanent delay on real hardware, thus
furthering the adaptation capabilities of the UNN.

2. We evaluate the benefits of the UNN multi-robot
transfer method over a vanilla transfer on real world
robots. A pool containing four differently shaped
real and virtual robots will solve a dynamic manipu-
lation task they have not been trained on, by using
the knowledge created by another agent as depicted
in Figure 1.

2 Related Work
Transfer learning in RL has been recognized as an impor-
tant direction towards building more sophisticated agents.
For instance, multi-task learning aims at improving robots
versatility via methods such as meta-learning [7],[8]. Ano-
ther interesting approach is to hierarchically decompose

complex problems into tractable, simpler and reusable
modules of skills through the use of concept networks [9].

Transfer between morphologically distinct robots on
the other hand, is currently less studied in the scientific
literature. A method proposed in [10] encapsulates and
leverages skills learned by a task expert by using GAN’s
discriminators as support for the knowledge transfer. Work
by Gupta and Devin [11] presents a method to learn an
invariant feature space for transferring skills between
different robots. Other work by the same authors [12]
uses a modular approach by training policy modules
that are decomposed over robots and tasks. The UNN
method used in this work, while very similar, differs from
the prior method by explicitly defining the state shared
between the task-specific and robot-specific modules. This
choice suppresses the need of relying on a shared latent
space between robot and task which may be prone to
over-fitting if the number of available modules is too low.
Furthermore, in the UNN framework, the task module can
be trained separately and only once, thus creating a truly
robot-agnostic module while saving the time and trouble of
having to train multiple possible pairs of the training set.

Several methods has been proposed to deal with de-
lays in robotic. In [13], the authors proposed a neural
network based method to address the control delay issue. A
predictor, approximated by a neural network, must infer the
current state of a fast moving robot by observing a vector
of stacked outdated states. To account for the imperfect
actuators of the real hardware, authors of [2] introduced
action delays with a probability of 0.5 at the beginning
of every simulation training episode of a neural network
with a LSTM layer. By doing so , they force the memory
enhanced neural network to adapt to action delays. A
cornerstone paper in RL with delay [14] learns a model of
the undelayed Markov Decision Process (MDP) to simulate
the most likely state in which the agent currently is, given
the last observed (delayed) state and the k last actions
taken since, k being the delay in timestep. This allows
the agent to take decisions based on the expected current
state rather than an outdated state, effectively undoing the
harmful effect of delays. They also introduced the concept
of Constant Delayed MDP used in section 4.1.

3 Universal Notice Network
3.1 The UNN pipeline
Instead of learning a single policy that will have to handle
both robot control and task resolution, the UNN method [4]
relies on an explicit decomposition between task-specific
and robot-specific knowledge as depicted in Figure 2. In
this modular approach, a model of the task, the UNN (Fi-
gure 2) is created in such a way that any robot, regardless
of its morphology, number of articulations or actuators can
efficiently benefit from it. This is similar to creating a no-
tice containing a set of high level instructions, that any kind
of robot could follow to solve a given task. It is primary to



FIGURE 2 – Schematic representation of the UNN[4]
.

ensure that the robot has the mobility and capacities requi-
red to comply with the UNN instructions and accomplish
the task. DefiningR the set of feasible actions the robot can
produce and U the set of actions required by the UNN to
perform a task, we assume in this paper that the robot can
perform the required actions, as sum up in :

U ⊆ R (1)

Once this assumption is verified, two conditions are essen-
tial :

— First, the UNN module must be robot-agnostic to
enable multi-robot transfer. This implies that robot-
specific observations have to be translated into a
feature space shared by the considered robots be-
fore being fed to the UNN module.

— Secondly, it is necessary to design a controller that
will map the UNN commands from the shared fea-
ture space into low-level, robot-specific actions that
the robot can execute.

