[go: up one dir, main page]

What a lovely hat

Is it made out of tin foil?




Dates are inconsistent

Dates are inconsistent

307 results sorted by ID

2024/1962 (PDF) Last updated: 2024-12-04
uKNIT: Breaking Round-alignment for Cipher Design -- Featuring uKNIT-BC, an Ultra Low-Latency Block Cipher
Kai Hu, Mustafa Khairallah, Thomas Peyrin, Quan Quan Tan
Secret-key cryptography

Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose...

2024/1887 (PDF) Last updated: 2024-11-20
Differential MITM attacks on SLIM and LBCIoT
Peter Grochal, Martin Stanek
Attacks and cryptanalysis

SLIM and LBCIoT are lightweight block ciphers proposed for IoT applications. We present differential meet-in-the-middle attacks on these ciphers and discuss several implementation variants and possible improvements of these attacks. Experimental validation also shows some results that may be of independent interest in the cryptanalysis of other ciphers. Namely, the problems with low-probability differentials and the questionable accuracy of standard complexity estimates of using filters.

2024/1853 (PDF) Last updated: 2024-11-12
Giant Does NOT Mean Strong: Cryptanalysis of BQTRU
Ali Raya, Vikas Kumar, Aditi Kar Gangopadhyay, Sugata Gangopadhyay
Attacks and cryptanalysis

NTRU-like constructions are among the most studied lattice-based schemes. The freedom of design of NTRU resulted in many variants in literature motivated by faster computations or more resistance against lattice attacks by changing the underlying algebra. To the best of our knowledge, BQTRU (DCC 2017), a noncommutative NTRU-like cryptosystem, is the fastest claimed variant of NTRU built over the quaternion algebra of the bivariate ring of polynomials. The key generation and the encryption of...

2024/1270 (PDF) Last updated: 2024-08-11
Meet-in-the-Middle Attack on 4+4 Rounds of SCARF under Single-Tweak Setting
Siwei Chen, Kai Hu, Guozhen Liu, Zhongfeng Niu, Quan Quan Tan, Shichang Wang
Attacks and cryptanalysis

\scarf, an ultra low-latency tweakable block cipher, is the first cipher designed for cache randomization. The block cipher design is significantly different from the other common tweakable block ciphers; with a block size of only 10 bits, and yet the input key size is a whopping $240$ bits. Notably, the majority of the round key in its round function is absorbed into the data path through AND operations, rather than the typical XOR operations. In this paper, we present a key-recovery...

2024/1251 (PDF) Last updated: 2024-08-06
EMI Shielding for Use in Side-Channel Security: Analysis, Simulation and Measurements
Daniel Dobkin, Edut Katz, David Popovtzer, Itamar Levi
Attacks and cryptanalysis

Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...

2024/1249 (PDF) Last updated: 2024-08-06
Koala: A Low-Latency Pseudorandom Function
Parisa Amiri Eliasi, Yanis Belkheyar, Joan Daemen, Santosh Ghosh, Daniël Kuijsters, Alireza Mehrdad, Silvia Mella, Shahram Rasoolzadeh, Gilles Van Assche
Secret-key cryptography

This paper introduces the Koala PRF, which maps a variable-length sequence of $64$-bit input blocks to a single $257$-bit output block. Its design focuses on achieving low latency in its implementation in ASIC. To construct Koala, we instantiate the recently introduced Kirby construction with the Koala-P permutation and add an input encoding layer. The Koala-P permutation is obtained as the $8$-fold iteration of a simple round function inspired by that of Subterranean. Based on...

2024/1221 (PDF) Last updated: 2024-07-31
Depth Optimized Quantum Circuits for HIGHT and LEA
Kyungbae Jang, Yujin Oh, Minwoo Lee, Dukyoung Kim, Hwajeong Seo
Implementation

Quantum computers can model and solve several problems that have posed challenges for classical super computers, leveraging their natural quantum mechanical characteristics. A large-scale quantum computer is poised to significantly reduce security strength in cryptography. In this context, extensive research has been conducted on quantum cryptanalysis. In this paper, we present optimized quantum circuits for Korean block ciphers, HIGHT and LEA. Our quantum circuits for HIGHT and LEA...

2024/1159 (PDF) Last updated: 2024-07-17
LaPSuS – A Lattice-Based Private Stream Aggregation Scheme under Scrutiny
Johannes Ottenhues, Alexander Koch
Attacks and cryptanalysis

Private Stream Aggregation (PSA) allows clients to send encryptions of their private values to an aggregator that is then able to learn the sum of these values but nothing else. It has since found many applications in practice, e.g. for smart metering or federated learning. In 2018, Becker et al. proposed the first lattice-based PSA scheme LaPS (NDSS 2018), with putative post-quantum security, which has subsequently been patented. In this paper, we describe two attacks on LaPS that break the...

2024/809 (PDF) Last updated: 2024-05-24
Reducing Overdefined Systems of Polynomial Equations Derived from Small Scale Variants of the AES via Data Mining Methods
Jana Berušková, Martin Jureček, Olha Jurečková
Attacks and cryptanalysis

This paper deals with reducing the secret key computation time of small scale variants of the AES cipher using algebraic cryptanalysis, which is accelerated by data mining methods. This work is based on the known plaintext attack and aims to speed up the calculation of the secret key by processing the polynomial equations extracted from plaintext-ciphertext pairs. Specifically, we propose to transform the overdefined system of polynomial equations over GF(2) into a new system so that the...

2024/802 (PDF) Last updated: 2024-10-30
On Maximum Size Simultaneous Linear Approximations in Ascon and Keccak and Related Translation and Differential Properties
Nicolas T. Courtois, Frédéric Amiel, Alexandre Bonnard de Fonvillars
Secret-key cryptography

In this paper we study the S-box known as Chi or \chi initially proposed by Daemen in 1995 and very widely used ever since in Keccak, Ascon, and many other. This type of ciphers is typically analyzed [in recent research] in terms of subspace trail attacks [TeDi19] and vector space invariants. An interesting question is then, when different spaces are mapped to each other by translations with a constant. In this paper we relax this fundamental question and we consider arbitrary sets of...

2024/691 (PDF) Last updated: 2024-07-27
White-box filtering attacks breaking SEL masking: from exponential to polynomial time
Alex Charlès, Aleksei Udovenko
Attacks and cryptanalysis

This work proposes a new white-box attack technique called filtering, which can be combined with any other trace-based attack method. The idea is to filter the traces based on the value of an intermediate variable in the implementation, aiming to fix a share of a sensitive value and degrade the security of an involved masking scheme. Coupled with LDA (filtered LDA, FLDA), it leads to an attack defeating the state-of-the-art SEL masking scheme (CHES 2021) of arbitrary degree and number of...

2024/489 (PDF) Last updated: 2024-03-27
Guess and Determine Analysis Based on Set Split
Zhe CEN, Xiutao FENG, Zhangyi WANG, Yamin ZHU, Chunping CAO
Attacks and cryptanalysis

The guess and determine attack is a common method in cryptanalysis. Its idea is to firstly find some variables which can deduced all remaining variables in a cipher and then traverse all values of these variables to find a solution. People usually utilize the exhausted search to find these variables. However, it is not applicable any more when the number of variables is a bit large. In this work we propose a guess and determine analysis based on set split to find as few variables as possible...

