[go: up one dir, main page]

Ir al contenido

Archivo:Relation1001.svg

Contenido de la página no disponible en otros idiomas.
De Wikipedia, la enciclopedia libre

Ver la imagen en su resolución original ((Imagen SVG, nominalmente 384 × 280 pixels, tamaño de archivo: 10 kB))

Resumen

This Venn diagram is meant to represent a relation between


Set theory: The equivalence of sets

Two sets and are equivalent - i.e. contain the same elements - when all elements of are in , and all elements of are in .
In other words: If their symmetric difference is empty.

                  =
                  =

Under this condition, several set operations, not equivalent in general, produce equivalent results.
These equivalences define equivalent sets:


                 =         =         =    
= = =


                 =         =         =    
= = =


                 =         =         =    
= = =


                 =         =         =    
= = =

The sign tells, that two statements about sets mean the same.
The sign = tells, that two sets contain the same elements.


Propositional logic: The equivalence of statements

Two statements and are equivalent - i.e. together true or together false - when implies , and implies .
In other words: If their exclusive or is never true.

                 
                 

Under this condition, several logic operations, not equivalent in general, produce equivalent results.
These equivalences define equivalent statements:


                                       


                                       


                                       


                                       

Especially the last line is important:
The logical equivalence tells, that the material equivalence is always true.
The material equivalence is the same as , the negated exclusive or.
Note: Names like logical equivalence and material equivalence are used in many different ways, and shouldn't be taken too serious.

The sign tells, that two statements about statements about whatever objects mean the same.
The sign tells, that two statements about whatever objects mean the same.




Important relations
Set theory: subset disjoint subdisjoint equal complementary
Logic: implication contrary subcontrary equivalent contradictory


Operations and relations in set theory and logic

 
c
          
A = A
1111 1111
 
Ac  Bc
true
A ↔ A
 
 B
 
 Bc
AA
 
 
 Bc
1110 0111 1110 0111
 
 Bc
¬A  ¬B
A → ¬B
 
 B
 B
A ← ¬B
 
Ac B
 
A B
A¬B
 
 
A = Bc
A¬B
 
 
A B
1101 0110 1011 1101 0110 1011
 
Bc
 ¬B
A ← B
 
A
 B
A ↔ ¬B
 
Ac
¬A  B
A → B
 
B
 
B =
AB
 
 
A = c
A¬B
 
 
A =
AB
 
 
B = c
1100 0101 1010 0011 1100 0101 1010 0011
¬B
 
 
 Bc
A
 
 
(A  B)c
¬A
 
 
Ac  B
B
 
Bfalse
 
Atrue
 
 
A = B
Afalse
 
Btrue
 
0100 1001 0010 0100 1001 0010
 ¬B
 
 
Ac  Bc
 B
 
 
 B
¬A  B
 
AB
 
1000 0001 1000 0001
¬A  ¬B
 
 
 B
 
 
A = Ac
0000 0000
false
A ↔ ¬A
A¬A
 
These sets (statements) have complements (negations).
They are in the opposite position within this matrix.
These relations are statements, and have negations.
They are shown in a separate matrix in the box below.


Esta imagen no es elegible para estar sujeta a derecho de autor y por tanto está en el dominio público, porque consiste enteramente en información que es de propiedad común y carece de autoría original.

Historial del archivo

Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.

Fecha y horaMiniaturaDimensionesUsuarioComentario
actual22:44 7 may 2010Miniatura de la versión del 22:44 7 may 2010384 × 280 (10 kB)Watchducklayout change
17:58 26 jul 2009Miniatura de la versión del 17:58 26 jul 2009384 × 280 (20 kB)Watchduck
16:10 10 abr 2009Miniatura de la versión del 16:10 10 abr 2009615 × 463 (4 kB)Watchduck==Description== {{Information |Description={{en|1=Venn diagrams of the sixteen 2-ary Boolean '''relations'''. Black (0) marks empty areas (compare empty set). White (1) means, that there ''could'' be something. There are correspondin

La siguiente página usa este archivo:

Uso global del archivo

Las wikis siguientes utilizan este archivo: