-
-
Notifications
You must be signed in to change notification settings - Fork 21
/
mecha.zig
1103 lines (975 loc) · 38.8 KB
/
mecha.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
const std = @import("std");
const debug = std.debug;
const fmt = std.fmt;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const testing = std.testing;
const unicode = std.unicode;
const builtin = std.builtin;
pub const ascii = @import("src/ascii.zig");
pub const utf8 = @import("src/utf8.zig");
const mecha = @This();
/// The type of all parser that can work with `mecha`
pub fn Parser(comptime _T: type) type {
return struct {
pub const T = _T;
parse: *const fn (mem.Allocator, []const u8) Error!Result(T),
pub const asStr = mecha.asStr;
pub const convert = mecha.convert;
pub const digit = mecha.digit;
pub const discard = mecha.discard;
pub const many = mecha.many;
pub const manyN = mecha.manyN;
pub const mapConst = mecha.mapConst;
pub const map = mecha.map;
pub const opt = mecha.opt;
};
}
/// The result of a parse. where `ok` corresponds to a successful parse
/// and `err` denotes a failure. The result will be placed in `value`
/// and `rest` will contain the unparsed input. On error, `pos` will contain
/// the position where the parser stopped and the next parser can pick up.
pub fn Result(comptime T: type) type {
return struct {
/// An index into the input string pointing to the end of what was parsed.
index: usize,
/// The value parsed. Can either be `ok`, meaning parsing was successful, or `err` meaning
/// the string could not be parsed.
value: union(enum) {
ok: T,
err,
},
pub fn ok(index: usize, value: T) @This() {
return .{ .index = index, .value = .{ .ok = value } };
}
pub fn err(index: usize) @This() {
return .{ .index = index, .value = .err };
}
};
}
// All the ways in which a parser can fail.
pub const Error = error{OtherError} || mem.Allocator.Error;
fn typecheckParser(comptime P: type) void {
const err = "expected 'mecha.Parser(T)', found '" ++ @typeName(P) ++ "'";
const PInner = switch (@typeInfo(P)) {
.pointer => |info| info.child,
else => P,
};
if (@typeInfo(PInner) != .@"struct") @compileError(err);
if (!@hasDecl(PInner, "T")) @compileError(err);
if (@TypeOf(PInner.T) != type) @compileError(err);
if (PInner != Parser(PInner.T)) @compileError(err);
}
fn ReturnType(comptime P: type) type {
return switch (@typeInfo(P)) {
.pointer => |p| @typeInfo(p.child).@"fn".return_type.?,
.@"fn" => |f| f.return_type.?,
else => @compileError(@typeName(P)),
};
}
fn ParserResult(comptime P: type) type {
return switch (@typeInfo(P)) {
.pointer => |p| p.child.T,
else => P.T,
};
}
/// A parser that always succeeds and parses nothing. This parser
/// is only really useful for generic code. See `many`.
pub const noop = Parser(void){ .parse = struct {
const Res = Result(void);
fn parse(_: mem.Allocator, _: []const u8) Error!Res {
return Res.ok(0, {});
}
}.parse };
/// A parser that only succeeds on the end of the string.
pub const eos = Parser(void){ .parse = struct {
const Res = Result(void);
fn parse(_: mem.Allocator, str: []const u8) Error!Res {
if (str.len != 0)
return Res.err(0);
return Res.ok(0, {});
}
}.parse };
test "eos" {
const fa = testing.failing_allocator;
try expectOk(void, 0, {}, try eos.parse(fa, ""));
try expectOk(void, 0, {}, try eos.parse(fa, ""));
try expectErr(void, 0, try eos.parse(fa, "a"));
}
/// A parser that always succeeds with the result being the
/// entire string. The same as the '.*$' regex.
pub const rest = Parser([]const u8){ .parse = struct {
const Res = Result([]const u8);
fn parse(_: mem.Allocator, str: []const u8) Error!Res {
return Res.ok(str.len, str);
}
}.parse };
test "rest" {
const fa = testing.failing_allocator;
try expectOk([]const u8, 0, "", try rest.parse(fa, ""));
try expectOk([]const u8, 1, "a", try rest.parse(fa, "a"));
}
/// Construct a parser that succeeds if the string passed in starts
/// with `str`.
pub fn string(comptime str: []const u8) Parser([]const u8) {
const Res = Result([]const u8);
return .{ .parse = struct {
fn parse(_: mem.Allocator, s: []const u8) Error!Res {
if (!mem.startsWith(u8, s, str))
return Res.err(0);
return Res.ok(str.len, str);
}
}.parse };
}
test "string" {
const fa = testing.failing_allocator;
const p = string("aa");
try expectOk([]const u8, 2, "aa", try p.parse(fa, "aa"));
try expectOk([]const u8, 2, "aa", try p.parse(fa, "aaa"));
try expectErr([]const u8, 0, try p.parse(fa, "ba"));
try expectErr([]const u8, 0, try p.parse(fa, ""));
}
pub const ManyNOptions = struct {
/// A parser used to parse the content between each element `manyN` parses.
