The clould feedback metrics implemented to PMP is originally from assessed-cloud-fbks
, developed by @mzelinka at LLNL. This code performs the analysis of Zelinka et al. (2022). It computes GCM cloud feedback components and compares them to the expert-assessed values from Sherwood et al. (2020).
To use, please consider follow these steps:
Install PMP via conda following these instructions. For example:
conda create -n [YOUR_CONDA_ENVIRONMENT] -c conda-forge pcmdi_metrics
Activate your environment (if PMP installed env is differnt than your current one):
conda activate [YOUR_CONDA_ENVIRONMENT]
Clone PMP repo to your local for pre-calculated data:
git clone https://github.com/PCMDI/pcmdi_metrics
Once completed, go to pcmdi_metrics/pcmdi_metrics/cloud_feedback
directory
cd [YOUR LOCAL CLONED PMP REPOSITORY]
cd pcmdi_metrics/pcmdi_metrics/cloud_feedback
In param/my_param.py
, update the "User Input" section so it points to your model's amip and amip-p4K files.
# User Input:
# ================================================================================================
model = "GFDL-CM4"
variant = "r1i1p1f1"
input_files_json = "./param/input_files.json"
# Flag to compute ECS
# True: compute ECS using abrupt-4xCO2 run
# False: do not compute, instead rely on ECS value present in the json file (if it exists)
# get_ecs = True
get_ecs = False
# Output directory path (directory will be generated if it does not exist yet.)
xml_path = "./xmls/"
figure_path = "./figures/"
output_path = "./output"
output_json_filename = "_".join(["cloud_feedback", model, variant]) + ".json"
# ================================================================================================
You will need to update param/input_files.json
file as well to provide data path for your input files.
Run calculation:
python cloud_feedback_driver.py -p param/my_param.py
Once code is completed, check output
directory (output_path
from the above parameter file) for JSON and figures
directory (figure_path
from the above parameter file) for figures and text tables.
-
Zelinka et al. (2022): Evaluating climate models’ cloud feedbacks against expert judgement, J. Geophys. Res., 127, e2021JD035198, doi:10.1029/2021JD035198.
-
Sherwood et al. (2020): A combined assessment of Earth’s climate sensitivity, Rev. Geophys., 58, e2019RG000678, doi:10.1029/2019RG000678.