Pato
Pato on seinämäinen tai vallimainen rakenne, jonka tarkoituksena on estää rakenteen takana olevan nesteen, nestemäisesti käyttäytyvän aineen tai kiinteästä aineesta nesteeseen liukenevien aineiden valuminen alempana oleville maille tai vesistöön, taikka sen tarkoitus on säädellä vesistön virtausta tai padotun aineen pinnan korkeutta.[1]
Padot ovat yksilöllisiä rakenteita, jotka suunnitellaan paikallisten olosuhteiden ja tarkoituksen mukaisesti. Patoja käytetään esimerkiksi tulvien torjumiseen, keinokasteluun, vesihuoltoon, kalankasvatukseen ja vesistöjen säännöstelemiseen sähkövoiman tuotantoa varten. Pieniä patoja ovat esimerkiksi tulvantorjunnassa käytettävät tulvapenkereet, joita rakennetaan järvien ja meren rannoille sekä jokivarsiin. Suurten patojen rakennusaineena käytetään nykyään yleensä betonia tai teräsbetonia, jotka ovat miltei täysin syrjäyttäneet ennen suositun muuratun luonnonkiven. Kehittyneet työkoneet ja uusi maanrakennustekniikka ovat tehneet myös maa- ja kalliolouhetäytteestä suositun padonrakennusaineen.[2][3][4]
Maailman korkein pato on Kiinassa sijaitseva 305 metrin korkuinen holvipato Jinping-I.[5]
Patotyypit
muokkaaJaottelun periaatteita
muokkaaPatoja on rakennettu monenlaisia ja niiden luokitteluun on olemassa useita tapoja. Yksi tapa luokitella padot niiden staattisen toiminnan mukaan: gravitaatiopato [6] ja holvipato. Padot, jotka on rakennettu maa-aineksesta tai kivistä, kutsutaan usein maapadoksi, ja ne ovat luonteeltaan gravitaatiopatoja. Gravitaatiopatoja rakennetaan myös betonista ja asvaltista. Holvipadot rakennetaan nykyään yksinomaan betonista. Holvipadot tehdään kallioiseen maastoon, jossa pato voi tukeutua kallioperustaan ja sivuilla kallioseinämiin. Padot luokitellaan valmistusmateriaalin lisäksi myös käyttötarkoituksensa mukaan: varastoaltaan pato tai reunavalli, säännöstelypato[7], voimalaitospato tai tulvasuojelussa toimiva väliaikainen tulvavalli eli yleisemmin työpato.[8][9]
Padolla on yleensä useita tehtäviä. Esimerkiksi kuivuudesta kärsivillä alueilla patoaltaan vettä tarvitaan yleisesti yhtä aikaa tulvasuojelussa, vesivoiman tuotannossa, viljelymaiden kastelussa ja yhteiskunnan vesihuollon järjetelyissä.[3][4]
Gravitaatiopato
muokkaaGravitaatiopato vastustaa varastoaltaan veden hydrostaattisen painetta lähinnä oman massansa aiheuttaman painon avulla. Kun maaperään kohdistuu valtava voima, vastustaa padon ja maaperän välinen kitka hydrostaattisen paineen aihettamaa voimaa. Tällaisia patoja ovat esimerkiksi maapadot sekä lamellipadot, joiden raskaat rakenteet ottavat myös tukea maaperästä.[9]
Holvipato
muokkaaHolvipato poikkeaa gravitaatiopadosta siinä, että se on massaltaan varsin kevyt. Sen kyky vastustaa varastoaltaan hydrostaattista painetta perustuu kahteen asiaan. Patorakenne on holvin muotoinen ja kaareva muoto ottaa vastaan sitä painavaa veden voimaa painumalla hieman eteenpäin. Holvipadon toinen periaate on tukea padon juuri ja sivustat ympäröivään kallioperään. Kun veden paine työntää kaarevaa seinämää eteenpäin, vastustavat kallioiset seinämät ja alusta padon suoristumista ja samalla ankkuroivat sen kiinteästi paikalleen.[9][10]
Jaottelu tarkoituksen tai rakenteen perusteella