2024/364 (PDF) Last updated: 2024-03-07
Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem
Lars Ran, Simona Samardjiska, Monika Trimoska
Attacks and cryptanalysis

The Alternating Trilinear Form Equivalence (ATFE) problem was recently used by Tang et al. as a hardness assumption in the design of a Fiat-Shamir digital signature scheme ALTEQ. The scheme was submitted to the additional round for digital signatures of the NIST standardization process for post-quantum cryptography. ATFE is a hard equivalence problem known to be in the class of equivalence problems that includes, for instance, the Tensor Isomorphism (TI), Quadratic Maps Linear...

2024/322 (PDF) Last updated: 2024-02-25
Theoretical Explanation and Improvement of Deep Learning-aided Cryptanalysis
Weixi Zheng, Liu Zhang, Zilong Wang
Attacks and cryptanalysis

At CRYPTO 2019, Gohr demonstrated that differential-neural distinguishers (DNDs) for Speck32/64 can learn more features than classical cryptanalysis's differential distribution tables (DDT). Furthermore, a non-classical key recovery procedure is devised by combining the Upper Confidence Bound (UCB) strategy and the BayesianKeySearch algorithm. Consequently, the time complexity of 11-round key recovery attacks on Speck32/64 is significantly reduced compared with the state-of-the-art results...

2023/1846 (PDF) Last updated: 2023-12-22
New Security Proofs and Complexity Records for Advanced Encryption Standard
Orhun Kara
Secret-key cryptography

Common block ciphers like AES specified by the NIST or KASUMI (A5/3) of GSM are extensively utilized by billions of individuals globally to protect their privacy and maintain confidentiality in daily communications. However, these ciphers lack comprehensive security proofs against the vast majority of known attacks. Currently, security proofs are limited to differential and linear attacks for both AES and KASUMI. For instance, the consensus on the security of AES is not based on formal...

2023/1697 (PDF) Last updated: 2023-11-02
Full Round Distinguishing and Key-Recovery Attacks on SAND-2 (Full version)
Zhuolong Zhang, Shiyao Chen, Wei Wang, Meiqin Wang
Attacks and cryptanalysis

This paper presents full round distinguishing and key recovery attacks on lightweight block cipher SAND-2 with 64-bit block size and 128-bit key size, which appears to be a mixture of the AND-Rotation-XOR (AND-RX) based ciphers SAND and ANT. However, the security arguments against linear and some other attacks are not fully provided. In this paper, we find that the combination of a SAND-like nibble-based round function and ANT-like bit-based permutations will cause dependencies and lead to...

2023/1588 (PDF) Last updated: 2023-10-13
M&M'S: Mix and Match Attacks on Schnorr-type Blind Signatures with Repetition
Khue Do, Lucjan Hanzlik, Eugenio Paracucchi
Attacks and cryptanalysis

Blind signatures allow the issuing of signatures on messages chosen by the user so that they ensure $\mathit{blindness}$ of the message against the signer. Moreover, a malicious user cannot output $\ell+1$ signatures while only finishing $\ell$ signing sessions. This notion, called $\mathit{one}$-$\mathit{more}$ unforgeability, comes in two flavors supporting either $\mathit{sequential}$ or $\mathit{concurrent}$ sessions. In this paper, we investigate the security of a class of blind...

2023/1557 (PDF) Last updated: 2023-10-10
Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1
Yanbin Xu, Yonglin Hao, Mingxing Wang
Attacks and cryptanalysis

At ASIACRYPT 2019, Zhang proposed a near collision attack on A5/1 claiming to recover the 64-bit A5/1 state with a time complexity around $2^{32}$ cipher ticks with negligible memory requirements. Soon after its proposal, Zhang's near collision attack was severely challenged by Derbez \etal who claimed that Zhang's attack cannot have a time complexity lower than Golic's memoryless guess-and-determine attack dating back to EUROCRYPT 1997. In this paper, we study both the guess-and-determine...

2023/1547 (PDF) Last updated: 2024-06-07
Further Improvements of the Estimation of Key Enumeration with Applications to Solving LWE
Alessandro Budroni, Erik Mårtensson
Attacks and cryptanalysis

In post-quantum cryptography, Learning With Errors (LWE) is one of the dominant underlying mathematical problems. The dual attack is one of the main strategies for solving the LWE problem, and it has recently gathered significant attention within the research community. The attack strategy consists of a lattice reduction part and a distinguishing part. The latter includes an enumeration subroutine over a certain number of positions of the secret key. Our contribution consists of giving a...

2023/1502 Last updated: 2024-08-20
(In)security of stream ciphers against quantum annealing attacks on the example of the Grain 128 and Grain 128a ciphers
Michał Wroński, Elżbieta Burek, Mateusz Leśniak
Attacks and cryptanalysis

The security level of a cipher is a key parameter. While general-purpose quantum computers significantly threaten modern symmetric ciphers, other quantum approaches like quantum annealing have been less concerning. However, this paper argues that a quantum annealer specifically designed to attack Grain 128 and Grain 128a ciphers could soon be technologically feasible. Such an annealer would require 5,751 (6,751) qubits and 77,496 (94,708) couplers, with a qubit connectivity of 225 (249)....

2023/1449 (PDF) Last updated: 2024-04-05
Truncated Differential Cryptanalysis: New Insights and Application to QARMAv1-n and QARMAv2-64
Zahra Ahmadian, Akram Khalesi, Dounia M'foukh, Hossein Moghimi, María Naya-Plasencia
Secret-key cryptography

Truncated differential cryptanalyses were introduced by Knudsen in 1994. They are a well-known family of attacks that has arguably received less attention than some other variants of differential attacks. This paper gives some new insights into the theory of truncated differential attacks, specifically the provable security of SPN ciphers with MDS diffusion matrices against this type of attack. Furthermore, our study extends to various versions within the QARMA family of block ciphers,...

2023/1314 (PDF) Last updated: 2023-09-03
Cryptanalysis of HALFLOOP Block Ciphers: Destroying HALFLOOP-24
Gregor Leander, Shahram Rasoolzadeh, Lukas Stennes
Attacks and cryptanalysis

HALFLOOP is a family of tweakable block ciphers that are used for encrypting automatic link establishment (ALE) messages in high-frequency radio, a technology commonly used by the military, other government agencies, and industries that require high robustness in long-distance communications. Recently, it was shown in [DDLS22] that the smallest version of the cipher, HALFLOOP-24, can be attacked within a practical time and memory complexity. However, in the real-word ALE setting, it turns...

2023/1245 (PDF) Last updated: 2023-08-17
Probabilistic Related-Key Statistical Saturation Cryptanalysis
Muzhou Li, Nicky Mouha, Ling Sun, Meiqin Wang
Secret-key cryptography

The related-key statistical saturation (RKSS) attack is a cryptanalysis method proposed by Li et al. at FSE 2019. It can be seen as the extension of previous statistical saturation attacks under the related-key setting. The attack takes advantage of a set of plaintexts with some bits fixed, while the other bits take all possible values, and considers the relation between the value distributions of a part of the ciphertext bits generated under related keys. Usually, RKSS distinguishers...

2023/1227 (PDF) Last updated: 2023-08-13
Parallel SAT Framework to Find Clustering of Differential Characteristics and Its Applications
Kosei Sakamoto, Ryoma Ito, Takanori Isobe
Secret-key cryptography

The most crucial but time-consuming task for differential cryptanalysis is to find a differential with a high probability. To tackle this task, we propose a new SAT-based automatic search framework to efficiently figure out a differential with the highest probability under a specified condition. As the previous SAT methods (e.g., the Sun et al’s method proposed at ToSC 2021(1)) focused on accelerating the search for an optimal single differential characteristic, these are not optimized for...

