Résumé
We introduce a new methodology, based on new quasi-periodic Green functions which converge rapidly even at and around Wood-anomaly configurations, for the numerical solution of problems of scattering by periodic rough surfaces in two-dimensional space. As is well known the classical quasi-periodic Green function ceases to exist at Wood anomalies. The approach introduced in this text produces fast Green function convergence throughout the spectrum on the basis of a certain "finite-differencing" approach and smooth windowing of the classical Green function lattice sum. The resulting Green-function convergence is super-algebraically fast away from Wood anomalies, and it reduces to an arbitrarily-high (user-prescribed) algebraic order of convergence at Wood anomalies.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Bérangère Delourme : Connectez-vous pour contacter le contributeur
https://inria.hal.science/hal-00923678
Soumis le : vendredi 3 janvier 2014-17:50:10
Dernière modification le : jeudi 28 novembre 2024-10:50:09
Archivage à long terme le : jeudi 3 avril 2014-22:40:47
Dates et versions
- HAL Id : hal-00923678 , version 1
Citer
Oscar P. Bruno, Bérangère Delourme. Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum--including Wood anomalies. 2014. ⟨hal-00923678⟩
Collections
876
Consultations
421
Téléchargements