muokkaaMaapato [11] on gravitaatiopato, joka on rakennettu erilaisista pystysuuntaisista maakerroksista. Maapadot luokitellaan homogeenisiin ja vyöhykemaapatoihin. Homogeenisessä padossa käytetään rakennusmateriaalina lähes kokonaan yhtä rakennusmateriaalia. Se voi olla moreenia, hiekkaa, sekamaata tai kalliomursketta. Vyöhykemaapato sisältää monia rakenteita, joista osan tehtävänä on vesitiiviys ja osan tehtävänä massavaikutus. Tiivisteaineeksi on valittu esimerkiksi savea, betonia, puuta, muovia tai asvalttia. Maapadon pinta on eroosiolle altis ja se päällystetäänkin esimerkiksi kivimurskeella, betonilevyillä, asvaltilla tai teräslevyllä. Suomessa yleiset pengerpadot [12] ovat maapatoja.[13]
Ripapato on gravitaatiopato, joka vastustaa veden hydrostaattista painetta oman jäykän sisärakenteensa ja alapuoliseen kallioperään rakennettujen kiinnitysmekanismien ansiosta. Tämä vähentää tarvittavan betonin määrää puhtaaseen gravitaatiopatoon verrattuna 30–40 %.[14]
Eräs ripapato on pilaripato eli laattapato, jonka etuosan muodostavat perustukseen kiinnitetyt veden virtauksen suuntaiset laatat. Lamellipadoksi kutsutaan pilaripatoa, jonka pilarit tai laatat ovat näitä paljon paksummat. Mitä vankemmat ovat padon rakenteet, sen suurempi on padon gravitaatiovaikutus.[14]
Neulapato koostuu ohuista puisista tai teräksisistä palkeista, jotka pystyasentoon asennettuina nojaavat alapäästään padon kynnyksessä olevaan uraan ja yläpäästään joko kiinteiden tai liikuteltavien tukien varassa olevaan vaakasuuntaiseen palkkiin. Padon tilapäiseen sulkemiseen käytetään lisäksi laudasta tai lankuista tehtyjä levyjä ja myös puusta tai teräksestä tehtyjä pato- eli settipalkkeja. Ne asetetaan patopilareihin vaaka-asentoon niitä varten tehtyihin ns. settiuriin, ja päällekkäisinä ne muodostavat yhtenäisen seinän. Neulapatoja on käytetty vedenkulun säännöstelyn ohella myös vesihierontaan. Suomessa tästä käytöstä tunnetaan edelleen ainakin Runnin Neulatammi.[15]
Pohjapadot [16] ovat kokonaan veden alle rakennettuja patoja, joilla voidaan esimerkiksi nostaa veden korkeutta tai rajoittaa suolaveden virtausta joen suulle.
Padon toiminta
muokkaaPatoaukot ja -luukut
muokkaaPadon läpi virtaavan veden määrää voidaan säädellä aukkojen ja luukkujen avulla. Vaadittu vesimäärän läpäisevyys määritellään pitkään ajanjaksoon perustuvalla tulvahuippujen tarkastelulla. Patoaukot mahdollistavat myös vesivaraston tyhjentämisen padon tarkastamista ja korjaamista varten. Luukkujen liikuttelemiseen käytetään pääasiassa konevoimaa ketjujen, hammastankojen tai öljynpaineella toimivien hydraulisien sylintereiden välityksellä. Padon aukkojen sulkemislaitetta nimitetään tavallisesti liikuteltaviksi tai avattaviksi padoiksi.[13]
Varsinaisia patoluukkuja on nykyisin käytössä pääasiassa kahta perustyyppiä: tasoluukut sulkevat ja avaavat padon liikkuen niitä varten tehdyissä luukku-urissa pystysuunnassa edestakaisin, kiertyvät luukut on aisojensa välityksellä laakeroitu padon sivupilareihin. Edelliseen ryhmään kuuluvat liukuluukut liukuvat luukku-urassa olevia johteitaan myöten. Jos vedenpaine nostaa pintakitkan liian suureksi, asetetaan luukkuun pyörät (kiinteäpyöräinen luukku) tai luukun ja johteen väliin ns. Stoney-palkki, jossa olevat pyörät helpottavat luukun liikuttelemista. Jälkimmäiseen pääryhmään kuuluvat segmenttiluukut, joissa luukun etulevy on ympyrälieriön muotoinen ja luukku nousee ylös kiertyen etulevyä tukeviin kannatinrakenteisiin kiinnitettyjen aisojen päissä olevien tukilaakereiden ympäri, sekä samantapaiset sektoriluukut, jotka lasketaan kynnyksen sisään varattuun tilaan.lähde?
