Article Dans Une Revue
ESAIM: Mathematical Modelling and Numerical Analysis
Année : 2017
Résumé
In this work we consider a problem of modelling of 2D anisotropic dispersive wave propagation in unbounded domains with the help of perfectly matched layers (PML). We study the Maxwell equations in passive media with a frequency-dependent diagonal tensor of dielectric permittivity and magnetic permeability. An application of the traditional PMLs to this kind of problems often results in instabilities. We provide a recipe for the construction of new, stable PMLs. For a particular case of non-dissipative materials, we show that a known necessary stability condition of the perfectly matched layers is also sufficient. We illustrate our statements with theoretical and numerical arguments.
Fichier principal
main.pdf (5.85 Mo)
Télécharger le fichier
erratum.pdf (46.33 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Commentaire | The Extended Version |
Maryna Kachanovska : Connectez-vous pour contacter le contributeur
https://hal.science/hal-01356811
Soumis le : lundi 10 mai 2021-12:01:29
Dernière modification le : mardi 6 août 2024-10:56:09
Dates et versions
- HAL Id : hal-01356811 , version 2
- DOI : 10.1051/m2an/2017019
Citer
Eliane Bécache, Maryna Kachanovska. Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: Necessary and sufficient conditions of stability. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51 (6), pp.2399-2434. ⟨10.1051/m2an/2017019⟩. ⟨hal-01356811v2⟩
Collections
443
Consultations
254
Téléchargements