2023/1023 (PDF) Last updated: 2023-07-03
An STP-based model toward designing S-boxes with good cryptographic properties
Zhenyu Lu, Sihem Mesnager, Tingting Cui, Yanhong Fan, Meiqin Wang
Secret-key cryptography

The substitution box (S-box) is an important nonlinear component in most symmetric cryptosystems and thus should have good properties. Its difference distribution table (DDT) and linear approximation table (LAT) affect the security of the cipher against differential and linear cryptanalysis. In most previous work, differential uniformity and linearity of an S-box are two primary cryptographic properties to impact the resistance against differential and linear attacks. In some cases, the...

2023/963 (PDF) Last updated: 2023-06-19
An invariant of the round function of QARMAv2-64
Tim Beyne
Secret-key cryptography

This note shows that there exists a nontrivial invariant for the unkeyed round function of QARMAv2-64. It is invariant under translation by a set of $2^{32}$ constants. The invariant does not extend over all rounds of QARMAv2-64 and probably does not lead to full-round attacks. Nevertheless, it might be of interest as it can be expected to give meaningful weak-key attacks on round-reduced instances when combined with other techniques such as integral cryptanalysis.

2023/797 (PDF) Last updated: 2024-03-08
Entropy Suffices for Guessing Most Keys
Timo Glaser, Alexander May, Julian Nowakowski
Attacks and cryptanalysis

Historically, most cryptosystems chose their keys uniformly at random. This is in contrast to modern (lattice-based) schemes, which typically sample their keys from more complex distributions $\mathcal{D}$, such as the discrete Gaussian or centered binomial distribution. It is well-known that any key drawn from the uniform distribution $\mathcal{U}$ can be guessed using at most $2^{\operatorname{H}(\mathcal{U})}$ key guesses, where $\operatorname{H}(\mathcal{U})$ denotes the entropy of...

2023/776 (PDF) Last updated: 2023-08-17
Quantum Attacks on Type-1 Generalized Feistel Schemes
Hong-Wei Sun, Bin-Bin Cai, Su-Juan Qin, Qiao-Yan Wen, Fei Gao
Attacks and cryptanalysis

Generalized Feistel schemes (GFSs) are extremely important and extensively researched cryptographic schemes. In this paper, we investigate the security of Type-1 GFS in quantum circumstances. On the one hand, in the qCCA setting, we give a new quantum polynomial-time distinguisher on $(d^2-1)$-round Type-1 GFS with branches $d\geq3$, which extends the previous results by $(d-2)$ rounds. This leads to a more efficient analysis of type-1 GFS, that is, the complexity of some previous...

2023/750 (PDF) Last updated: 2023-07-12
BAKSHEESH: Similar Yet Different From GIFT
Anubhab Baksi, Jakub Breier, Anupam Chattopadhyay, Tomáš Gerlich, Sylvain Guilley, Naina Gupta, Takanori Isobe, Arpan Jati, Petr Jedlicka, Hyunjun Kim, Fukang Liu, Zdeněk Martinásek, Kosei Sakamoto, Hwajeong Seo, Rentaro Shiba, Ritu Ranjan Shrivastwa
Secret-key cryptography

We propose a lightweight block cipher named BAKSHEESH, which follows up on the popular cipher GIFT-128 (CHES'17). BAKSHEESH runs for 35 rounds, which is 12.50 percent smaller compared to GIFT-128 (runs for 40 rounds) while maintaining the same security claims against the classical attacks. The crux of BAKSHEESH is to use a 4-bit SBox that has a non-trivial Linear Structure (LS). An SBox with one or more non-trivial LS has not been used in a cipher construction until DEFAULT...

2023/682 (PDF) Last updated: 2023-05-13
Divide and Rule: DiFA - Division Property Based Fault Attacks on PRESENT and GIFT
Anup Kumar Kundu, Shibam Ghosh, Dhiman Saha, Mostafizar Rahman
Attacks and cryptanalysis

The division property introduced by Todo in Crypto 2015 is one of the most versatile tools in the arsenal of a cryptanalyst which has given new insights into many ciphers primarily from an algebraic perspective. On the other end of the spectrum we have fault attacks which have evolved into the deadliest of all physical attacks on cryptosystems. The current work aims to combine these seemingly distant tools to come up with a new type of fault attack. We show how fault invariants are formed...

2023/612 (PDF) Last updated: 2023-04-29
Cryptanalysis of SPEEDY
Jinliang Wang, Chao Niu, Qun Liu, Muzhou Li, Bart Preneel, Meiqin Wang
Secret-key cryptography

SPEEDY is a family of ultra-lightweight block ciphers designed by Leander et al. at CHES 2021. There are three recommended variants denoted as SPEEDY-$r$-192 with $r$∈{5,6,7}. All of them support the 192-bit block and the 192-bit key. The main focus during its design is to ensure hardware-aware low latency, thus, whether it is designed to have enough security is worth to be studied. Recently, the full-round security of SPEEDY-7-192 is announced to be broken by Boura et al. at EUROCRYPT 2023...

2023/577 (PDF) Last updated: 2023-04-24
Exploring Formal Methods for Cryptographic Hash Function Implementations
Nicky Mouha
Implementation

Cryptographic hash functions are used inside many applications that critically rely on their resistance against cryptanalysis attacks and the correctness of their implementations. Nevertheless, vulnerabilities in cryptographic hash function implementations can remain unnoticed for more than a decade, as shown by the recent discovery of a buffer overflow in the implementation of SHA-3 in the eXtended Keccak Code Package (XKCP), impacting Python, PHP, and several other software projects. This...

2023/562 (PDF) Last updated: 2023-04-20
Cryptanalysis of Strong Physically Unclonable Functions
Liliya Kraleva, Mohammad Mahzoun, Raluca Posteuca, Dilara Toprakhisar, Tomer Ashur, Ingrid Verbauwhede
Attacks and cryptanalysis

Physically Unclonable Functions (PUFs) are being proposed as a low cost alternative to permanently store secret keys or provide device authentication without requiring non-volatile memory, large e-fuses or other dedicated processing steps. In the literature, PUFs are split into two main categories. The so-called strong PUFs are mainly used for authentication purposes, hence also called authentication PUFs. They promise to be lightweight by avoiding extensive digital post-processing and...

2023/524 (PDF) Last updated: 2023-04-11
AI Resistant (AIR) Cryptography
Gideon Samid
Attacks and cryptanalysis

highlighting a looming cyber threat emanating from fast developing artificial intelligence. This strategic threat is further magnified with the advent of quantum computers. AI and quantum-AI (QAI) represent a totally new and effective vector of cryptanalytic attack. Much as modern AI successfully completes browser search phrases, so it is increasingly capable of guessing a rather narrow a-priori list of plausible plaintexts. This guessing is most effective over device cryptography where the...

2023/417 (PDF) Last updated: 2024-06-04
Multivariate Correlation Attacks and the Cryptanalysis of LFSR-based Stream Ciphers
Isaac A. Canales-Martínez, Igor Semaev
Attacks and cryptanalysis

Cryptanalysis of modern symmetric ciphers may be done by using linear equation systems with multiple right hand sides, which describe the encryption process. The tool was introduced by Raddum and Semaev where several solving methods were developed. In this work, the probabilities are ascribed to the right hand sides and a statistical attack is then applied. The new approach is a multivariate generalisation of the correlation attack by Siegenthaler. A fast version of the attack is provided...

2023/355 Last updated: 2023-04-06
Improved Differential Analysis of MIBS Based on Greedy Algorithm
Jian Liu, Yanjun Li, Runyi Liu, Jian Zou, Zhiqiang Wang
Attacks and cryptanalysis

MIBS is a 32-round lightweight block cipher following a Feistel structure with the block length of 64-bit and the key length of 64 or 80 bits. In this paper, the properties of the key scheduling algorithm are investigated and lots of repeated bits among the different round keys are found. Moreover, the optimal guessing order of the unknown key bits is obtained by using the greedy algorithm. At last, combined with the early abort technique, the differential cryptanalyses are improved to 15...

2023/354 (PDF) Last updated: 2023-03-10
Guessing Less and Better: Improved Attacks on GIFT-64
Federico Canale, María Naya-Plasencia

GIFT-64 is a block cipher that has received a lot of attention from the community since its proposal in 2017. The attack on the highest number of rounds is a differential related-key attack on 26 rounds~\cite{DBLP:journals/tosc/SunWW21}. We studied this attack, in particular with respect to the generic framework for improving key recovery from~\cite{DBLP:conf/asiacrypt/BrollCFLN21}, and we realised that this framework, combined with an efficient parallel key guessing of interesting subsets...

2023/302 (PDF) Last updated: 2023-02-28
Does the Dual-Sieve Attack on Learning with Errors even Work?
Léo Ducas, Ludo Pulles

Guo and Johansson (ASIACRYPT 2021), and MATZOV (tech.~report 2022) have independently claimed improved attacks against various NIST lattice candidate by adding a Fast Fourier Transform (FFT) trick on top of the so-called Dual-Sieve attack. Recently, there was more follow up work in this line adding new practical improvements. However, from a theoretical perspective, all of these works are painfully specific to Learning with Errors, while the principle of the Dual-Sieve attack is more...

2023/181 (PDF) Last updated: 2023-02-13
Fully Automated Differential-Linear Attacks against ARX Ciphers
Emanuele Bellini, David Gerault, Juan Grados, Rusydi Makarim, Thomas Peyrin
Attacks and cryptanalysis

In this paper, we present a fully automated tool for differential-linear attacks using Mixed-Integer Linear Programming (MILP) and Mixed-Integer Quadratic Constraint Programming (MIQCP) techniques, which is, to the best of our knowledge, the very first attempt to fully automate such attacks. We use this tool to improve the correlations of the best 9 and 10-round differential-linear distinguishers on Speck32/64, and reach 11 rounds for the first time. Furthermore, we improve the latest...

2023/176 (PDF) Last updated: 2024-02-18
A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions
Pierre Briaud, Morten Øygarden
Attacks and cryptanalysis

The Regular Syndrome Decoding (RSD) problem, a variant of the Syndrome Decoding problem with a particular error distribution, was introduced almost 20 years ago by Augot et al. . In this problem, the error vector is divided into equally sized blocks, each containing a single noisy coordinate. More recently, the last five years have seen increased interest in this assumption due to its use in MPC and ZK applications. Generally referred to as "LPN with regular noise" in this context, the...

2023/117 (PDF) Last updated: 2023-02-01
Full-Round Differential Attack on ULC and LICID Block Ciphers Designed for IoT
Manjeet Kaur, Tarun Yadav, Manoj Kumar, Dhananjoy Dey
Attacks and cryptanalysis

The lightweight block ciphers ULC and LICID are introduced by Sliman et al. (2021) and Omrani et al. (2019) respectively. These ciphers are based on substitution permutation network structure. ULC is designed using the ULM method to increase efficiency, memory usage, and security. On the other hand, LICID is specifically designed for image data. In the ULC paper, the authors have given a full-round differential characteristic with a probability of $2^{-80}$. In the LICID paper, the authors...

2023/025 (PDF) Last updated: 2023-08-17
Quantum Attacks on Beyond-Birthday-Bound MACs
Hong-Wei Sun, Bin-Bin Cai, Su-Juan Qin, Qiao-Yan Wen, Fei Gao
Attacks and cryptanalysis

In this paper, we investigate the security of several recent MAC constructions with provable security beyond the birthday bound (called BBB MACs) in the quantum setting. On the one hand, we give periodic functions corresponding to targeted MACs (including PMACX, PMAC with parity, HPxHP, and HPxNP), and we can recover secret states using Simon algorithm, leading to forgery attacks with complexity $O(n)$. This implies our results realize an exponential speedup compared with the classical...

2022/1766 (PDF) Last updated: 2022-12-27
Systematically Quantifying Cryptanalytic Non-Linearities in Strong PUFs
Durba Chatterjee, Kuheli Pratihar, Aritra Hazra, Ulrich Rührmair, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Physically Unclonable Functions~(PUFs) with large challenge space~(also called Strong PUFs) are promoted for usage in authentications and various other cryptographic and security applications. In order to qualify for these cryptographic applications, the Boolean functions realized by PUFs need to possess a high non-linearity~(NL). However, with a large challenge space~(usually $\geq 64$ bits), measuring NL by classical techniques like Walsh transformation is computationally infeasible. In...

2022/1659 (PDF) Last updated: 2022-11-29
A Deep Learning aided Key Recovery Framework for Large-State Block Ciphers
Yi Chen, Zhenzhen Bao, Yantian Shen, Hongbo Yu
Secret-key cryptography

In the seminal work published by Gohr in CRYPTO 2019, neural networks were successfully exploited to perform differential attacks on Speck32/64, the smallest member in the block cipher family Speck. The deep learning aided key-recovery attack by Gohr achieves considerable improvement in terms of time complexity upon the state-of-the-art result from the conventional cryptanalysis method. A further question is whether the advantage of deep learning aided attacks can be kept on large-state...

2022/1649 (PDF) Last updated: 2022-11-29
Robustness of Affine and Extended Affine Equivalent Surjective S-Box(es) against Differential Cryptanalysis
Shah Fahd, Mehreen Afzal, Dawood Shah, Waseem Iqbal, Atiya Hai
Foundations

A Feistel Network (FN) based block cipher relies on a Substitution Box (S-Box) for achieving the non-linearity. S-Box is carefully designed to achieve optimal cryptographic security bounds. The research of the last three decades shows that considerable efforts are being made on the mathematical design of an S-Box. To import the exact cryptographic profile of an S-Box, the designer focuses on the Affine Equivalent (AE) or Extended Affine (EA) equivalent S-Box. In this research, we argue that...

2022/1617 (PDF) Last updated: 2022-11-21
A New Higher Order Differential of RAGHAV
Naoki Shibayama, Yasutaka Igarashi
Attacks and cryptanalysis

RAGHAV is a 64-bit block cipher proposed by Bansod in 2021. It supports 80-, and 128-bit secret keys. The designer evaluated its security against typical attack, such as differential cryptanalysis, linear cryptanalysis, and so on. On the other hand, it has not been reported the security of RAGHAV against higher order differential attack, which is one of the algebraic attacks. In this paper, we applied higher order differential cryptanalysis to RAGHAV. As a results, we found a new full-round...

2022/1473 (PDF) Last updated: 2024-01-10
Let's Meet Ternary Keys on Babai's Plane: A Hybrid of Lattice-reduction and Meet-LWE
Minki Hhan, Jiseung Kim, Changmin Lee, Yongha Son
Attacks and cryptanalysis

A cryptographic primitive based on the Learning With Errors (LWE) problem with variants is a promising candidate for the efficient quantum-resistant public key cryptosystem. As the parameters for such cryptosystems are chosen by the concrete attack cost for the corresponding LWE problem, improving LWE solving algorithm has a significant importance. In this paper, we present a new hybrid attack on the LWE problem. This new attack combines the primal lattice attack and an improved variant...