These two requirements are handled by two additional mo-
dules inherent to the robot morphology called the bases.
They are paired with the UNN and serve as an interface
between the robot and the task module. More formally, the
three modules form a pipeline composed of the input base
mr

i and the output base mr
o, specific to the robot, which

handle respectively the first and the second conditions, and
the UNN mT

u robot-agnostic and specific to the task only.
In this setting, the state vector that is provided by the envi-
ronment at each timestep can be split into two parts sr, sT ,
respectively holding data intrinsic to the considered robot
and task-related information, independent from the agent.
The input base mr

i receives sr to compute :

sU = mr
i (s

r) (2)

which can be considered as robot-agnostic. The input base
mr

i is thus responsible for mapping the robot space to the
shared feature space where the UNN operates. The next
processing stage is the UNN module (i.e. the task module),
conditioned by the task related observation sT and the pro-
cessed agent representation vector sU . It then computes :

oout = mT
u (s

T , sU ) (3)

where oout is the command vector in the shared feature
space. Finally, oout is then re-mapped to the robot space
by the output base with the following transformation :

ar = mr
o(o

out, sr) (4)

which yields ar the effective action taken by the robot. In
other words, the UNN module focuses solely on solving the
task at hand, ignoring low level considerations such as the
robot’s DoF and shape, handled by the bases. This approach
makes it possible to create a reusable module of skills that
can be transferred to structurally different robots as long as
their bases are available. It is then possible to build a library
of UNN modules and robot’s modules, draw any subset of
interest from it and combine a UNN/Bases pair into a novel
fully functional policy.

3.2 Modules training
In practice, each of the three sub-modules mr

i ,m
T
u ,m

r
o can

be either learned or obtained via analytical methods.

3.2.1 Bases modules
In the case where bases are obtained using neural networks,
they can be trained on a suitable primitive task to acquire
basic motor skills. Another alternative is to collect a dataset
of trajectories of the robot and fit a regression model with
supervised learning techniques. A last alternative, used in
this work, consists to use analytical models for the robots
bases.

3.2.2 UNN module
The UNN module (or task module) can be trained with or
without the bases modules. In the first case, the UNN is
coupled with a robot and its associated bases. The UNN
interacts with the environment through the bases and its
error on the task is back propagated through the network.
In this case, we affect only the UNN module weights. Ho-
wever, the UNN module may then take advantage of the
robot hardware structure to achieve the task (for instance,
blocking an object between two articulations). As a conse-
quence, the UNN may favor certain body configurations
which may be detrimental for transfer. This issue is sol-
ved by using the Base Abstracted Modeling (BAM) method
[15]. It assimilates the robot to its effector by settingmr

i and
mr

o to identity mappings, thus making no assumption on the
robot’s constitution and preventing any bias related to the
bases. This is equivalent to considering a purely virtual and
free-flying robot. Using BAM enables faster convergence
of the policy and a more defined knowledge segmentation,
which in turns improves UNN transfer.

4 Delay Aware Universal Notice Net-
work

4.1 Constant Delayed Markov Decision Pro-
cess

The standard UNN proved its efficiency and versatility on
a broad panel of tasks in simulation. However, these results



were obtained with perfect robots (e.g no offset and no de-
lay) acting in a standard Markov Decision Process (MDP).
Traditionally it is assumed in RL that at every timestep, the
environment pauses while the agent receives the current ob-
servation, in order to derive an action that will be executed
without delay. Of course, things do not behave this way in
the real world. All agent observations and actions are de-
layed by an amount depending on the hardware used for
the task. Therefore, an agent trained in simulation without
exposition to delays will perform worse or even fail in the
real world if no precaution is taken.
This brings up the need to adopt a different decision pro-
cess modeling to solve tasks in the presence of delay. As
we consider the delay to be constant, we found the Constant
Delay MDP formulation introduced in [14] to be well sui-
ted. A CDMDP defines the delay d as the number of times-
teps between an agent occupying a state and receiving its
feedback from the environment, where d ∈ R+. The delay
is assumed to be part of the environment. A known result
in CDMPD is that observation delay and action delay are
equivalent from the agent’s point of view [16]. Hence, we
treated the total delay as being entirely caused by observa-
tion delay (see Figure 3).

FIGURE 3 – Schematic representation of the delay aware
UNN. Observations are queued into a pile of length d and
each timestep, the observation at the top is fed to the agent
(first in, first out).