Perustyypeistä poikkeavat muun muassa kynnykseltä alas kaatuva läppäluukku, johon voidaan joskus asettaa myös vastapaino, ja esimerkiksi Imatrankosken padossa käytetty valssiluukku, jonka on rumpu joka sulkee aukon tiivisteiden kanssa ja joka kulkee hammastankojen tukemana ja ohjaamana patomuureja pitkin ja joka avataan ketjun avulla.lähde?
Tulva-aukot ja ylijuoksutuskanavat
muokkaaPadon tulee kestää turvallisesti oletetun suurimman mahdollisen vesimäärän lisäksi myös tulvaveden paine. Yleensä padoissa on tulva-aukkoja, joista vesimäärää voidaan vähentää ohijuoksuttamalla sitä. Veden noustessa tasolle, jonka yläpuolella on ainoastaan koko padon pituinen niin kutsuttu varalaita, vesi virtaa vapaasti säädettävistä luukuista tai patoaukoista. Ylisyöksypadoissa tulva-aukon kynnys on niin korkealla, ettei alavesi vaikuta veden juoksuttamiseen.[13]
Patoturvallisuus
muokkaaOnnettomuuksien syitä
muokkaaPadot ovat yleensä turvallisia, mutta Kansainvälisen suurten patojen patotoimikunnan tilastoinnin mukaan sen tuntemista 36 000 padosta noin 300:ssa on sattunut vakava onnettomuustilanne. Yleisimpiä onnettomuuksia aiheuttavia tilanteita ovat tulvaveden ylittyminen ja virtaavan veden eroosio, maapatojen läpitihkumisen aiheuttama eroosio ja vähäisimpänä betoni- tai metallirakenteiden väsyminen.[17]
Onnettomuuksia voi aiheutua patojen huoltovälien venymisestä. Padot ovat alttiita rapautumiselle ja ruostumiselle, jolloin patorakenteita joudutaan vaihtamaan tai betonirakenta korjaamaan. Kylmillä seuduilla voi routa aiheuttaa rakennevaurioita tai maanjäristysalueilla maakuoren tärinät ja liikkeet tehdä halkeamia rakenteisiin.[18]
Patoturvallisuus Suomessa
muokkaaSuomen patoturvallisuuslaki vuodelta 2009 (SDK 494/2009[19], ruots. dammsäkerhetslagen[20]) määrittää monella tapaa padonrakentajan ja -omistajan sekä viranomaisten väliset vastuukysymykset. Kussakin maassa on erilaisia painotuksia patoturvallisuuteen liittyvissä asioissa.
Nykyään padot luokitellaan Suomessa kolmeen luokkaan. Pato on 1-luokan pato, jos se onnettomuuden sattuessa aiheuttaa vaaran ihmishengelle ja terveydelle taikka huomattavan vaaran ympäristölle tai omaisuudelle; 2-luokan pato, jos se onnettomuuden sattuessa saattaa aiheuttaa vaaraa terveydelle taikka vähäistä suurempaa vaaraa ympäristölle tai omaisuudelle; ja 3-luokan pato, jos se onnettomuuden sattuessa saattaa aiheuttaa vain vähäistä vaaraa.