2022/1467 (PDF) Last updated: 2024-01-24
A Cipher-Agnostic Neural Training Pipeline with Automated Finding of Good Input Differences
Emanuele Bellini, David Gerault, Anna Hambitzer, Matteo Rossi
Attacks and cryptanalysis

Neural cryptanalysis is the study of cryptographic primitives throughmachine learning techniques. Following Gohr’s seminal paper at CRYPTO 2019, afocus has been placed on improving the accuracy of such distinguishers against specific primitives, using dedicated training schemes, in order to obtain better key recovery attacks based on machine learning. These distinguishers are highly specialized and not trivially applicable to other primitives. In this paper, we focus on the opposite problem:...

2022/1377 (PDF) Last updated: 2022-10-20
Improved Differential and Linear Trail Bounds for ASCON
Solane El Hirch, Silvia Mella, Alireza Mehrdad, Joan Daemen
Attacks and cryptanalysis

ASCON is a family of cryptographic primitives for authenticated encryption and hashing introduced in 2015. It is selected as one of the ten finalists in the NIST Lightweight Cryptography competition. Since its introduction, ASCON has been extensively cryptanalyzed, and the results of these analyses can indicate the good resistance of this family of cryptographic primitives against known attacks, like differential and linear cryptanalysis. Proving upper bounds for the differential...

2022/1351 (PDF) Last updated: 2023-02-21
Better Steady than Speedy: Full break of SPEEDY-7-192
Christina Boura, Nicolas David, Rachelle Heim Boissier, Maria Naya-Plasencia
Secret-key cryptography

Differential attacks are among the most important families of cryptanalysis against symmetric primitives. Since their introduction in 1990, several improvements to the basic technique as well as many dedicated attacks against symmetric primitives have been proposed. Most of the proposed improvements concern the key-recovery part. However, when designing a new primitive, the security analysis regarding differential attacks is often limited to finding the best trails over a limited number of...

2022/1123 (PDF) Last updated: 2023-03-02
DEEPAND: In-Depth Modeling of Correlated AND Gates for NLFSR-based Lightweight Block Ciphers
Amit Jana, Mostafizar Rahman, Dhiman Saha
Attacks and cryptanalysis

Automated cryptanalysis has taken center stage in the arena of cryptanalysis since the pioneering work by Mouha et al. which showcased the power of Mixed Integer Linear Programming (MILP) in solving cryptanalysis problems that otherwise, required significant effort. Since its inception, research in this area has moved in primarily two directions. One is to model more and more classical cryptanalysis tools as optimization problems to leverage the ease provided by state-of-the-art solvers. The...

2022/837 (PDF) Last updated: 2024-01-26
Differential Cryptanalysis in the Fixed-Key Model
Tim Beyne, Vincent Rijmen
Secret-key cryptography

A systematic approach to the fixed-key analysis of differential probabilities is proposed. It is based on the propagation of 'quasidifferential trails', which keep track of probabilistic linear relations on the values satisfying a differential characteristic in a theoretically sound way. It is shown that the fixed-key probability of a differential can be expressed as the sum of the correlations of its quasidifferential trails. The theoretical foundations of the method are based on an...

2022/782 (PDF) Last updated: 2022-06-17
Simon’s Algorithm and Symmetric Crypto: Generalizations and Automatized Applications
Federico Canale, Gregor Leander, Lukas Stennes
Secret-key cryptography

In this paper we deepen our understanding of how to apply Simon’s algorithm to break symmetric cryptographic primitives. On the one hand, we automate the search for new attacks. Using this approach we automatically find the first efficient key-recovery attacks against constructions like 5-round MISTY L-FK or 5-round Feistel-FK (with internal permutation) using Simon’s algorithm. On the other hand, we study generalizations of Simon’s algorithm using non-standard Hadamard matrices, with...

2022/729 (PDF) Last updated: 2024-06-07
Integral Cryptanalysis of WARP based on Monomial Prediction
Hosein Hadipour, Maria Eichlseder
Attacks and cryptanalysis

WARP is a 128-bit block cipher published by Banik et al. at SAC 2020 as a lightweight alternative to AES. It is based on a generalized Feistel network and achieves the smallest area footprint among 128-bit block ciphers in many settings. Previous analysis results include integral key-recovery attacks on 21 out of 41 rounds. In this paper, we propose integral key-recovery attacks on up to 32 rounds by improving both the integral distinguisher and the key-recovery approach substantially....

2022/712 (PDF) Last updated: 2024-02-26
The Hardness of LPN over Any Integer Ring and Field for PCG Applications
Hanlin Liu, Xiao Wang, Kang Yang, Yu Yu
Attacks and cryptanalysis

Learning parity with noise (LPN) has been widely studied and used in cryptography. It was recently brought to new prosperity since Boyle et al. (CCS'18), putting LPN to a central role in designing secure multi-party computation, zero-knowledge proofs, private set intersection, and many other protocols. In this paper, we thoroughly studied the security of LPN problems in this particular context. We found that some important aspects have long been ignored and many conclusions from classical...

2022/519 (PDF) Last updated: 2022-05-02
HARPOCRATES: An Approach Towards Efficient Encryption of Data-at-rest
Md Rasid Ali, Debranjan Pal, Abhijit Das, Dipanwita Roychowdhury
Secret-key cryptography

This paper proposes a new block cipher called HARPOCRATES, which is different from traditional SPN, Feistel, or ARX designs. The new design structure that we use is called the substitution convolution network. The novelty of the approach lies in that the substitution function does not use fixed S-boxes. Instead, it uses a key-driven lookup table storing a permutation of all 8-bit values. If the lookup table is sufficiently randomly shuffled, the round sub-operations achieve good confusion...

2022/424 (PDF) Last updated: 2022-04-06
Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2
Dor Amzaleg, Itai Dinur
Secret-key cryptography

At EUROCRYPT~2021, Beierle et al. presented the first public analysis of the GPRS ciphers GEA-1 and GEA-2. They showed that although GEA-1 uses a 64-bit session key, it can be recovered with the knowledge of only 65 bits of keystream in time $2^{40}$ using $44$ GiB of memory. The attack exploits a weakness in the initialization process of the cipher that was presumably hidden intentionally by the designers to reduce its security. While no such weakness was found for GEA-2, the authors...

2022/194 (PDF) Last updated: 2022-03-30
Finding Collisions against 4-round SHA3-384 in Practical Time
Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov

The Keccak sponge function family, designed by Bertoni et al. in 2007, was selected by the U.S. National Institute of Standards and Technology (NIST) in 2012 as the next generation of Secure Hash Algorithm (SHA-3). Due to its theoretical and practical importance, cryptanalysis against SHA-3 has attracted an increasing attention. To the best of our knowledge, the most powerful collision attack on SHA-3 up till now is the linearisation technique proposed by Jian Guo et al. However, that...

2022/184 (PDF) Last updated: 2022-09-20
Exploring SAT for Cryptanalysis: (Quantum) Collision Attacks against 6-Round SHA-3 (Full Version)
Jian Guo, Guozhen Liu, Ling Song, Yi Tu
Secret-key cryptography

In this work, we focus on collision attacks against instances of SHA-3 hash family in both classical and quantum settings. Since the 5-round collision attacks on SHA3-256 and other variants proposed by Guo et al. at JoC~2020, no other essential progress has been published. With a thorough investigation, we identify that the challenges of extending such collision attacks on SHA-3 to more rounds lie in the inefficiency of differential trail search. To overcome this obstacle, we develop a...

