Convergence analysis of time-domain PMLs for 2D electromagnetic wave propagation in dispersive waveguides - Archive ouverte HAL
[go: up one dir, main page]

Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2023
Convergence analysis of time-domain PMLs for 2D electromagnetic wave propagation in dispersive waveguides
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation (828, boulevard des Maréchaux, 91120 Palaiseau - France)
"> POEMS - Propagation des Ondes : Étude Mathématique et Simulation
2 TU Wien - Fakultät für Mathematik und Geoinformation [Wien] (Wiedner Hauptstraße 8, 1040 Wien, Austria - Autriche)
"> TU Wien - Fakultät für Mathematik und Geoinformation [Wien]

Résumé

This work is dedicated to the analysis of generalized perfectly matched layers (PMLs) for 2D electromagnetic wave propagation in dispersive waveguides. Under quite general assumptions on frequency-dependent dielectric permittivity and magnetic permeability we prove convergence estimates in homogeneous waveguides and show that the PML error decreases exponentially with respect to the absorption parameter and the length of the absorbing layer. The optimality of this error estimate is studied both numerically and analytically. Finally, we demonstrate that in the case when the waveguide contains a heterogeneity supported away from the absorbing layer, instabilities may occur, even in the case of the non-dispersive media. Our findings are illustrated by numerical experiments.
Fichier principal
Vignette du fichier
mainreport_to_submit.pdf (1.99 Mo) Télécharger le fichier
erratum.pdf (24.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03910611 , version 1 (22-12-2022)

Licence

Identifiants
  • HAL Id : hal-03910611 , version 1

Citer

Eliane Bécache, Maryna Kachanovska, Markus Wess. Convergence analysis of time-domain PMLs for 2D electromagnetic wave propagation in dispersive waveguides. ESAIM: Mathematical Modelling and Numerical Analysis, 2023. ⟨hal-03910611⟩
165 Consultations
100 Téléchargements

Partager

More