/// The default is `noop`, so each element will be parsed one after another.
separator: Parser(void) = noop,
};
/// Construct a parser that repeatedly uses `parser` until `n` iterations is reached.
/// The parser's result will be an array of the results from the repeated parser.
pub fn manyN(
comptime parser: anytype,
comptime n: usize,
comptime options: ManyNOptions,
) Parser([n]ParserResult(@TypeOf(parser))) {
const T = @TypeOf(parser);
const Array = [n]ParserResult(T);
const Res = Result(Array);
return .{
.parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
var res: Array = undefined;
var index: usize = 0;
for (&res, 0..) |*value, i| {
if (i != 0) {
const sep = try options.separator.parse(allocator, str[index..]);
index += sep.index;
switch (sep.value) {
.err => return Res.err(index),
.ok => {},
}
}
const r = try parser.parse(allocator, str[index..]);
index += r.index;
switch (r.value) {
.ok => |v| value.* = v,
.err => return Res.err(index),
}
}
return Res.ok(index, res);
}
}.parse,
};
}
test "manyN" {
const fa = testing.failing_allocator;
const p1 = comptime ascii.range('a', 'b').manyN(3, .{});
try expectOk([3]u8, 3, "aba".*, try p1.parse(fa, "ababab"));
const p2 = comptime ascii.range('a', 'b')
.manyN(3, .{ .separator = discard(ascii.char(',')) });
try expectOk([3]u8, 5, "aba".*, try p2.parse(fa, "a,b,a,b,a,b"));
}
pub const ManyOptions = struct {
/// The min number of elements `many` should parse for parsing to be
/// considered successful.
min: usize = 0,
/// The maximum number of elements `many` will parse. `many` will stop
/// parsing after reaching this number of elements even if more elements
/// could be parsed.
max: usize = math.maxInt(usize),
/// Have `many` collect the results of all elements in an allocated slice.
/// Setting this to false, and `many` will instead just return the parsed
/// string as the result without any allocation.
collect: bool = true,
/// A parser used to parse the content between each element `many` parses.
/// The default is `noop`, so each element will be parsed one after another.
separator: Parser(void) = noop,
};
fn Many(comptime parser: anytype, comptime options: ManyOptions) type {
if (options.collect)
return []ParserResult(@TypeOf(parser));
return []const u8;
}
/// Construct a parser that repeatedly uses `parser` as long as it succeeds
/// or until `opt.max` is reach. See `ManyOptions` for options this function
/// exposes.
pub fn many(comptime parser: anytype, comptime options: ManyOptions) Parser(Many(parser, options)) {
const ElementParser = @TypeOf(parser);
const Element = ParserResult(ElementParser);
const Res = Result(Many(parser, options));
typecheckParser(ElementParser);
return .{ .parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
var res = if (options.collect)
try std.ArrayList(Element).initCapacity(allocator, options.min)
else {};
errdefer if (options.collect) res.deinit();
var index: usize = 0;
var i: usize = 0;
while (i < options.max) : (i += 1) {
var curr = index;
if (i != 0) {
const sep = try options.separator.parse(allocator, str[curr..]);
curr += sep.index;
switch (sep.value) {
.ok => {},
.err => break,
}
}
const r = try parser.parse(allocator, str[curr..]);
curr += r.index;
switch (r.value) {
.ok => |value| {
if (options.collect)
try res.append(value);
},
.err => break,
}
index = curr;
}
if (i < options.min)
return Res.err(index);
const value = if (options.collect)
try res.toOwnedSlice()
else
str[0..index];
return Res.ok(index, value);
}
}.parse };
}
test "many" {
const fa = testing.failing_allocator;
const p1 = comptime string("ab")
.many(.{ .collect = false });