2022/130 (PDF) Last updated: 2022-02-09
A LeVeL Paying Field: Cryptographic Solutions towards Social Accountability and Financial Inclusion
Gideon Samid
Cryptographic protocols

Thousands of digital money protocols compete for attention; the vast majority of them are a minor variation of the Satoshi Nakamoto 2008 proposal. It is time to extract the underlying principles of the Bitcoin revolution and re-assemble them in a way that preserves its benefits and gets rid of its faults. BitMint*LeVeL is a move in this direction. It upholds the fundamental migration of money from hidden bank accounts to cryptographically protected publicly exposed digital coins; it enables...

2022/016 (PDF) Last updated: 2022-08-08
An algebraic attack to the Bluetooth stream cipher E0
Roberto La Scala, Sergio Polese, Sharwan K. Tiwari, Andrea Visconti
Secret-key cryptography

In this paper we study the security of the Bluetooth stream cipher E0 from the viewpoint it is a “difference stream cipher”, that is, it is defined by a system of explicit difference equations over the finite field GF(2). This approach highlights some issues of the Bluetooth encryption such as the invertibility of its state transition map, a special set of 14 bits of its 132-bit state which when guessed implies linear equations among the other bits and finally a small number of spurious...

2021/1703 (PDF) Last updated: 2022-01-29
The Maiorana-McFarland structure based cryptanalysis of Simon
Hao Chen
Secret-key cryptography

In this paper we propose the linear hull construction for block ciphers with quadratic Maiorana-McFarland structure round functions. The search for linear trails with high squared correlations from our Maiorana-McFarland structure based constructive linear cryptanalysis is linear algebraic. Hence from this linear algebraic essence, the space of all linear trails has the structure such that good linear hulls can be constructed. Then for the Simon2n and its variants, we prove the lower bound...

2021/1641 (PDF) Last updated: 2022-09-10
Differential Cryptanalysis of WARP
Je Sen Teh, Alex Biryukov
Secret-key cryptography

WARP is an energy-efficient lightweight block cipher that is currently the smallest 128-bit block cipher in terms of hardware. It was proposed by Banik et al. in SAC 2020 as a lightweight replacement for AES-128 without changing the mode of operation. This paper proposes key-recovery attacks on WARP based on differential cryptanalysis in single and related-key settings. We searched for differential trails for up to 20 rounds of WARP, with the first 19 having optimal differential...

2021/1586 (PDF) Last updated: 2022-01-23
Cryptanalysis of a Type of White-Box Implementations of the SM4 Block Cipher
Jiqiang Lu, Jingyu Li
Secret-key cryptography

The SM4 block cipher was first released in 2006 as SMS4 used in the Chinese national standard WAPI, and became a Chinese national standard in 2016 and an ISO international standard in 2021. White-box cryptography aims primarily to protect the secret key used in a cryptographic software implementation in the white-box scenario that assumes an attacker to have full access to the execution environment and execution details of an implementation. Since white-box cryptography has many real-life...

2021/1572 (PDF) Last updated: 2022-03-04
Integral Attacks on Pyjamask-96 and Round-Reduced Pyjamask-128 (Full version)
Jiamin Cui, Kai Hu, Qingju Wang, Meiqin Wang
Secret-key cryptography

In order to provide benefits in the areas of fully homomorphic encryption (FHE), multi-party computation (MPC), post-quantum signature schemes, or efficient masked implementations for side-channel resistance, reducing the number of multiplications has become a quite popular trend for the symmetric cryptographic primitive designs. With an aggressive design strategy exploiting the extremely simple and low-degree S-box and low number of rounds, Pyjamask, the fundamental block cipher of the AEAD...

2021/1567 (PDF) Last updated: 2021-12-02
Structural and Statistical Analysis of Multidimensional Linear Approximations of Random Functions and Permutations
Tomer Ashur, Mohsin Khan, Kaisa Nyberg
Secret-key cryptography

The goal of this paper is to investigate linear approximations of random functions and permutations. Our motivation is twofold. First, before the distinguishability of a practical cipher from an ideal one can be analysed, the cryptanalyst must have an accurate understanding of the statistical behaviour of the ideal cipher. Secondly, this issue has been neglected both in old and in more recent studies, particularly when multiple linear approximations are being used simultaneously. Traditional...

2021/1479 (PDF) Last updated: 2021-11-08
Reducing the Cost of Machine Learning Differential Attacks Using Bit Selection and aPartial ML-Distinguisher
Amirhossein Ebrahimi, Francesco Regazzoni, Paolo Palmieri
Secret-key cryptography

In a differential cryptanalysis attack, the attacker tries to observe a block cipher's behavior under an input difference: if the system's resulting output differences show any non-random behavior, a differential distinguisher is obtained. While differential cryptanlysis has been known for several decades, Gohr was the first to propose in 2019 the use of machine learning (ML) to build a distinguisher. In this paper, we present the first Partial Differential (PD) ML-distinguisher, and...

2021/1239 (PDF) Last updated: 2021-09-20
Quantum Linearization Attacks
Xavier Bonnetain, Gaëtan Leurent, María Naya-Plasencia, André Schrottenloher
Secret-key cryptography

Recent works have shown that quantum period-finding can be used to break many popular constructions (some block ciphers such as Even-Mansour, multiple MACs and AEs...) in the superposition query model. So far, all the constructions broken exhibited a strong algebraic structure, which enables to craft a periodic function of a single input block. Recovering the secret period allows to recover a key, distinguish, break the confidentiality or authenticity of these modes. In this paper, we...

2021/1179 (PDF) Last updated: 2021-09-14
Improved Attacks on GIFT-64
Ling Sun, Wei Wang, Meiqin Wang
Secret-key cryptography

One of the well-known superiorities of GIFT-64 over PRESENT lies in the correction of the strong linear hull effect. However, apart from the investigation of the 9-round linear hull effect in the design document, we find no linear attack result on GIFT-64. Although we do not doubt the security of GIFT-64 regarding the linear cryptanalysis, the actual resistance of the cipher to the linear attack should be evaluated since it promotes a comprehensive perception of the soundness of GIFT-64....

2021/1112 (PDF) Last updated: 2022-05-16
Key agreement: security / division
Daniel R. L. Brown
Public-key cryptography

Some key agreement schemes, such as Diffie--Hellman key agreement, reduce to Rabi--Sherman key agreement, in which Alice sends $ab$ to Charlie, Charlie sends $bc$ to Alice, they agree on key $a(bc) = (ab)c$, where multiplicative notation here indicates some specialized associative binary operation. All non-interactive key agreement schemes, where each peer independently determines a single delivery to the other, reduce to this case, because the ability to agree implies the existence of an...

2021/1103 (PDF) Last updated: 2021-08-31
Exploring Differential-Based Distinguishers and Forgeries for ASCON
David Gerault, Thomas Peyrin, Quan Quan Tan

Automated methods have become crucial components when searching for distinguishers against symmetric-key cryptographic primitives. While MILP and SAT solvers are among the most popular tools to model ciphers and perform cryptanalysis, other methods with different performance profiles are appearing. In this article, we explore the use of Constraint Programming (CP) for differential cryptanalysis on the ASCON authenticated encryption family (first choice of the CAESAR lightweight applications...

2021/1035 (PDF) Last updated: 2022-03-10
SoK: Cryptanalysis of Encrypted Search with LEAKER - A framework for LEakage AttacK Evaluation on Real-world data
Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber, Michael Yonli

An encrypted search algorithm (ESA) allows a user to encrypt its data while preserving the ability to search over it. As all practical solutions leak some information, cryptanalysis plays an important role in the area of encrypted search. Starting with the work of Islam et al. (NDSS'12), many attacks have been proposed that exploit different leakage profiles under various assumptions. While these attacks improve our understanding of leakage, it can sometimes be difficult to draw definite...

