Fast minimum float computation in activity networks under interval uncertainty - Archive ouverte HAL
[go: up one dir, main page]

Article Dans Une Revue Journal of Scheduling Année : 2013
Fast minimum float computation in activity networks under interval uncertainty
1 LAAS-MOGISA (France)
"> LAAS-MOGISA
Thierry Garaix
Christian Artigues
Cyril Briand

Résumé

This paper considers the following basic problem in scheduling under uncertainty: given an activity-on-node network where each activity has an uncertain duration represented by an interval, compute the minimum float of each activity over all duration scenarios. For solving this NP-hard problem, Dubois et al. 2005 and Fortin et al. 2010 have recently proposed an algorithm based on path enumeration. In this paper, we establish structural properties of optimal solutions and a new lower bound allowing us to design an efficient branch-and-bound procedure. We also propose two mixed integer programming formulations. The methods are compared experimentally on a large variety of randomly generated problem instances. The results show that the proposed branch-and-bound procedure is very fast and consistently outperforms the MIP formulations and the path enumeration algorithm.
Fichier principal
Vignette du fichier
minslack-final.pdf (354.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00564426 , version 1 (08-02-2011)
Identifiants

Citer

Thierry Garaix, Christian Artigues, Cyril Briand. Fast minimum float computation in activity networks under interval uncertainty. Journal of Scheduling, 2013, 16 (1), pp.93-103. ⟨10.1007/s10951-012-0272-2⟩. ⟨hal-00564426⟩
208 Consultations
203 Téléchargements

Altmetric

Partager

More