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Abstract—Numerical optimization is useful for various
areas of robotics. However tackling optimization problems
properly requires the use of non-trivial algorithms whose
tuning is challenging. RobOptim aims at providing a unified
framework for different categories of optimization problems
while relying on strong C++ typing to ensure efficient and
correct computations. This paper presents this software,
demonstrates its genericity and illustrates current use by
two full scale robotics examples.

Index Terms—Numerical Optimization, Software,
Humanoid Robotics

I. Introduction
Over the past years, numerical optimization proved itself

particulaly suited for various robotics applications such as
posture or trajectory optimization [1], [2], robot control [3] and
more. These applications yield both linear and non-linear opti-
mization problems with equalities and inequalities constraints.
Robot control also relies on other types of optimization such
as quadratic programming. As robot control algorithms run in
real-time, it leads to strong constraints on the implementation
efficiency. The design and implementation of a solver is tedious
and error-prone. Avoiding numerical precision issues, ensuring
that the algorithm behaves properly in all cases even with ill-
conditioned problems is challenging, in particular for roboticists
who are not necesseraly experts in optimization techniques.
Among available optimization toolboxes, the Matlab Optimiza-
tion Toolbox [4], the Open Optimization library, OPT++,
IPOPT [5], SciPy [6] and the GSL (Gnu Scientific Library) [7]
all provides several optimization algorithms. Unfortunately,
these libraries suffer from several drawbacks: some are difficult
to use, some do no provide support for advanced algorithms
such as support for constrained optimization or have efficiency
issues, etc. They also all lack a unified model expressing opti-
mization problems.

RobOptim solves these limitations by introducing a frame-
work to model any continuous optimization problem, con-
strained or not. The design is focused on providing a easy-to-
use C++ set of safe and efficient libraries which can be used
to prototype robotics applications. Let us emphasize here that
our framework does not implement any numerical optimization
algorithm. Instead, it provides a model for functions, problems
and solvers on the one hand and plug-ins wrapping existing
solvers as CFSQP or IPOPT on the other hand. The RobOptim
computational model will be first introduced in section II
and different applications will be detailed in section III. In
particular, an extension of RobOptim for a particular category

of problem has been implemented recently, demonstrating the
ability of RobOptim to support a large variety of problems.
The conclusion will detail advantages and limitations of the
current approach and summarize the roadmap for the next
developments.

Figure 1. Posture optimization while considering dynamic con-
straints with RobOptim.

II. RobOptim overview
RobOptim is a set of open-source C++ libraries avail-

able under the LGPL license. Source code, documenta-
tion and examples are provided by the project webpage:
http://www.roboptim.net/.

The RobOptim framework is divided into three parts: the
solver, core and application layers Figure 2. The core layer
provides a computational model expressive enough to formu-
late different types of optimization problems. The solver layer
gathers various optimization algorithms. The application layer
consists in several application-dependent packages bundling
reusable mathematical functions.

A. Mathematical function representation
Continuous optimization problems can be defined as follows:

min
x∈R𝑛

𝑓(x) under the constraint x ∈ X (1)

http://www.roboptim.net/
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Figure 2. RobOptim three layers architecture: solver (embedding
existing state of the Art algorithms), core and applications.

where 𝑓 : R𝑛 → R is the cost function and X ⊂ R𝑛 is
the subspace of the admissible solutions. This space is usually
defined by a set of inequality and equality constraints:

X ,

{︂
𝑐𝑖(𝑥) = 0 𝑖 ∈ 𝜉
𝑐𝑗(𝑥) ≤ 0 𝑗 ∈ 𝜈

(2)

𝑐𝑖 : R𝑛 → R, 𝑐𝑗 : R𝑛 → R are respectively the set of equality
and inequality constraints. 𝑖 and 𝑗 are the indices identifying
the constraints.

The mathematical functions 𝑓 and 𝑐𝑘 (𝑘 ∈ 𝜉∪𝜈) must provide
a way to evaluate their result at any point they are defined.
Their associated gradient and hessian can also be provided.
Finally, each of these function may be categorized as belonging
to a set of functions matching a particular structure which may
help the resolution. One example is linear functions. The goal
of the RobOptim core layer is to express these features through
the C++ typing rules.

Depending on the solving algorithm, it may be necessary
to obtain the Jacobian and in some cases even the functions
Hessian. Hence, functions providing maximum information
about themselves will be compatible with a larger proportion
of solvers.

In RobOptim, each mathematical function is represented
by a different C++ class. All of these types then inherit the
abstract kind of mathematical functions they represent. The
following kind of mathematical functions are bundled with
RobOptim core: function that can evaluate itself (Function
type), function that can evaluate itself and its gradient
(DifferentiableFunction), function that can evaluate itself,
its gradient and its hessian (TwiceDifferentiableFunction),
etc. Let ’A <: B’ be the relationship “type B is a subtype
(subclass) of A” or “B inherits from A”. Then a partial order
can be defined where: Function <: DifferentiableFunction
<: TwiceDifferentiableFunction.

