Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum--including Wood anomalies - Archive ouverte HAL
[go: up one dir, main page]

Pré-Publication, Document De Travail Année : 2014
Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum--including Wood anomalies
1 Computing and Mathematical Sciences [Pasadena]] (1200 E California Blvd. MC 305-16, Pasadena, CA 91125 - États-Unis)
"> Computing and Mathematical Sciences [Pasadena]]
2 LAGA - Laboratoire Analyse, Géométrie et Applications (Institut Galilée, Université Paris 13, 99 avenue Jean-Baptiste Clément, F-93430, Villetaneuse, France - France)
"> LAGA - Laboratoire Analyse, Géométrie et Applications

Résumé

We introduce a new methodology, based on new quasi-periodic Green functions which converge rapidly even at and around Wood-anomaly configurations, for the numerical solution of problems of scattering by periodic rough surfaces in two-dimensional space. As is well known the classical quasi-periodic Green function ceases to exist at Wood anomalies. The approach introduced in this text produces fast Green function convergence throughout the spectrum on the basis of a certain "finite-differencing" approach and smooth windowing of the classical Green function lattice sum. The resulting Green-function convergence is super-algebraically fast away from Wood anomalies, and it reduces to an arbitrarily-high (user-prescribed) algebraic order of convergence at Wood anomalies.
Fichier principal
Vignette du fichier
BrunoDelourme.pdf (495.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00923678 , version 1 (03-01-2014)
Identifiants
  • HAL Id : hal-00923678 , version 1

Citer

Oscar P. Bruno, Bérangère Delourme. Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum--including Wood anomalies. 2014. ⟨hal-00923678⟩
876 Consultations
421 Téléchargements

Partager

More