2021/829 (PDF) Last updated: 2022-08-10
Constructing and Deconstructing Intentional Weaknesses in Symmetric Ciphers
Christof Beierle, Tim Beyne, Patrick Felke, Gregor Leander
Secret-key cryptography

Deliberately weakened ciphers are of great interest in political discussion on law enforcement, as in the constantly recurring crypto wars, and have been put in the spotlight of academics by recent progress. A paper at Eurocrypt 2021 showed a strong indication that the security of the widely-deployed stream cipher GEA-1 was deliberately and secretly weakened to 40 bits in order to fulfill European export restrictions that have been in place in the late 1990s. However, no explanation of how...

2021/549 (PDF) Last updated: 2024-05-20
High-assurance field inversion for curve-based cryptography
Benjamin Salling Hvass, Diego F. Aranha, Bas Spitters
Implementation

The security of modern cryptography depends on multiple factors, from sound hardness assumptions to correct implementations that resist side-channel cryptanalysis. Curve-based cryptography is not different in this regard, and substantial progress in the last few decades has been achieved in both selecting parameters and devising secure implementation strategies. In this context, the security of implementations of field inversion is sometimes overlooked in the research literature, because ...

2021/544 (PDF) Last updated: 2021-08-27
Improved guess-and-determine and distinguishing attacks on SNOW-V
Jing Yang, Thomas Johansson, Alexander Maximov
Secret-key cryptography

In this paper, we investigate the security of SNOW-V, demonstrating two guess-and-determine (GnD) attacks against the full version with complexities $2^{384}$ and $2^{378}$, respectively, and one distinguishing attack against a reduced variant with complexity $2^{303}$. Our GnD attacks use enumeration with recursion to explore valid guessing paths, and try to truncate as many invalid guessing paths as possible at early stages of the recursion by carefully designing the order of guessing. In...

2021/479 (PDF) Last updated: 2021-10-12
Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography
Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl, Thomas Schamberger, Ingrid Verbauwhede, Georg Sigl
Public-key cryptography

Side-channel attacks can break mathematically secure cryptographic systems leading to a major concern in applied cryptography. While the cryptanalysis and security evaluation of Post-Quantum Cryptography (PQC) have already received an increasing research effort, a cost analysis of efficient side-channel countermeasures is still lacking. In this work, we propose a masked HW/SW codesign of the NIST PQC finalists Kyber and Saber, suitable for their different characteristics. Among others, we...

2021/401 (PDF) Last updated: 2022-12-26
Output Prediction Attacks on Block Ciphers using Deep Learning
Hayato Kimura, Keita Emura, Takanori Isobe, Ryoma Ito, Kazuto Ogawa, Toshihiro Ohigashi
Secret-key cryptography

Cryptanalysis of symmetric-key ciphers, e.g., linear/differential cryptanalysis, requires an adversary to know the internal structures of the target ciphers. On the other hand, deep learning-based cryptanalysis has attracted significant attention because the adversary is not assumed to have knowledge about the target ciphers with the exception of the algorithm interfaces. Such cryptanalysis in a blackbox setting is extremely strong; thus, we must design symmetric-key ciphers that are secure...

2021/300 (PDF) Last updated: 2021-03-09
Invariants for EA- and CCZ-equivalence of APN and AB functions
Nikolay Kaleyski
Foundations

An (n,m)-function is a mapping from GF(2^n) to GF(2^m). Such functions have numerous applications across mathematics and computer science, and in particular are used as building blocks of block ciphers in symmetric cryptography. The classes of APN and AB functions have been identified as cryptographically optimal with respect to providing resistance against two of the most powerful known cryptanalytic attacks, namely differential and linear cryptanalysis. The classes of APN and AB functions...

2021/282 (PDF) Last updated: 2021-03-07
One-way functions and malleability oracles: Hidden shift attacks on isogeny-based protocols
Péter Kutas, Simon-Philipp Merz, Christophe Petit, Charlotte Weitkämper
Public-key cryptography

Supersingular isogeny Diffie-Hellman key exchange (SIDH) is a post-quantum protocol based on the presumed hardness of computing an isogeny between two supersingular elliptic curves given some additional torsion point information. Unlike other isogeny-based protocols, SIDH has been widely believed to be immune to subexponential quantum attacks because of the non-commutative structure of the endomorphism rings of supersingular curves. We contradict this commonly believed misconception in this...

2021/216 (PDF) Last updated: 2021-06-25
How to Meet Ternary LWE Keys
Alexander May
Public-key cryptography

The LWE problem with its ring variants is today the most prominent candidate for building efficient public key cryptosystems resistant to quantum computers. NTRU-type cryptosystems use an LWE-type variant with small max-norm secrets, usually with ternary coefficients from the set $\{-1,0,1\}$. The presumably best attack on these schemes is a hybrid attack that combines lattice reduction techniques with Odlyzko's Meet-in-the-Middle approach. Odlyzko's algorithm is a classical combinatorial...

2021/193 (PDF) Last updated: 2021-12-08
Multitarget decryption failure attacks and their application to Saber and Kyber
Jan-Pieter D'Anvers, Senne Batsleer
Public-key cryptography

Many lattice-based encryption schemes are subject to a very small probability of decryption failures. It has been shown that an adversary can efficiently recover the secret key using a number of ciphertexts that cause such a decryption failure. In PKC~2019, D'Anvers~et~al. introduced `failure boosting', a technique to speed up the search for decryption failures. In this work we first improve the state-of-the-art multitarget failure boosting attacks. We then improve the cost calculation of...

2021/134 (PDF) Last updated: 2021-07-08
Cryptanalysis of a code-based signature scheme without trapdoors
Marco Baldi, Jean-Christophe Deneuville, Edoardo Persichetti, Paolo Santini
Public-key cryptography

We propose an attack on the recent attempt by Li, Xing and Yeo to produce a code-based signature scheme using the Schnorr-Lyubashevsky approach in the Hamming metric, and verify its effectiveness through numerical simulations. Differently from other (unsuccessful) proposals, this new scheme exploits rejection sampling along with dense noise vectors to hide the secret key structure in produced signatures. We show that these measures, besides yielding very slow signing times and rather long...

2020/1418 (PDF) Last updated: 2020-11-15
Quantum Period Finding against Symmetric Primitives in Practice
Xavier Bonnetain, Samuel Jaques
Secret-key cryptography

We present the first complete implementation of the offline Simon's algorithm, and estimate its cost to attack the MAC Chaskey, the block cipher PRINCE and the NIST lightweight candidate AEAD scheme Elephant. These attacks require a reasonable amount of qubits, comparable to the number of qubits required to break RSA-2048. They are faster than other collision algorithms, and the attacks against PRINCE and Chaskey are the most efficient known to date. As Elephant has a key smaller than its...

2020/1389 (PDF) Last updated: 2020-11-10
Key Mismatch Attack on NewHope Revisited
Jan Vacek, Jan Václavek

One of the NIST Post-Quantum Cryptography Standardization Process Round 2 candidates is the NewHope cryptosystem, which is a suite of two RLWE based key encapsulation mechanisms. Recently, four key reuse attacks were proposed against NewHope by Bauer et al., Qin et al., Bhasin et al. and Okada et al. In these attacks, the adversary has access to the key mismatch oracle which tells her if a given ciphertext decrypts to a given message under the targeted secret key. Previous attacks either...

