-
Notifications
You must be signed in to change notification settings - Fork 0
/
CMIP6_config.py
252 lines (214 loc) · 9.71 KB
/
CMIP6_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import logging
import gcsfs
import numpy as np
import pandas as pd
import os
class Config_albedo:
"""
Class that is passed to the CMIP6 calculations containing the configuration.
"""
def __init__(self):
"""
This function initialized the configuration for the CMIP6 calculations.
"""
logging.info("[CMIP6_config] Defining the config file for the calculations")
self.fs = gcsfs.GCSFileSystem(token="anon", access="read_only")
self.grid_labels = ["gn"] # Can be gr=grid rotated, or gn=grid native
# FOR RTM we are using:
# "CMCC-ESM2": ["r1i1p2f1"]
# "CanESM5": ["r1i1p2f1","r2i1p2f1","r9i1p2f1","r10i1p2f1","r7i1p2f1","r6i1p2f1","r3i1p2f1"]
# "MPI-ESM1-2-LR": ["r10i1p1f1","r1i1p1f1","r4i1p1f1","r2i1p1f1","r6i1p1f1"]
# "UKESM1-0-LL": ["r1i1p1f2","r2i1p1f2","r3i1p1f2","r4i1p1f2","r8i1p1f2"]
# "MPI-ESM1-2-HR": ["r1i1p1f1","r2i1p1f1"]
self.experiment_ids = ["ssp585"] #,"ssp585"]
self.source_id = None
self.member_id = None
self.variable_ids = [
"prw",
"clt",
"uas",
"vas",
"chl",
"sithick",
"siconc",
"sisnthick",
"sisnconc",
"tas",
"tos",
] # ,"toz"]
self.table_ids = [
"Amon",
"Amon",
"Amon",
"Amon",
"Omon",
"SImon",
"SImon",
"SImon",
"SImon",
"Amon",
"Omon",
]
self.bias_correct_ghi = True
self.bias_correct_file = "bias_correct/ghi_deltas.nc"
self.sensitivity_run = False
self.dset_dict = {}
self.start_date = "1979-01-01"
self.end_date = "2099-12-16"
if self.sensitivity_run:
# For sensitivity runs we do 40 year periods to
# evaluate the sensitivity from individual factors.
self.end_date = "1989-12-16"
self.scenarios = ["osa", "no_ice", "no_chl", "no_wind", "no_osa", "no_meltpond", "snow_sensitivity"]
# self.scenarios = ["osa","snow_sensitivity"]
else:
self.scenarios = ["osa"]
self.use_local_CMIP6_files = True
self.write_CMIP6_to_file = False
self.perform_light_calculations = True
self.cmip6_netcdf_dir = "light"
self.cmip6_outdir = "light/nfiles"
if self.sensitivity_run:
self.cmip6_outdir = "light_sensitivity"
if os.path.exists(self.cmip6_outdir):
os.makedirs(self.cmip6_outdir, exist_ok=True)
# Cut the region of the global data to these longitude and latitudes
if self.write_CMIP6_to_file:
# We want to save the entire northern hemisphere for possible use later
# while calculations are done north of 50N
self.min_lat = 0
self.start_date = "1950-01-01"
else:
self.min_lat = 60
self.max_lat = 85
self.min_lon = 0
self.max_lon = 360
# ESMF and Dask related
self.interp = "bilinear"
self.outdir = f"/mnt/disks/actea-disk-1/{self.cmip6_outdir}"
if os.path.exists(self.outdir):
os.makedirs(self.outdir, exist_ok=True)