try expectOk([]const u8, 0, "", try p1.parse(fa, ""));
try expectOk([]const u8, 0, "", try p1.parse(fa, "a"));
try expectOk([]const u8, 2, "ab", try p1.parse(fa, "ab"));
try expectOk([]const u8, 2, "ab", try p1.parse(fa, "aba"));
try expectOk([]const u8, 4, "abab", try p1.parse(fa, "abab"));
try expectOk([]const u8, 4, "abab", try p1.parse(fa, "ababa"));
try expectOk([]const u8, 6, "ababab", try p1.parse(fa, "ababab"));
const p2 = comptime string("ab")
.many(.{ .collect = false, .min = 1, .max = 2 });
try expectErr([]const u8, 0, try p2.parse(fa, ""));
try expectErr([]const u8, 0, try p2.parse(fa, "a"));
try expectOk([]const u8, 2, "ab", try p2.parse(fa, "ab"));
try expectOk([]const u8, 2, "ab", try p2.parse(fa, "aba"));
try expectOk([]const u8, 4, "abab", try p2.parse(fa, "abab"));
try expectOk([]const u8, 4, "abab", try p2.parse(fa, "ababa"));
try expectOk([]const u8, 4, "abab", try p2.parse(fa, "ababab"));
const p3 = comptime string("ab")
.many(.{ .collect = false, .separator = discard(ascii.char(',')) });
try expectOk([]const u8, 0, "", try p3.parse(fa, ""));
try expectOk([]const u8, 0, "", try p3.parse(fa, "a"));
try expectOk([]const u8, 2, "ab", try p3.parse(fa, "aba"));
try expectOk([]const u8, 2, "ab", try p3.parse(fa, "abab"));
try expectOk([]const u8, 5, "ab,ab", try p3.parse(fa, "ab,ab"));
try expectOk([]const u8, 5, "ab,ab", try p3.parse(fa, "ab,ab,"));
const p4 = comptime utf8.char(0x100)
.many(.{ .collect = false });
try expectOk([]const u8, 6, "ĀĀĀ", try p4.parse(fa, "ĀĀĀāāā"));
const a = testing.allocator;
const p5 = comptime utf8.range(0x100, 0x100).many(.{});
const res = try p5.parse(a, "ĀĀĀāāā");
defer a.free(res.value.ok);
var expect = [_]u21{ 'Ā', 'Ā', 'Ā' };
try expectOk([]u21, 6, &expect, res);
}
/// Construct a parser that will call `parser` on the string
/// but never fails to parse. The parser's result will be the
/// result of `parser` on success and `null` on failure.
pub fn opt(comptime parser: anytype) Parser(?ParserResult(@TypeOf(parser))) {
const Res = Result(?ParserResult(@TypeOf(parser)));
return .{ .parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
const res = try parser.parse(allocator, str);
return switch (res.value) {
.ok => |value| Res.ok(res.index, value),
.err => Res.ok(0, null),
};
}
}.parse };
}
test "opt" {
const fa = testing.failing_allocator;
const p1 = comptime ascii.range('a', 'z').opt();
try expectOk(?u8, 1, 'a', try p1.parse(fa, "a"));
try expectOk(?u8, 1, 'a', try p1.parse(fa, "aa"));
try expectOk(?u8, 0, null, try p1.parse(fa, "1"));
}
fn parsersTypes(comptime parsers: anytype) []const type {
var types: []const type = &[_]type{};
for (parsers) |parser| {
const T = ParserResult(@TypeOf(parser));
if (T != void)
types = types ++ [_]type{T};
}
return types;
}
fn Combine(comptime parsers: anytype) type {
const types = parsersTypes(parsers);
if (types.len == 0)
return void;
if (types.len == 1)
return types[0];
return Tuple(types.len, types[0..types.len].*);
}
/// HACK: Zig cannot cache functions that takes pointers (slices)
/// so we have to pass the types as an array, by value.
fn Tuple(comptime n: usize, comptime types: [n]type) type {
return meta.Tuple(&types);
}
/// Takes a tuple of `Parser(any)` and constructs a parser that
/// only succeeds if all parsers succeed to parse. The parsers
/// will be called in order and parser `N` will use the `rest`
/// from parser `N-1`. The parse result will be a `Tuple` of
/// all parsers not of type `Parser(void)`. If only one parser
/// is not of type `Parser(void)` then this parser's result is
/// returned instead of a tuple.
