Regular Language Representations in the Constructive Type Theory of Coq - Archive ouverte HAL
[go: up one dir, main page]

Article Dans Une Revue Journal of Automated Reasoning Année : 2018
Regular Language Representations in the Constructive Type Theory of Coq
1 LIP - Laboratoire de l'Informatique du Parallélisme (46 Allée d'Italie 69364 LYON CEDEX 07 - France)
"> LIP - Laboratoire de l'Informatique du Parallélisme
2 Universität des Saarlandes [Saarbrücken] = Saarland University [Saarbrücken] (Universität des Saarlandes Campus D-66123 Saarbrücken - Allemagne)
"> Universität des Saarlandes [Saarbrücken] = Saarland University [Saarbrücken]

Résumé

We explore the theory of regular language representations in the constructive type theory of Coq. We cover various forms of automata (deterministic, nondeterministic, one-way, two-way), regular expressions, and the logic WS1S. We give translations between all representations, show decidability results, and provide operations for various closure properties. Our results include a constructive decidability proof for the logic WS1S, a constructive refinement of the Myhill-Nerode characterization of regularity, and translations from two-way automata to one-way automata with verified upper bounds for the increase in size. All results are verified with an accompanying Coq development of about 3000 lines.
Fichier principal
Vignette du fichier
RLR-Coq.pdf (279.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01832031 , version 1 (06-07-2018)
Identifiants

Citer

Christian Doczkal, Gert Smolka. Regular Language Representations in the Constructive Type Theory of Coq. Journal of Automated Reasoning, 2018, Special Issue: Milestones in Interactive Theorem Proving, 61 (1-4), pp.521-553. ⟨10.1007/s10817-018-9460-x⟩. ⟨hal-01832031⟩
250 Consultations
1486 Téléchargements

Altmetric

Partager

More