4.2 Delay Aware UNN
A CDMDP can be transformed into a regular MDP by en-
larging the state space with a history of the d last actions
taken since the last observation. This transformation allows
theoretically to derive an optimal policy for the CDMDP
considered [17]. However, this approach does not allow di-
rect transfer between systems with different delays as the
input dimension depends on d. In this work we address the
delay issue by augmenting the state space of the UNN mo-
dule with the estimated delay of the system and by training
the agent on a corresponding delayed environment as de-
picted in Figure 3. A key feature of the UNN is its ability
to adapt to any robot regardless of its morphology. To keep
this idea of “universality", the delay was randomized during
training to ensure that the UNN can adapt to a wide range of
delay. By giving it access to the immanent delay, we enable

the UNN to act accordingly and to develop predictive capa-
bilities. Thus, we add d to the task specific observations.
During training, the delay is sampled regularly from a dis-
crete uniform distribution as U(dmin, dmax) where dmin

and dmax are respectively the minimum and the maximum
delay considered for the environments. Since there is no as-
sumption about the systems, we assumed a uniform distri-
bution of the delay. But any knowledge could be used to de-
duce a better delay distribution. When deployed, the identi-
fied delay of the system is fed to the UNN, so it can act ac-
cordingly. While our approach can only yield sub-optimal
CDMDP policies due to the incomplete state space consi-
dered, we believe that it represents an interesting trade-off
between optimality and flexibility. This very simple method
can improve drastically the performance of an agent on a
delayed MDP as presented in section VI, given that the de-
lay has been accurately determined and is suited for transfer
on systems with different delays.

5 Experimental setup
5.1 System Architecture and Robots
In this section, we briefly present the different robots adop-
ted throughout these experiments. We tested our method on
both physical and simulated robots to demonstrate its effi-
ciency and versatility. The physical robots used were a se-
rial arm braccio robot with 5 DoF and a 4 DoF serial arm .
These DIY robots are cheap and usually hard to work with,
given their low reliability. Still, we manage to use them ef-
ficiently in our experiments. We also considered their simu-
lated counterparts.
To sum things up, 5 different kinds of robots were used :

— BAM : the virtual BAM robot with the identity
bases.

— Robot 1 : the virtual braccio robot.
— Robot 2 : the virtual 4 DoF robot.
— Robot 3 : the physical braccio robot.
— Robot 4 : the physical 4 DoF robot.

A fixed webcam was used to obtain the required pose es-
timations with OpenCV. The control frequency was 10 Hz,
which means the agent was observing the environment state
and acting every 0.1 second. The nominal delay was in ave-
rage 300 ms on the physical systems. We identified the de-
lay by measuring the time between a command send to the
robot and the observation by the agent that the robot moved.
On the simulation side, agent’s training was performed in
simulation using the Unity physic simulator with the ML-
agent package introduced in [18], a set of convenient tools
for RL with a complete and reliable implementation of se-
veral RL algorithms. The PPO algorithm[19] was used to
create the neural network policies, as it provides a monoto-
nous performance improvement while being perfectly adap-
ted to continuous action spaces. On-policy algorithm are
also known to deal better with delays. We trained four kinds
of agents :

— Delay Aware UNN Agent : The BAM virtual robot
is trained in simulation with exposition to randomi-
zed delays to create the UNN.



— Delay Aware Vanilla Agent : The agent is trained
from scratch directly on the simulated robot, with
exposition to randomized delays.

— Finally, we also considered their delay unaware
counterparts, trained without exposition to delays,
in order to display the benefits of our delay mana-
gement approach.

These agents will be used for the transfers detailed in sec-
tion 6.2 (see Figure 1).

5.2 Task description
We display our method benefits on a 2D manipulation task
(planar task), where a robot needs to keep a ball at a desired
position on a gutter. In this regard, only 3DoF were required
for the physical robots (base rotation and wrist roll unused).
To further increase the gap between both robots, the Robot
4 was used as a 2 DoF robot (wrist pitch unused). The gutter
is fixed at one end and held at the other end by the robot’s
effector which therefore decides of its orientation and, as a
consequence, of the position of the ball (see Figure 4). This
task can be formalized with the following MDP :
State : st ∈ R4+1 : the ball position and velocity on the
gutter, the effector height, the desired ball position and the
system delay d for the delay aware agents.
Action : at ∈ Rn is the target joints position (n being the
number of considered joints). However, the vanilla agent
was not making any progress with a full access to the ac-
tion space. Indeed, to balance the ball on the gutter, it is
first needed to hold it properly. These desired body confi-
gurations are just a fraction of the full state space and it
is very unlikely to discover them without any prior know-
ledge of the task. To ease the vanilla agent learning process,
its action space was constrained to output joints offsets va-
lues w.r.t a reference joints position which maintained the
gutter in an equilibrium position.
Reward :