pub fn combine(comptime parsers: anytype) Parser(Combine(parsers)) {
const types = parsersTypes(parsers);
const Value = Combine(parsers);
const Res = Result(Value);
return .{ .parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
var value: Value = undefined;
var index: usize = 0;
comptime var j = 0;
inline for (parsers) |parser| {
const res = try parser.parse(allocator, str[index..]);
index += res.index;
const v = switch (res.value) {
.ok => |v| v,
.err => return Res.err(index),
};
if (@TypeOf(v) != void) {
if (types.len == 1) {
value = v;
} else {
value[j] = v;
}
j += 1;
}
}
return Res.ok(index, value);
}
}.parse };
}
test "combine" {
const fa = testing.failing_allocator;
const p1 = comptime combine(.{
ascii.range('a', 'b').opt(),
ascii.range('d', 'e').opt(),
});
const P1 = @TypeOf(p1).T;
try expectOk(P1, 2, .{ .@"0" = 'a', .@"1" = 'd' }, try p1.parse(fa, "ad"));
try expectOk(P1, 1, .{ .@"0" = 'a', .@"1" = null }, try p1.parse(fa, "aa"));
try expectOk(P1, 1, .{ .@"0" = null, .@"1" = 'd' }, try p1.parse(fa, "da"));
try expectOk(P1, 0, .{ .@"0" = null, .@"1" = null }, try p1.parse(fa, "qa"));
const p2 = comptime combine(.{
ascii.range('a', 'b').opt(),
ascii.char('d'),
});
const P2 = @TypeOf(p2).T;
try expectOk(P2, 2, .{ .@"0" = 'a', .@"1" = 'd' }, try p2.parse(fa, "ad"));
try expectOk(P2, 2, .{ .@"0" = 'a', .@"1" = 'd' }, try p2.parse(fa, "ada"));
try expectOk(P2, 1, .{ .@"0" = null, .@"1" = 'd' }, try p2.parse(fa, "da"));
try expectErr(P2, 0, try p2.parse(fa, "qa"));
const p3 = comptime combine(.{ascii.char(' ').discard()});
const P3 = @TypeOf(p3).T;
try expectOk(P3, 1, {}, try p3.parse(fa, " "));
const p4 = comptime combine(.{
int(usize, .{}),
ascii.char(' ').discard(),
}).asStr();
try expectOk([]const u8, 3, "10 ", try p4.parse(fa, "10 "));
const p5 = comptime combine(.{
int(usize, .{}),
ascii.char(' ').discard(),
}).manyN(2, .{}).asStr();
try expectOk([]const u8, 6, "10 10 ", try p5.parse(fa, "10 10 "));
}
/// Takes a tuple of `Parser(T)` and constructs a parser that
/// succeeds when at least one of the child parsers succeeds.
/// Note that parsers will be called in order, with `str`
/// as input. The parser will return with the type of the first
/// child parser and the result of the first child parser
/// that succeeds. The parser result will be `Result(T)`.
pub fn oneOf(comptime parsers: anytype) Parser(ParserResult(@TypeOf(parsers[0]))) {
inline for (parsers) |parser|
typecheckParser(@TypeOf(parser));
return .{ .parse = struct {
const Res = Result(ParserResult(@TypeOf(parsers[0])));
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
var err_index: usize = 0;
inline for (parsers) |p| {
const res = try p.parse(allocator, str);
switch (res.value) {
.ok => return res,
.err => err_index = @max(err_index, res.index),
}
}
return Res.err(err_index);
}
}.parse };
}
test "oneOf" {
const fa = testing.failing_allocator;
const p1 = comptime oneOf(.{
ascii.range('a', 'b'),
ascii.range('d', 'e'),
});
try expectOk(u8, 1, 'a', try p1.parse(fa, "a"));
try expectOk(u8, 1, 'b', try p1.parse(fa, "b"));
try expectOk(u8, 1, 'd', try p1.parse(fa, "d"));
try expectOk(u8, 1, 'e', try p1.parse(fa, "e"));
try expectOk(u8, 1, 'a', try p1.parse(fa, "aa"));
try expectOk(u8, 1, 'b', try p1.parse(fa, "ba"));
try expectOk(u8, 1, 'd', try p1.parse(fa, "da"));
try expectOk(u8, 1, 'e', try p1.parse(fa, "ea"));
try expectErr(u8, 0, try p1.parse(fa, "q"));
}
/// Takes any parser (preferable not of type `Parser([]const u8)`)
/// and converts it to a parser where the result is a string that
/// contains all characters parsed by `parser`.
pub fn asStr(comptime parser: anytype) Parser([]const u8) {
const Res = Result([]const u8);
typecheckParser(@TypeOf(parser));
return .{ .parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
const res = try parser.parse(allocator, str);
return switch (res.value) {
.ok => Res.ok(res.index, str[0..res.index]),
.err => Res.err(0),
};
}
}.parse };
}
test "asStr" {
const fa = testing.failing_allocator;
const p1 = comptime ascii.char('a').asStr();
try expectOk([]const u8, 1, "a", try p1.parse(fa, "a"));
try expectOk([]const u8, 1, "a", try p1.parse(fa, "aa"));
try expectErr([]const u8, 0, try p1.parse(fa, "ba"));
const p2 = comptime combine(.{
ascii.range('a', 'b').opt(),
ascii.range('d', 'e').opt(),
}).asStr();
try expectOk([]const u8, 2, "ad", try p2.parse(fa, "ad"));
try expectOk([]const u8, 1, "a", try p2.parse(fa, "aa"));
try expectOk([]const u8, 1, "d", try p2.parse(fa, "da"));
try expectOk([]const u8, 0, "", try p2.parse(fa, "qa"));
}
fn ReturnTypeErrorPayload(comptime P: type) type {
const return_type = ReturnType(P);
return switch (@typeInfo(return_type)) {
.error_union => |eu| eu.payload,
else => return_type,
};
}
pub const ConvertError = error{ConversionFailed} || Error;
/// Constructs a parser that has its result converted with the
/// `conv` function. The ´conv` functions signature is
/// `*const fn (mem.Allocator, ParserResult(parser)) ConvertError!T`.
/// The parser constructed will fail if `conv` fails.
pub fn convert(
comptime parser: anytype,
comptime conv: anytype,
) Parser(ReturnTypeErrorPayload(@TypeOf(conv))) {
const Res = Result(ReturnTypeErrorPayload(@TypeOf(conv)));
return .{ .parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
const res = try parser.parse(allocator, str);
switch (res.value) {
.err => return Res.err(res.index),
.ok => |value| {
const v = conv(allocator, value) catch |err| switch (@as(ConvertError, err)) {
error.ConversionFailed => return Res.err(0),
error.OtherError, error.OutOfMemory => |e| return e,
};
return Res.ok(res.index, v);
},
}
}
}.parse };
}
/// Constructs a convert function for `convert` that takes a
/// string and parses it to an int of type `Int`.
pub fn toInt(
comptime Int: type,
comptime base: u8,
) *const fn (mem.Allocator, []const u8) ConvertError!Int {
return struct {
fn func(_: mem.Allocator, str: []const u8) ConvertError!Int {
return fmt.parseInt(Int, str, base) catch return error.ConversionFailed;
}
}.func;
}
/// Constructs a convert function for `convert` that takes a
/// string and parses it to a float of type `Float`.
pub fn toFloat(comptime Float: type) *const fn (mem.Allocator, []const u8) ConvertError!Float {
return struct {
fn func(_: mem.Allocator, str: []const u8) ConvertError!Float {
return fmt.parseFloat(Float, str) catch return error.ConversionFailed;
}
}.func;
}
/// A convert function for `convert` that takes a string and
/// returns the first codepoint.
pub fn toChar(_: mem.Allocator, str: []const u8) ConvertError!u21 {
if (str.len == 0)
return error.ConversionFailed;
const cp_len = unicode.utf8ByteSequenceLength(str[0]) catch return error.ConversionFailed;
if (cp_len != str.len)
return error.ConversionFailed;
return unicode.utf8Decode(str[0..cp_len]) catch return error.ConversionFailed;
}
/// Constructs a convert function for `convert` that takes a
/// string and converts it to an `Enum` with `std.meta.stringToEnum`.
pub fn toEnum(comptime Enum: type) *const fn (mem.Allocator, []const u8) ConvertError!Enum {
return struct {
fn func(_: mem.Allocator, str: []const u8) ConvertError!Enum {
return std.meta.stringToEnum(Enum, str) orelse error.ConversionFailed;
}
}.func;
}
/// A convert function for `convert` that takes a string
/// and returns `true` if it is `"true"` and `false` if it
/// is `"false"`.
