Article Dans Une Revue
Journal of Automated Reasoning
Année : 2018
Résumé
We explore the theory of regular language representations in the constructive type theory of Coq. We cover various forms of automata (deterministic, nondeterministic, one-way, two-way), regular expressions, and the logic WS1S. We give translations between all representations, show decidability results, and provide operations for various closure properties. Our results include a constructive decidability proof for the logic WS1S, a constructive refinement of the Myhill-Nerode characterization of regularity, and translations from two-way automata to one-way automata with verified upper bounds for the increase in size. All results are verified with an accompanying Coq development of about 3000 lines.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Christian Doczkal : Connectez-vous pour contacter le contributeur
https://hal.science/hal-01832031
Soumis le : vendredi 6 juillet 2018-14:43:20
Dernière modification le : jeudi 5 décembre 2024-14:12:05
Archivage à long terme le : mardi 2 octobre 2018-05:34:45
Dates et versions
- HAL Id : hal-01832031 , version 1
- DOI : 10.1007/s10817-018-9460-x
Citer
Christian Doczkal, Gert Smolka. Regular Language Representations in the Constructive Type Theory of Coq. Journal of Automated Reasoning, 2018, Special Issue: Milestones in Interactive Theorem Proving, 61 (1-4), pp.521-553. ⟨10.1007/s10817-018-9460-x⟩. ⟨hal-01832031⟩
Collections
250
Consultations
1486
Téléchargements