rt =

{
r − β|θe| if ddes,b < δ
−αddes,b − β|θe| else (5)

where r is a small positive reward, δ is the positive reward
area and ddes,b is the distance between the ball and the desi-
red ball position. |θe| is the angle between the effector pose
and the vertical plane, α and β a weighting constant. This
penalty ensures that the effector is in the right orientation to
hold the gutter properly for the vanilla agent. The effector
orientation constraint for the UNN is handled by the output
base, which means that β is set to zero when training the
UNN.

5.3 Delay Aware UNN creation
Creating the UNN module means training an agent to ba-
lance the gutter and keep the ball at the desired position.
As the BAM method showed better transfer results [15], we
decided to use it to create the UNN module. In this setting
the robot is assimilated to its effector and the UNN out-
put oout ∈ R is a single value indicating at what height
below or above the horizontal reference position of the gut-
ter the effector should be. To take actions, the agent ob-
serves sT , specific task information as well as the effector

FIGURE 4 – Physical experiments setup. Left robot will per-
form the task, while the right robot is used only to hold one
end of the gutter.

height given by mr
i (s

r). For this task, we chose the inter-
mediate state su and oout shared between the UNN module
and the bases to be the effector position. The UNN module
was receiving an extra input d ∼ U(0.1, 1) representing the
current delay of the system during training. A delay range
between 0 and 1 is recommended as it corresponds to a nor-
malized input. In our case, it also corresponds to our actual
delay in second, with 0.1s being the smallest delay possible
for our control frequency. The delay was created on the si-
mulator by stacking the observations in a FIFO buffer, be-
fore feeding them to the UNN module.

6 Results
In this section, we present our results both on training and
transferring on the chosen manipulation task. In particular,
we compare the UNN agents with the vanilla agents with
and without delay awareness. For further experiments, de-
lay was added artificially to the real system with the same
FIFO method seen in section 5.3. Code can be found at
github.com/sabeaussan/DelayAwareUNN. Videos showing
our results are available here.

6.1 Training
During the training, the desired ball position and system de-
lay (for delay aware agents) were regularly changed to im-
prove the adaptive capabilities and re-usability of the UNN.
More precisely, a new delay d was sampled from U(0.1, 1)
every 15 episodes. The desired ball position given to the
model, varying between 20% and 80% of the gutter length,
was also sampled from a uniform distribution U(0.2, 0.8)
every 1000 training steps. Both the BAM agents and the
Vanilla agents were trained for 4 millions steps. Figure 5
shows the cumulative reward obtained per episode. Only the
term ddes,b (distance between the ball and the desired posi-
tion) common to both reward functions was considered for
the comparison, as it reflects the agent overall progression
on the task. As shown in Figure 5, the BAM agents in both
settings converge slightly faster than their vanilla counter-
parts. The BAM agents focus solely on the task, leaving ro-
bot specific considerations to their bases. This decomposi-
tion of the learning problem similar to hierarchical RL eases
the learning process. It is also worth noting that introdu-

https://youtu.be/dQd4jfnWR8g


cing varying delay during training reduces the convergence
speed, as the task becomes more challenging. However, in
the UNN framework, this training overhead is outweighed
by the increased reusability of the UNN module.

FIGURE 5 – Training curves. All the agents were trained for
400000 steps.

6.2 Transfer
There is two kinds of transfer to consider : simulation to real
robot transfer and robot to robot transfer. The UNN frame-
work mitigates the sim2real transfer problem by conside-
ring the real robot and the simulated one as two different
robots, each one with its own bases, thus partially addres-
sing the sim2real transfer as a robot to robot transfer. In this
section we evaluate two methods of transfer

— UNN transfer : Once trained to convergence with
the BAM robot, the UNN module is transferred to
each robot of the set.

— Vanilla transfer : The vanilla agents trained on the
simulated robot are directly transferred to their phy-
sical counterpart. This will serve as a baseline to
study the UNN benefits for sim2real transfer.