pub fn toBool(allocator: mem.Allocator, str: []const u8) ConvertError!bool {
const r = try toEnum(enum { false, true })(allocator, str);
return r == .true;
}
test "convert" {
const fa = testing.failing_allocator;
const p1 = comptime string("123")
.asStr()
.convert(toInt(u8, 10));
try expectOk(u8, 3, 123, try p1.parse(fa, "123"));
try expectOk(u8, 3, 123, try p1.parse(fa, "123a"));
try expectErr(u8, 0, try p1.parse(fa, "12"));
const p2 = comptime string("a")
.asStr()
.convert(toChar);
try expectOk(u21, 1, 'a', try p2.parse(fa, "a"));
try expectOk(u21, 1, 'a', try p2.parse(fa, "aa"));
try expectErr(u21, 0, try p2.parse(fa, "b"));
const p3 = comptime rest.convert(toBool);
try expectOk(bool, 4, true, try p3.parse(fa, "true"));
try expectOk(bool, 5, false, try p3.parse(fa, "false"));
try expectErr(bool, 0, try p3.parse(fa, "b"));
const p4 = comptime string("1.23")
.asStr()
.convert(toFloat(f32));
try expectOk(f32, 4, 1.23, try p4.parse(fa, "1.23"));
try expectOk(f32, 4, 1.23, try p4.parse(fa, "1.23a"));
try expectErr(f32, 0, try p4.parse(fa, "1.2"));
const E = enum(u8) { a, b, _ };
const p5 = comptime rest.convert(toEnum(E));
try expectOk(E, 1, .a, try p5.parse(fa, "a"));
try expectOk(E, 1, .b, try p5.parse(fa, "b"));
try expectErr(E, 0, try p5.parse(fa, "2"));
const p6 = comptime string("Ā")
.asStr()
.convert(toChar);
try expectOk(u21, 2, 0x100, try p6.parse(fa, "Āā"));
}
/// Constructs a parser that has its result converted with the
/// `conv` function. The ´conv` functions signature is
/// `*const fn (ParserResult(parser)) T`, so this function should only
/// be used for conversions that cannot fail. See `convert`.
pub fn map(
comptime parser: anytype,
comptime conv: anytype,
) Parser(ReturnType(@TypeOf(conv))) {
const ConvT = ReturnType(@TypeOf(conv));
const Res = Result(ConvT);
typecheckParser(@TypeOf(parser));
return .{
.parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
const res = try parser.parse(allocator, str);
return switch (res.value) {
.err => return Res.err(res.index),
.ok => |value| return Res.ok(res.index, conv(value)),
};
}
}.parse,
};
}
/// Constructs a parser that consumes the input with `parser`
/// and places `value` into it's result. Discarding `parser`
/// result value, but keeping it's rest. This can be used
/// to map parsers to static values, for example `\n` to
/// the newline character.
pub fn mapConst(
comptime parser: anytype,
comptime value: anytype,
) Parser(@TypeOf(value)) {
const Res = Result(@TypeOf(value));
typecheckParser(@TypeOf(parser));
return .{ .parse = struct {
fn parse(allocator: mem.Allocator, str: []const u8) Error!Res {
const res = try parser.parse(allocator, str);
return switch (res.value) {
.ok => Res.ok(res.index, value),
.err => Res.err(res.index),
};
}
}.parse };
}
test "mapConst" {
const fa = testing.failing_allocator;
const p1 = comptime string("123")
.asStr()
.mapConst(@as(u8, 3));
try expectOk(u8, 3, 3, try p1.parse(fa, "123"));
}
fn ToStructResult(comptime T: type) type {
return @TypeOf(struct {
fn func(_: anytype) T {
return undefined;
}
}.func);
}
/// Constructs a convert function for `map` that takes a tuple, array or
// single value and converts it into the struct `T`. Fields will be assigned
// in order, so `tuple[i]` will be assigned to the ith field of `T`.
// This function will give a compile error if `T` and the tuple does not have
// the same number of fields, or if the items of the tuple cannot be coerced into
/// the fields of the struct.
pub fn toStruct(comptime T: type) ToStructResult(T) {
return struct {
fn func(value: anytype) T {
const struct_fields = @typeInfo(T).@"struct".fields;
const copy_many = switch (@typeInfo(@TypeOf(value))) {
.@"struct" => |info| info.is_tuple and info.fields.len == struct_fields.len,
.array => |info| info.len == struct_fields.len,
else => false,
};
var res: T = undefined;
if (copy_many) {
inline for (struct_fields, 0..) |field, i|
@field(res, field.name) = value[i];
return res;
} else {
if (struct_fields.len == 0)
@compileError("Cannot map " ++ @typeName(@TypeOf(value)) ++ " to " ++ @typeName(T));
@field(res, struct_fields[0].name) = value;
return res;
}
}
}.func;
}
/// Constructs a conversion function for `map` that initializes a union `T`
/// with the value passed to it using `@unionInit` with the tag `tag`.