B. Optimization problem definition and problem resolution
Once the cost function and all constraint functions have

been implemented, an optimization problem has to be built.
RobOptim core provides a meta-class Problem parametrized
by two parameters 𝐹 and 𝐶𝐿. 𝐹 the cost function type and 𝐶𝐿

is the list of the constraints types. A non-linear problem with
constraints then has the following type:

Problem<DerivableFunction, vector<LinearFunction,
DerivableFunction > >

The constraints can be either linear or non-linear. With
this type definition, the constraints will be divided into two
categories which will help the solver perform efficiently.

Additionally, bounds can be set on the optimization variables
and a starting point for the optimization process may be
specified. When the constraints are added to the problem, each
one of them is associated with a validity interval. If this interval
is reduced to a point, the constraint is an equality constraint.
At both compile time and run-time, RobOptim checks that
only valid problems are built. For instance if one adds a linear
constraint then RobOptim checks at compile time that the
constraint is a subtype of the LinearFunction type.

A solver that will solve the problem needs to be instantiated.
Each solver is parametrized by the same types as optimization
problems. Therefore the solver 𝑆 < 𝑃1, 𝐶𝐿1 > can solve the
problem 𝑃 < 𝑃2, 𝐶𝐿2 > if the following relation is true:

𝑃1 <: 𝑃2 ∧ ∀𝑖, 𝐶𝐿1(𝑖) <: 𝐶𝐿2(𝑖) (3)

Basically, the problem can be solved if all types provide
enough or more information than necessary. For instance if
gradients are required, the function may also provide hessian
computation but if gradient is lacking the compile time asser-
tions will fail and prevent the user from building an invalid
optimization problem.

By separating problem expression from solver, dynamic
changes of the solving algorithm are possible. Each solver is
bundled as a plug-in which is loaded at run-time. The interest
is to let the user freely change the problem complexity during
the design process. Other frameworks would require a different
API depending on the kind of optimization at hand, where
through RobOptim changes are minimal. One may choose to
use a more powerful solver than required at first and then
refine the choice or implement later a new plug-in providing the
best algorithm for one particular application. These features
are provided through meta-programming techniques and come
with a near zero cost1 at runtime and are unique to RobOptim.

C. Cost and constraint toolbox
Unlike others frameworks where computations are tightly

linked to one problem and one solver, RobOptim abstraction
mechanism allows user to implement toolboxes of reusable
functions. This part of RobOptim is dedicated to robotics.
The “trajectory” toolbox from the RobOptim application layer
is currently providing trajectores defined as B-Splines and
associated mathematical functions to realize minimal time
optimization for instance.

D. Toward easy and safe problem design
RobOptim is heavily relying on templated meta-

programming, a C++ language feature allowing in particular
to define parametrized types and execute algorithms at
compile time [8]. By defining problems and solvers through
parametrized types, the compiler is able to check that the
functions used to instantiate the optimization problem are

1RobOptim core does not realize copy so the additional runtime
cost is only due to calls to virtual functions.



compatible with the type of problem under construction. Thus,
only solvers supporting this kind of problem can be used.
Through meta-programming, these safety checks are evaluated
at compile-time and thus do not impact final performances.
Regarding ease of use, having a unified representation of
all models which matches closely the underlying theory
simplifies the understanding of the implementation process.
Finally, RobOptim relies on modern tools such as Boost
and Eigen to support natural ways of implementing algebra
computation. Additional tools such as gradient checks through
finite differentiation is also provided to help ensuring functions
correctness.

III. Applications and case study
RobOptim has been used to solve several different types

of robotics problems. The two scenarii that will be detailed
here are footsteps optimization and posture optimization for a
humanoid robot. Another important point is the extensibility of
the framework. To demonstrate RobOptim capacities to adapt
to new types of problems an example of such extension will
be given. These experiments aim at generating motion for the
humanoid robot HRP-2 [9].

A. Step planning for humanoid robots
Generating a walking motion in an environment cluttered

with obstacles is challenging. One commonly used approach is
the Rapidly-exploring Random Trees (RRT) method applied
to the robot bounding box or to the robot itself sliding on the
ground [10]. This probabilistic algorithm will try to create a
path between the starting point and the goal point by sampling
configurations randomly and is able to find solutions for highly
dimensioned problems on a reasonable time. However, the
probabilistic nature of these algorithms leads to paths which
seem unnatural. One solution to improve these paths is nu-
merical optimization. In this application, RobOptim has been
used to optimize a biped robot walking trajectory determined
beforehand by a motion planning algorithm.

Let 𝛾 be the initial robot waist trajectory
defined as a B-Spline from 𝑡𝑚𝑖𝑛 to 𝑡𝑚𝑎𝑥. A
free time trajectory Γ is defined from 𝑇𝑚𝑖𝑛 to
𝑇𝑚𝑎𝑥 = 𝑇𝑚𝑖𝑛 + 𝜆(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛) as

Γ𝜆(𝑇 ) = 𝛾(𝑡𝑚𝑖𝑛 + 1
𝜆

(𝑇 − 𝑇𝑚𝑖𝑛)) (4)

Time control point 1 . . . control point 𝑛
𝜆 𝑥0 𝑦0 𝜃0 . . . 𝑥𝑛 𝑦𝑛 𝜃𝑛

Table I
Optimization variables for walking motion problem

The use of a free time trajectory allows the solver to optimize
both trajectory shape and speed by respectively changing the
control points and the scale 𝜆. Optimization variables are
illustrated by Table I. The free time trajectory derived from
the trajectory 𝛾 is used as the state of the solver.

Cost function 𝑓(x) = 𝜆

Speed constraint ∀𝑇, foot, ( 𝑣𝑥
foot

𝑣𝑥
max

)2 + (
𝑣

𝑦
foot

𝑣
𝑦
max

)2 − 1 ≤ 0
Distance constraint ∀𝑇, distance(obstacle, Γ(𝑇 )) > 0

Table II
Walking optimization problem formulation

The problem cost function is defined as 𝜆. It corresponds to
minimizing the time by accelerating the trajectory as much as
possible. To preserve a feasible final trajectory while encour-
aging forward motion, a speed constraint is added which takes
separately into account the front speed 𝑣𝑥 and the lateral speed
𝑣𝑦 of each foot of the robot. Another constraint is preventing
the robot from colliding with obstacles. The problem definition
is detailed in Table II.

Figure 3. Walking trajectory optimization

This non-linear problem has been successfully solved by
RobOptim while relying on the proprietary solver CFSQP [11]
internally and result is shown on Figure 3.

B. Posture optimization for humanoid robots
Another problem is posture optimization, which consists in

choosing the best configuration such that a system will accom-
plish the objectives it has been assigned (see 1). In this example,
the goal is to find a configuration as close as possible to a
goal posture while taking into account various constraints. In
this case, robots and environment objects are considered as ele-
ments of the optimization problem. Constraints include: robot
and objects static equilibrium, Newton’s third law, Coulomb
friction model, fixed grasp model for bilateral contact forces,
joint limits, torque limits and FEM-modeled deformation of
the environment [12]. This problem is described extensively
in [13], [14] and demonstrated the ability of RobOptim to solve
complex large scale non-linear problems.

C. Extending the framework: least square optimization
Initially, non-linear optimization problems with constraints

have been solved with RobOptim. By providing a generic
computational framework, it is possible to extend RobOptim to
support other types of problems such as least square optimiza-
tion. A least square optimization problem is an unconstrained
problem, the cost function of which is defined by

𝑓(x) =
𝑚∑︁

𝑖=1

𝑓𝑖(x)2 (5)

where 𝑓1, · · · , 𝑓𝑚 are 𝑚 non-linear differentiable functions from
R𝑛 to R.

To build functions matching this definition, another func-
tion type called SumOfC1Squares has been derived from the



DifferentiableFunction class. The constructor of this new
type takes as input the function from R𝑛 to R𝑚 the coordi-
nates of which are 𝑓1, · · · , 𝑓𝑚. SumOfC1Squares then redefines
evaluation and gradient of

∑︀𝑚

𝑖=1 𝑓𝑖(x)2.
The CMinPack solver has then been wrapped into a RobOp-

tim solver class which takes as input problem of the type:
Problem<SumOfC1Squares, vector<> >.

The introduction of this new type of solver did not require
any change in the RobOptim infrastructure and proved the
genericity of the approach.

IV. Conclusion
A new approach to optimization problem representation has

been exposed in this paper. By expressing numerical opti-
mization problems through C++ typing, the RobOptim op-
timization framework provides a unified computational model.
Moreover, advanced C++ template meta-programming tech-
niques preserve efficiency while giving the capacity to express
high-level mathematical objects such as cost functions and
constraints. These features proved useful to solve different types
of robotics problems.

However though being generic, the RobOptim core layer
suffers from limitations. It still lacks support for optimization
in non-scalar spaces such as SO(3). By importing knowledge
about the structure of the optimization variables, solvers could
realize more efficient computations. For instance, 3D rotations
can be represented by homogeneous matrices, quaternions,
vectors and angles, etc. Switching from one representation to
another may lead to better convergence and a decrease in
the number of necessary mathematical operations. One goal
would be to both be able to express information regarding the
optimization variables structure and to find a method to help
solvers rely on these additional information. To achieve this
level of expressiveness, modern C++ features are of great help
and no optimization framework is providing yet such features
when it comes to design an optimization problem.

Therefore, RobOptim is a step forward toward making opti-
mization techniques available for non-expert by providing easy-
to-understand and generic model, strong C++ object model
ensuring safety and toolboxes bundling robotics oriented func-
tions that may be reused when one builds its own optimization
problem.
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