The performance metric used was the integral of the ab-
solute value of the error between the ball position and the
desired ball position over time.This metric has the advan-
tage of taking into account both settling time and the steady
state error (the closer to 0, the better). For a fair comparison,
each experiment has been conducted with the same settings
(same initial ball position and desired ball position). Perfor-
mances displayed in Tables 1 and 2 were averaged over 50
episodes.

6.2.1 Influence of delay
In this part, we evaluate the first contribution of this work :
our delay management method, on both simulated and phy-
sical robots. Three delays were considered for the experi-
ments : 300 ms (corresponding to the delay on the physical
system), 500 ms and 700 ms. Figure 6 shows ball trajecto-
ries for the three delays considered, obtained by the UNN

Robots/Delays 0.3 0.5 0.7
BAM 3.12 / 15.57 3.94 / 22.57 4.91 / 25.28
UNN Robot 1 3.26 / 11.84 3.96 / 20.12 4.98 / 23.48
UNN Robot 2 3.43 / 12.21 4.19 / 18.47 5.10 / 21.19

TABLE 1 – Sim2sim transfer. Performances obtained for the
UNN transfer on the simulated robots. Results are displayed
with delay aware method on the left / delay unaware method
on the right.

agents on robot 1 (virtual braccio robot) and 3 (physical
braccio robot). On the simulation side, we added an optimal
trajectory obtained with the delay unaware UNN agent ac-
ting on an undelayed environments to serve as a reference
(see Figure 6a). The same agent was then exposed to the
delays considered to study how quick performance deterio-
rates for unaware agents as the delay increases. As shown,
agents not exposed to delays during training completely
failed and systematically overshot when trying to get the
ball at the required position in delayed environment. Figure
6b emphasizes the inability of the delay unaware agents to
cope with the physical system immanent delay (300 ms) as
the ball starts oscillating. Moreover, as the delay increases,
the delay unaware agents tend to become unstable. As for
delay aware agents, in the simulation, they still manage to
follow closely the optimal trajectory.
Table 1 shows the performances obtained in sim2sim trans-
fer with the UNN agents on both delay aware and unaware
settings. It is shown that delay aware agents perform from
3.5 to 5.72 times better than their unaware counterparts. It
is also clear from looking at Figure 6b and Table 2, which
shows the average performance after sim2real transfer, that
dealing with delay in simulation greatly improves the re-
sults of the UNN agents once deployed on the physical ro-
bots. Vanilla agents also benefited from this delay mana-
gement method, as shown in Table 2b, demonstrating the
versatility of the proposed method.

Robots/Delays 0.3 0.5 0.7
BAM 3.12 / 15.57 3.94 / 22.57 4.91 / 25.28
UNN Robot 3 4.78 / 9.88 5.05 / 22.32 8.02 / 24.43
UNN Robot 4 5.86 / 15.72 7.45 / 22.42 8.76 / 24.41

(a) UNN transfer : BAM → robot 3 and BAM → robot 4

Robots/Delays 0.3 0.5 0.7
Vanilla Robot 1 3.32 / 17.33 4.22 / 26.17 5.56 / 31.48
Vanilla Robot 3 5.43 / 19.65 5.97 / 28.22 9.33 / 33.43
Vanilla Robot 2 3.78 / 18.63 4.81 / 26.45 6.16 / 32.48
Vanilla Robot 4 7.58 / 21.13 9.55 / 27.05 10.62 / 33.82

(b) Vanilla transfer : robot 1 → robot 3 and robot 2 → robot 4

TABLE 2 – Sim2real transfer. Performances obtained for
the vanilla transfer and the UNN transfer on the physical
robots. Results are displayed as delay aware method on the
left / delay unaware method on the right.



(a) UNN Robot 1 (b) UNN Robot 3

FIGURE 6 – Ball trajectory with 0.3, 0.8 and 0.5 as desired ball position.