self.selected_depth = 0
self.models = {}
# Define the range of wavelengths that constitue the different parts of the spectrum.
self.start_index_uv = len(np.arange(200, 200, 10))
self.end_index_uv = len(np.arange(200, 410, 10))
self.start_index_uvb = len(np.arange(200, 280, 10))
self.end_index_uvb = len(np.arange(200, 320, 10))
self.start_index_uva = len(np.arange(200, 320, 10))
self.end_index_uva = len(np.arange(200, 400, 10))
self.start_index_visible = len(np.arange(200, 400, 10))
self.end_index_visible = len(np.arange(200, 710, 10))
self.start_index_nir = len(np.arange(200, 800, 10))
self.end_index_nir = len(np.arange(200, 2500, 10))
self.setup_erythema_action_spectrum()
def setup_logging(self):
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def read_cmip6_repository(self):
self.df = pd.read_csv(
"https://storage.googleapis.com/cmip6/cmip6-zarr-consolidated-stores.csv"
)
def setup_parameters(self):
wl = pd.read_csv(
"data/Wavelength/Fresnels_refraction.csv", header=0, sep=";", decimal=","
)
self.wavelengths = wl["λ"].values
self.refractive_indexes = wl["n(λ)"].values
self.alpha_chl = wl["a_chl(λ)"].values
self.alpha_w = wl["a_w(λ)"].values
self.beta_w = wl["b_w(λ)"].values
self.alpha_wc = wl["a_wc(λ)"].values
self.solar_energy = wl["E(λ)"].values
self.fractions_shortwave_uv = self.solar_energy[self.start_index_uv:self.end_index_uv]
self.fractions_shortwave_vis = self.solar_energy[
self.start_index_visible:self.end_index_visible
]
self.fractions_shortwave_nir = self.solar_energy[self.start_index_nir:self.end_index_nir]
logging.info(
"[CMIP6_config] Energy fraction UV ({} to {}): {:3.3f}".format(
self.wavelengths[self.start_index_uv],
self.wavelengths[self.end_index_uv],
np.sum(self.fractions_shortwave_uv),
)
)
logging.info(
"[CMIP6_config] Energy fraction PAR ({} to {}): {:3.3f}".format(
self.wavelengths[self.start_index_visible],
self.wavelengths[self.end_index_visible],
np.sum(self.fractions_shortwave_vis),
)
)
# logging.info("[CMIP6_config] Energy fraction NIR ({} to {}): {:3.3f}".format(self.wavelengths[self.start_index_nir],
# self.wavelengths[self.end_index_nir],
# np.sum(
# self.fractions_shortwave_nir)))
# Read in the ice parameterization for how ice absorbs irradiance as a function of wavelength.
# Based on Perovich 1996
ice_wl = pd.read_csv(
"ice-absorption/sea_ice_absorption_perovich_and_govoni_interpolated.csv",
header=0,
sep=",",
decimal=".",
)
self.wavelengths_ice = ice_wl["wavelength"].values
self.absorption_ice_pg = ice_wl["k_ice_pg"].values
def setup_erythema_action_spectrum(self):
# Spectrum suggested by:
# A.F. McKinlay, A.F. and B.L. Diffey,
# "A reference action spectrum for ultraviolet induced erythema in human skin",
# CIE Research Note, 6(1), 17-22, 1987
# https://www.esrl.noaa.gov/gmd/grad/antuv/docs/version2/doserates.CIE.txt
# A = 1 for 250 <= W <= 298
# A = 10^(0.094(298- W)) for 298 < W < 328
# A = 10^(0.015(139-W-)) for 328 < W < 400
wavelengths = np.arange(200, 410, 10)
self.erythema_spectrum = np.zeros(len(wavelengths))
# https://www.nature.com/articles/s41598-018-36850-x
for i, wavelength in enumerate(wavelengths):
if 250 <= wavelength <= 298:
self.erythema_spectrum[i] = 1.0
elif 298 <= wavelength <= 328:
self.erythema_spectrum[i] = 10.0 ** (0.094 * (298 - wavelength))
elif 328 < wavelength < 400:
self.erythema_spectrum[i] = 10.0 ** (0.015 * (139 - wavelength))
logging.info(
"[CMIP6_config] Calculated erythema action spectrum for wavelengths 290-400 at 10 nm increment"
)
def setup_ozone_uv_spectrum(self):
# Data collected from Figure 4
# http://html.rhhz.net/qxxb_en/html/20190207.htm#rhhz
infile = "ozone-absorption/O3_UV_absorption_edited.csv"
df = pd.read_csv(infile, sep="\t")
# Get values from dataframe
o3_wavelength = df["wavelength"].values
o3_abs = df["o3_absorption"].values
wavelengths = np.arange(200, 410, 10)
# Do the linear interpolation
o3_abs_interp = np.interp(wavelengths, o3_wavelength, o3_abs)
logging.info(
"[CMIP6_config] Calculated erythema action spectrum for wavelengths 290-400 at 10 nm increment"
)
return o3_abs_interp, wavelengths
def setup_absorption_chl(self):
# Data exported from publication Matsuoka et al. 2007 (Table. 3)
# Data are interpolated to a fixed wavelength grid that fits with the wavelengths of
# Seferian et al. 2018
infile = "chl-absorption/Matsuoka2007-chla_wavelength_absorption.csv"
df = pd.read_csv(infile, sep=" ")
# Get values from dataframe
chl_abs_A = df["A"].values
chl_abs_B = df["B"].values
chl_abs_wavelength = df["wavelength"].values
# Interpolate to 10 nm wavelength bands - only visible
# This is because all other wavelength calculations are done at 10 nm bands.
# Original Matsuoka et al. 2007 operates at 5 nm bands.
wavelengths = np.arange(400, 710, 10)
# Do the linear interpolation
A_chl_interp = np.interp(wavelengths, chl_abs_wavelength, chl_abs_A)
B_chl_interp = np.interp(wavelengths, chl_abs_wavelength, chl_abs_B)
return A_chl_interp, B_chl_interp, wavelengths
# import matplotlib.pyplot as plt
# plt.plot(self.wavelengths,self.solar_energy)
# plt.title("Energy contributions from wavelengths 200-4000")
# plt.savefig("energy_fractions.png", dpi=150)