pub fn unionInit(comptime T: type, comptime tag: @typeInfo(T).@"union".tag_type.?) ToStructResult(T) {
return struct {
fn func(x: anytype) T {
return @unionInit(T, @tagName(tag), x);
}
}.func;
}
test "map" {
const fa = testing.failing_allocator;
const Point = struct {
x: usize,
y: usize,
};
const p1 = comptime combine(.{
int(usize, .{}),
ascii.char(' ').discard(),
int(usize, .{}),
}).map(toStruct(Point));
try expectOk(Point, 5, .{ .x = 10, .y = 10 }, try p1.parse(fa, "10 10"));
try expectOk(Point, 5, .{ .x = 20, .y = 20 }, try p1.parse(fa, "20 20aa"));
try expectErr(Point, 2, try p1.parse(fa, "12"));
const p2 = comptime combine(.{
int(usize, .{}),
ascii.char(' ').discard(),
}).manyN(2, .{}).map(toStruct(Point));
try expectOk(Point, 6, .{ .x = 10, .y = 10 }, try p2.parse(fa, "10 10 "));
try expectOk(Point, 6, .{ .x = 20, .y = 20 }, try p2.parse(fa, "20 20 aa"));
try expectErr(Point, 2, try p2.parse(fa, "12"));
const Person = struct {
name: []const u8,
age: u32,
};
const MessageType = enum {
point,
person,
};
const Message = union(MessageType) { point: Point, person: Person };
const p3 = comptime combine(.{
int(usize, .{}),
ascii.char(' ').discard(),
int(usize, .{}),
}).map(toStruct(Point)).map(unionInit(Message, MessageType.point));
try expectOk(Message, 5, .{ .point = .{ .x = 20, .y = 20 } }, try p3.parse(fa, "20 20"));
const p4 = comptime combine(.{
many(ascii.alphabetic, .{ .min = 1, .collect = false }),
ascii.char(' ').discard(),
int(u32, .{}),
}).map(toStruct(Person)).map(unionInit(Message, MessageType.person));
const r4 = try p4.parse(fa, "Bob 24");
try testing.expect(r4.value == .ok);
try testing.expectEqual(@as(usize, 6), r4.index);
try testing.expectEqualStrings("Bob", r4.value.ok.person.name);
try testing.expectEqual(24, r4.value.ok.person.age);
const Wrapper = struct {
value: []const u8,
};
const wp = comptime string("foo").map(toStruct(Wrapper));
const wr = try wp.parse(fa, "foo");
try testing.expect(wr.value == .ok);
try testing.expectEqualStrings("foo", wr.value.ok.value);
}
/// Constructs a parser that discards the result returned from the parser
/// it wraps.
pub fn discard(comptime parser: anytype) Parser(void) {
return parser.map(struct {
fn d(_: anytype) void {}
}.d);
}
test "discard" {
const fa = testing.failing_allocator;
const p1 = comptime ascii.char(' ').many(.{ .collect = false }).discard();
try expectOk(void, 0, {}, try p1.parse(fa, "abc"));
try expectOk(void, 1, {}, try p1.parse(fa, " abc"));
try expectOk(void, 2, {}, try p1.parse(fa, " abc"));
}
fn digitsForBase(val: anytype, base: u8) usize {
var res: usize = 0;
var tmp = val;
while (tmp != 0) : (tmp /= @intCast(base))
res += 1;
return math.max(1, res);
}
pub const IntOptions = struct {
/// Parse `+/-` prefix of the int as well
parse_sign: bool = true,
base: u8 = 10,
max_digits: usize = math.maxInt(usize),
};
/// Construct a parser that succeeds if it parser an integer of
/// `base`. This parser will stop parsing digits after `max_digits`
/// after the leading zeros haven been reached. The result of this
/// parser will be the string containing the match.
pub fn intToken(comptime options: IntOptions) Parser([]const u8) {
debug.assert(options.max_digits != 0);
const sign_parser = if (options.parse_sign)
oneOf(.{ .ok = .{ ascii.char('-'), ascii.char('+'), noop } })
else
noop;
return comptime combine(.{
sign_parser,
ascii.digit(options.base).many(.{
.collect = false,
.min = 1,
.max = options.max_digits,
}),
}).asStr();
}
/// Same as `intToken` but also converts the parsed string to an
/// integer. This parser will at most parse the same number of digits
/// as the underlying integer can hold in the specified base.