6.2.2 sim2sim transfer

In this paragraph, we discuss the results obtained when
transferring the delay aware UNN module from the BAM
robot to robots 1 and 2 in simulation. We also compare the
performance obtained against delay aware vanilla agents
which learned the task from scratch on robots 1 and 2. As
shown in Tables 1 and 2b, UNN-based approachs slightly
outperform the policy of the vanilla agents for the robots
and delays considered. We want to emphasize that the UNN
module has been trained only once and on only one robot,
the BAM robot, but still performs better than the vanilla
agents specifically trained on robots 1 and 2. These results
demonstrate the appealing re-usability and effectiveness
of the UNN module. In some cases, the delay aware UNN
agents achieve zero-shot performances (e.g robot 1 on
delay 0.5). In the worst case, the transfer efficiency is
90.9% (3.12/3.43), 100% being the performance obtained
by the UNN module on the BAM robot. In average, the
transfer efficiency is 97.7 % for robot 1 and 93.7% on robot
2. Ideally, the UNN module paired with any of the robots
would yield similar performance as with the BAM robot
if equation (1) was respected. However, in some cases the
body configurations required to comply with the UNN
commands are not precisely achievable by the robot. For
instance, the desired effector position need some of the
joints to rotate beyond their limits. This also explain why
the UNN transfer is less efficient on the 2 DoF robot, as
it is less expressive and has a harder time following UNN
commands.

6.2.3 sim2real transfer

In this paragraph, we study the UNN methodology as a
sim2real transfer tool. More specifically, we compare the
performance obtained after transfer on the physical robots
for Vanilla agents and UNN agents. In this case, both the
UNN module obtained on the BAM robot and the vanilla
agents obtained on the simulated robots, were transferred to
the physical robots. As shown in Figure 6, the UNN agent
on robot 3 still manages to put the ball at the desired po-

sitions without too much overshooting. Table 2 shows the
results obtained. As usual, the agents trained in simulation
and transferred to the real world show lower performance
than their virtual counterparts due to the reality gap. Ho-
wever, they still manage to obtain decent performances.
One notable result is that the delay unaware agents trans-
ferred to the physical robot obtain very poor performance
unlike their delay-aware counterpart. Once again, UNN ba-
sed agents outperform vanilla agents. Moreover, the UNN
based transfer reaches up to 78% (100% corresponds to the
BAM performance) in the best case, while the vanilla trans-
fer reaches 70.6% (100% corresponds to the vanilla agent
on robot 1). In average, the UNN sim2real transfer effi-
ciency is 68% on robot 3 and 54% on robot 4, against 63%
on robot 3 and 52.7% for robot 4 for the vanilla sim2real
transfer. As mentioned earlier, this slight sim2real impro-
vement can be attributed to the robot-agnostic nature of the
UNN module. Indeed, even if the vanilla agents were trai-
ned in simulation with a virtual copy, it remains an inac-
curate model of the physical robot. The UNN on the other
hand ignores those discrepancies by considering the physi-
cal robot and the virtual one as two different robots, each
with their own bases.

6.3 Discussion and perspectives
From the previous results, it appears clearly that the delay
management method used considerably improves the per-
formances when working with delayed environment, as its
often the case on the real world. Moreover, the UNN ap-
proach not only achieves very efficient transfer between
robots in simulation, but slightly improves sim2real trans-
fer over vanilla transfer. However, the zero-shot sim2real
transfer efficiency is nowhere near what was obtained for
the sim2sim transfers but further training could be done
on the physical robots to achieve better performance. As
aforementionned, the UNN mitigates the sim2real trans-
fer by considering the physical system as just another ro-
bot that can be interfaced with the UNN module. Never-
theless, the UNN module which was trained in simulation
can still overfit on its environment. As a result, the instruc-



tions given can be unsuitable if it is placed in a new do-
main with a slightly different state distribution, e.g the real
world. Fortunately, the UNN approach can be combined
with state-of-the art sim2real methods such as automatic
domain randomization[2] to improve sim2real transfer.

7 Conclusion
In this work, we studied the benefits of the UNN transfer
for a sim2real application. More specifically, we addressed
the delay management problem that occurs when working
with a physical system by making the UNN “aware" of the
latency of the system it is working with. By doing so, we
extended the versatility of the UNN method and the range
of compatible systems. We demonstrated this method effi-
ciency by solving a dynamic manipulation task where delay
management is paramount and showed that transfer across
systems with heterogeneous delays and structurally distinct
robots is possible. However, the UNN approach only is not
sufficient for efficient sim2real transfer, but could be en-
hanced with other sim2real methods. This work empirically
demonstrated the feasibility of our approach on a low di-
mensional task. Future work will investigate the efficiency
of our delay-management method on a higher dimensional
task.
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