Vanhemmassa luokitusjärjestelmässä P-padoksi luokiteltiin pato, joka onnettomuuden sattuessa saattaa aiheuttaa ilmeisen vaaran ihmishengelle tai terveydelle taikka ilmeisen huomattavan vaaran ympäristölle ja omaisuudelle. Tällaisen vaaran aiheuttaa sortuvan padon takaa hyökyvä voimakas tulva-aalto. Myös varastoitavan aineen terveydelliset ja ympäristölle haitalliset ominaisuudet voivat aiheuttaa huomattavan vaaran. Näiden patojen turvallisuuden valvontavastuu on jaettu myös viranomaisille. N-pato voi olla hajotessaan vaarallinen, mutta ei samassa suhteessa kuin P-padot. O-pato ei ole N-padon tapaan vaarallinen hajotessaan. Onnettomuus ei silloin vaaranna ihmishenkiä eikä ole ympäristölle haitallinen. T-padot ovat työpatoja ja luonteensa vuoksi väliaikaisia.[21][22][23][24]
Historiaa
muokkaaEncyclopædia Britannican mukaan maailman vanhin tunnettu pato olisi 3000-luvulla ennen ajanlaskun alkua kastelutarkoitukseen rakennettu Jawan pato nykyisen Jordanian alueella. Toinen hyvin vanha pato oli vuosien 2950–2750 eaa. välillä rakennettu noin 11 metriä korkea Sadd el-Kafaran pato Kairon lähellä Egyptissä, joka kuitenkin todennäköisesti vuoti ja petti pian valmistumisensa jälkeen. Pato oli kuitenkin ikäänsä nähden jo monimutkainen rakennelma.[25][26][27] Lähistöllä Gizassa sijainnut Ma’lan pato, jonka rakentamiseen käytettiin enemmän materiaalia kuin Gizan suureen pyramidiin, oli sen sijaan toiminnassa yli 3 000 vuoden ajan.[26] Vanhin edelleen toiminnassa oleva pato saattaa olla Syyrian Orontesjokeen vuoden 1300 eaa. tienoilla rakennettu pengerrys;[25] toisen lähteen mukaan jatkuvasti toiminnassa olleista padoista vanhin olisi Dujiangyanin kastelujärjestelmään liittyvä pato Kiinan Sichuanissa 250-luvulta eaa.[28] Lähi-idän ja Kiinan lisäksi patoja rakennettiin ennen ajanlaskun alkua myös Intiassa ja Sri Lankassa. Monet kasteluun käytetyt suuret maapadot ovat Sri Lankassa edelleen toiminnassa.[25][27]
Roomalaiset olivat padonrakentamisen sijaan taitavampia veden keräämisessä ja kuljettamisessa akveduktien avulla, mutta kaksi roomalaista patoa, Proserpinan ja Cornalvon padot, on edelleen käytössä Espanjan lounaisosassa.[25] Ennen vuotta 1900 maailmassa oli vain noin 700 suurta, yli 15 metrin korkuista patoa.[28][27] Japaniin rakennettiin 32 metriä korkea Daimon’iken pato vuonna 1128. Persiaan 1300-luvun alkupuolella rakennetut Kebarin pato ja Kuritin pato olivat puolestaan maailman ensimmäiset ohutrakenteiset holvipadot. Kuritin patoa kohotettiin vähitellen 64 metrin korkuiseksi, ja se olikin maailman korkein pato aina 1900-luvun alkuun saakka.[25][27]
1800-luvun keskivaiheille saakka padonrakennus pohjautui pitkälti kokemusperäiseen tietoon. Rakenne- ja materiaalitekniikan kehittyessä myös padonrakennuksen periaatteita alettiin ymmärtää paremmin, esimerkiksi 1850-luvulla Skotlannin Glasgow’n yliopistossa toimineen William John Macquorn Rankinen ja muiden brittiläisten ja ranskalaisten insinöörien kontribuutioiden ansiosta.[25] 1900-luvun alkupuoliskolla maailmaan rakennettiinkin jo yhteensä 5 000 yli 15 metrin korkuista patoa, ja toiset 5 000 pelkästään vuosien 1970–1975 välillä, minkä jälkeen padonrakennustoiminta hiljeni erityisesti Euroopassa ja Pohjois-Amerikassa.[28] Yhdysvaltoihin valmistui monta näyttävää patoa, kuten Coloradojoelle vuosina 1931–1936 rakennettu 221 metriä korkea Hooverin pato. Kiinaan rakennetun yli 2 kilometrin pituisen Kolmen rotkon padon vesivoimalasta tuli valmistuessaan vuonna 2012 maailman suurin 22 500 megawatin sähkötehollaan. Padon rakentaminen loi Jangtsejokeen yli 600 kilometrin pituisen tekoaltaan.[25][27]
Katso myös
muokkaaLähteet
muokkaa- Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset. (diplomityö) Tampereen teknillinen yliopisto, 2013. Teoksen verkkoversio (PDF).
- Loukola, Erkki: Patoturvallisuusohjeet. (Vesi- ja ympäristöhallinnon julkaisuja 9 B-sarja) Helsinki: Vesi- ja ympäristöhallitus, 1991. ISBN 951-47-4295-8 ISSN 0786-9606 Teoksen verkkoversio (PDF).
- Isomäki, Eija & al.: Patoturvallisuusohjeet. (Raportteja 89) Helsinki: Kainuun elinkeino-, liikenne- ja ympäristökeskus, 2012. ISBN 978-952-257-620-0 ISSN 2242-2854 Teoksen verkkoversio (PDF).
- Kirves, Risto: Häiriötilanteet Suomen padoilla (PDF) (myös docplayer) 2010. ympäristo.fi: Suomen Ympäristökeskus.