pub fn int(comptime Int: type, comptime options: IntOptions) Parser(Int) {
debug.assert(options.max_digits != 0);
const Res = Result(Int);
return .{ .parse = struct {
fn parse(_: mem.Allocator, str: []const u8) Error!Res {
if (options.parse_sign and str.len != 0) {
var res = switch (str[0]) {
'+' => try parseAfterSign(str[1..], add),
'-' => try parseAfterSign(str[1..], sub),
else => return parseAfterSign(str, add),
};
if (res.value == .ok)
res.index += 1;
return res;
}
return parseAfterSign(str, add);
}
fn parseAfterSign(
str: []const u8,
add_sub: *const fn (Int, Int) Overflow!Int,
) Error!Res {
if (str.len == 0)
return Res.err(0);
const max_digits = @min(str.len, options.max_digits);
const first = fmt.charToDigit(str[0], options.base) catch return Res.err(0);
const first_casted = math.cast(Int, first) orelse return Res.err(0);
var res = add_sub(0, first_casted) catch return Res.err(0);
const end = for (str[1..max_digits], 0..) |c, i| {
const d = fmt.charToDigit(c, options.base) catch break i;
const casted_b = math.cast(Int, options.base) orelse break i;
const casted_d = math.cast(Int, d) orelse break i;
const next = math.mul(Int, res, casted_b) catch break i;
res = add_sub(next, casted_d) catch break i;
} else max_digits - 1;
return Res.ok(end + 1, res);
}
const Overflow = error{Overflow};
fn add(a: Int, b: Int) Overflow!Int {
return math.add(Int, a, b);
}
fn sub(a: Int, b: Int) Overflow!Int {
return math.sub(Int, a, b);
}
}.parse };
}
test "int" {
const fa = testing.failing_allocator;
const p1 = int(u8, .{});
try expectOk(u8, 1, 0, try p1.parse(fa, "0"));
try expectOk(u8, 1, 1, try p1.parse(fa, "1"));
try expectOk(u8, 1, 1, try p1.parse(fa, "1a"));
try expectOk(u8, 3, 255, try p1.parse(fa, "255"));
try expectOk(u8, 3, 255, try p1.parse(fa, "2555"));
try expectOk(u8, 2, 25, try p1.parse(fa, "256"));
try expectOk(u8, 4, 255, try p1.parse(fa, "+255"));
try expectErr(u8, 0, try p1.parse(fa, "-255"));
const p2 = int(u8, .{ .base = 16 });
try expectOk(u8, 1, 0x00, try p2.parse(fa, "0"));
try expectOk(u8, 1, 0x01, try p2.parse(fa, "1"));
try expectOk(u8, 2, 0x1a, try p2.parse(fa, "1a"));
try expectOk(u8, 1, 0x01, try p2.parse(fa, "1g"));
try expectOk(u8, 2, 0xff, try p2.parse(fa, "ff"));
try expectOk(u8, 2, 0xff, try p2.parse(fa, "FF"));
try expectOk(u8, 4, 0xff, try p2.parse(fa, "00FF"));
try expectOk(u8, 2, 0x10, try p2.parse(fa, "100"));
try expectOk(u8, 1, 0x0f, try p2.parse(fa, "fg"));
try expectOk(u8, 3, 0xff, try p2.parse(fa, "+ff"));
try expectErr(u8, 0, try p2.parse(fa, "-ff"));
const p3 = int(u8, .{ .base = 16, .max_digits = 2 });
try expectOk(u8, 2, 0xff, try p3.parse(fa, "FF"));
try expectOk(u8, 2, 0x00, try p3.parse(fa, "00FF"));
const p4 = int(isize, .{});
try expectOk(isize, 4, 255, try p4.parse(fa, "+255"));
try expectOk(isize, 4, -255, try p4.parse(fa, "-255"));
const p5 = int(isize, .{ .parse_sign = false });
try expectOk(isize, 3, 255, try p5.parse(fa, "255"));
try expectErr(isize, 0, try p5.parse(fa, "+255"));
try expectErr(isize, 0, try p5.parse(fa, "-255"));
}
/// Construct a parser that succeeds if it parses any tag from `Enum` as
/// a string. The longest match is always chosen, so for `enum{a,aa}` the
/// "aa" string will succeed parsing and have the result of `.aa` and not
/// `.a`.
pub fn enumeration(comptime Enum: type) Parser(Enum) {
const Res = Result(Enum);
return .{ .parse = struct {
fn parse(_: mem.Allocator, str: []const u8) Error!Res {
var res: Res = Res.err(0);
inline for (@typeInfo(Enum).@"enum".fields) |field| next: {
if (!std.mem.startsWith(u8, str, field.name))
break :next;
if (res.index < field.name.len)
res = Res.ok(field.name.len, @field(Enum, field.name));
}
return res;