Viitteet
muokkaa- ↑ Isomäki, Eija & al.: Patoturvallisuusohjeet, 2012, s.5, viitattu 24.3.2020
- ↑ Kirves, Risto: Häiriötilanteet Suomen padoilla, 2010, s. 8, viitattu 24.3.2020
- ↑ a b General Synthesis icold-cigb.org. Pariisi, Ranska: ICOLD. Viitattu 24.3.2020. (englanniksi)
- ↑ a b Role of dams icold-cigb.org. Pariisi, Ranska: ICOLD. Viitattu 24.3.2020. (englanniksi)
- ↑ The Jinping-I Double Curvature Arch Dam sets new world record en.powerchina.cn. Arkistoitu 17.11.2018. Viitattu 18.11.2018.
- ↑ Ympäristötieteet:gravitaatiopato Tieteen termipankki. Helsingin yliopisto. Viitattu 23.3.2020.
- ↑ Ympäristötieteet: säännöstelystelypato Tieteen termipankki. Helsingin yliopisto. Viitattu 23.3.2020.
- ↑ Technology of Dams icold-cigb.org. Pariisi, Ranska: ICOLD. Viitattu 24.3.2020. (englanniksi)
- ↑ a b c Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset (diplomityö), 2013, s.11–12
- ↑ Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset (diplomityö), 2013, s.49–50
- ↑ Ympäristötieteet:maapato Tieteen termipankki. Helsingin yliopisto. Viitattu 23.3.2020.
- ↑ Ympäristötieteet: pengerpato Tieteen termipankki. Helsingin yliopisto. Viitattu 23.3.2020.
- ↑ a b c Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset (diplomityö), 2013, s.17–25
- ↑ a b Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset (diplomityö), 2013, s.42–49
- ↑ Runnin kulttuurimaisema ja kylpylä turisti-info.fi. Viitattu 25.10.2015.
- ↑ Ympäristötieteet:pohjapato Tieteen termipankki. Helsingin yliopisto. Viitattu 23.3.2020.
- ↑ Dams' safety is at the very origin of the foundation of ICOLD icold-cigb.org. Pariisi, Ranska: ICOLD. Viitattu 24.3.2020. (englanniksi)
- ↑ Kirves, Risto: Häiriötilanteet Suomen padoilla, 2010, s. 10–13, viitattu 24.3.2020
- ↑ Pato Finlex. Oikeusministeriö ja Edita Publishing Oy. Viitattu 23.3.2020.
- ↑ Dammsäkerhetslagen Finlex. Oikeusministeriö ja Edita Publishing Oy. Viitattu 23.3.2020. (ruotsiksi)
- ↑ Loukola, Erkki: Patoturvallisuusohjeet, 1991, s.23–25, viitattu 23.3.2020
- ↑ Isomäki, Eija & al.: Patoturvallisuusohjeet, 2012, s.18–20, viitattu 24.3.2020
- ↑ Kirves, Risto: Häiriötilanteet Suomen padoilla, 2010, s. 6, viitattu 24.3.2020
- ↑ Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset (diplomityö), 2013, s.4–6
- ↑ a b c d e f g Dam Encyclopædia Britannica. Viitattu 16.6.2017.
- ↑ a b Ratnayaka, Don D.; Brandt, Malcolm J. & Johnson, Michael: Water Supply, s. 149. Butterworth-Heinemann, 2009. ISBN 9780080940847 Kirja Googlen teoshaussa.
- ↑ a b c d e Mäkitalo, Tuomas: Maa- ja betonipadon rakenteet, toimivuus ja säädökset (diplomityö), 2013, s.1–3
- ↑ a b c Wang, Pu; Dong, Shikui & Lassoie, James P.: The Large Dam Dilemma: An Exploration of the Impacts of Hydro Projects on People and the Environment in China, s. 1–3. Springer Science & Business Media, 2013. ISBN 9789400776302 Kirja Googlen teoshaussa.
Kirjallisuutta
muokkaa- Herzog, Max A. M.: Practical Dam Analysis. Thomas Telford, 1999. ISBN 9780727727251 Kirja Googlen teoshaussa.
- Smith, Norman: History of Dams. Carol Publishing Group, 1976. ISBN 9780806505411 Kirja Googlen teoshaussa.
Aiheesta muualla
muokkaa- Kuvia tai muita tiedostoja aiheesta pato Wikimedia Commonsissa