2020/1328 (PDF) Last updated: 2023-08-21
SWiSSSE: System-Wide Security for Searchable Symmetric Encryption
Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, Bogdan Warinschi
Applications

This paper initiates a new direction in the design and analysis of searchable symmetric encryption (SSE) schemes. We provide the first comprehensive security model and definition for SSE that takes into account leakage from the entirety of the SSE system, including not only from access to encrypted indices but also from access to the encrypted database documents themselves. Such system-wide leakage is intrinsic in end-to-end SSE systems, and can be used to break almost all state-of-the-art...

2020/1325 (PDF) Last updated: 2023-02-10
On Self-Equivalence Encodings in White-Box Implementations
Adrián Ranea, Bart Preneel
Secret-key cryptography

All academic methods to secure software implementations of block ciphers against adversaries with full control of the device have been broken. Despite the huge progress in the cryptanalysis of these white-box implementations, no recent progress has been made on the design side. Most of the white-box designs follow the CEJO framework, where each round is encoded by composing it with small random permutations. While several generic attacks have been proposed on the CEJO framework, no generic...

2020/1133 (PDF) Last updated: 2022-09-23
Security Analysis of Subterranean 2.0
Ling Song, Yi Tu, Danping Shi, Lei Hu
Secret-key cryptography

Subterranean 2.0 is a cipher suite that can be used for hashing, authenticated encryption, MAC computation, etc. It was designed by Daemen, Massolino, Mehrdad, and Rotella, and has been selected as a candidate in the second round of NIST's lightweight cryptography standardization process. Subterranean 2.0 is a duplex-based construction and utilizes a single-round permutation in the duplex. It is the simplicity of the round function that makes it an attractive target of cryptanalysis. In...

2020/1086 (PDF) Last updated: 2020-09-10
Combinatorial Rank Attacks Against the Rectangular Simple Matrix Encryption Scheme
Daniel Apon, Dustin Moody, Ray Perlner, Daniel Smith-Tone, Javier Verbel

In 2013, Tao et al. introduced the ABC Simple Matrix Encryption Scheme, a multivariate public key encryption scheme. The scheme boasts great efficiency in encryption and decryption, though it suffers from very large public keys. It was quickly noted that the original proposal, utilizing square matrices, suffered from a very bad decryption failure rate. As a consequence, the designers later published updated parameters, replacing the square matrices with rectangular matrices and altering...

2020/1034 (PDF) Last updated: 2021-12-26
Cryptanalysis of Full LowMC and LowMC-M with Algebraic Techniques
Fukang Liu, Takanori Isobe, Willi Meier
Secret-key cryptography

In this paper, we revisit the difference enumeration technique for LowMC and develop new algebraic techniques to achieve efficient key-recovery attacks. In the original difference enumeration attack framework, an inevitable step is to precompute and store a set of intermediate state differences for efficient checking via the binary search. Our first observation is that Bar-On et al.'s general algebraic technique developed for SPNs with partial nonlinear layers can be utilized to fulfill the...

2020/974 (PDF) Last updated: 2021-03-01
Compact-LWE-MQ^{H}: Public Key Encryption without Hardness Assumptions
Dongxi Liu, Surya Nepal
Public-key cryptography

Modern public key encryption relies on various hardness assumptions for its security. Hardness assumptions may cause security uncertainty, for instance, when a hardness problem is no longer hard or the best solution to a hard problem might not be publicly released. In this paper, we propose a public key encryption scheme Compact-LWE-MQ^{H} to demonstrate the feasibility of constructing public key encryption without relying on hardness assumptions. Instead, its security is based on problems...

2020/971 (PDF) Last updated: 2020-08-18
QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme
Koksal Mus, Saad Islam, Berk Sunar
Public-key cryptography

Post-quantum schemes are expected to replace existing public-key schemes within a decade in billions of devices. To facilitate the transition, the US National Institute for Standards and Technology (NIST) is running a standardization process. Multivariate signatures is one of the main categories in NIST's post-quantum cryptography competition. Among the four candidates in this category, the LUOV and Rainbow schemes are based on the Oil and Vinegar scheme, first introduced in 1997 which has...

2020/913 (PDF) Last updated: 2020-10-29
Differential-ML Distinguisher: Machine Learning based Generic Extension for Differential Cryptanalysis
Tarun Yadav, Manoj Kumar
Foundations

Differential cryptanalysis is an important technique to evaluate the security of block ciphers. There exists several generalisations of differential cryptanalysis and it is also used in combination with other cryptanalysis techniques to improve the attack complexity. In 2019, usefulness of machine learning in differential cryptanalysis is introduced by Gohr to attack the lightweight block cipher SPECK. In this paper, we present a framework to extend the classical differential distinguisher...

2020/795 (PDF) Last updated: 2020-10-13
Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware Co-design Approaches
Viet Ba Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani, Duc Tri Nguyen, Kris Gaj
Implementation

Performance in hardware has typically played a major role in differentiating among leading candidates in cryptographic standardization efforts. Winners of two past NIST cryptographic contests (Rijndael in case of AES and Keccak in case of SHA-3) were ranked consistently among the two fastest candidates when implemented using FPGAs and ASICs. Hardware implementations of cryptographic operations may quite easily outperform software implementations for at least a subset of major performance...

2020/551 (PDF) Last updated: 2020-05-15
Higher Order Differential Attack against Full-Round BIG
Naoki Shibayama, Yasutaka Igarashi, Toshinobu Kaneko
Secret-key cryptography

BIG is a 128-bit block cipher proposed by Demeri et al. in 2019. The number of rounds is 18 for high security. The designer evaluated its security against linear cryptanalysis. On the other hand, it has not been reported the security of BIG against higher order differential attack, which is one of the algebraic attacks. In this paper, we focused on a higher order differential of BIG. We found a new 15-round saturation characteristc of BIG using 1-st order differential by computer experiment....

2020/415 (PDF) Last updated: 2020-04-13
Indistinguishability Obfuscation Without Maps: Attacks and Fixes for Noisy Linear FE
Shweta Agrawal, Alice Pellet-Mary
Foundations

Candidates of Indistinguishability Obfuscation (iO) can be categorized as ``direct'' or ``bootstrapping based''. Direct constructions rely on high degree multilinear maps [GGH13,GGHRSW13] and provide heuristic guarantees, while bootstrapping based constructions [LV16,Lin17,LT17,AJLMS19,Agr19,JLMS19] rely, in the best case, on bilinear maps as well as new variants of the Learning With Errors (LWE) assumption and pseudorandom generators. Recent times have seen exciting progress in the...

2020/361 (PDF) Last updated: 2020-03-28
How Not to Create an Isogeny-Based PAKE
Reza Azarderakhsh, David Jao, Brian Koziel, Jason T. LeGrow, Vladimir Soukharev, Oleg Taraskin
Cryptographic protocols

Isogeny-based key establishment protocols are believed to be resistant to quantum cryptanalysis. Two such protocols---supersingular isogeny Diffie-Hellman (SIDH) and commutative supersingular isogeny Diffie-Hellman (CSIDH)---are of particular interest because of their extremely small public key sizes compared with other post-quantum candidates. Although SIDH and CSIDH allow us to achieve key establishment against passive adversaries and authenticated key establishment (using generic...

2020/292 (PDF) Last updated: 2022-10-24
LWE with Side Information: Attacks and Concrete Security Estimation
Dana Dachman-Soled, Léo Ducas, Huijing Gong, Mélissa Rossi
Public-key cryptography

We propose a framework for cryptanalysis of lattice-based schemes, when side information---in the form of ``hints''--- about the secret and/or error is available. Our framework generalizes the so-called primal lattice reduction attack, and allows the progressive integration of hints before running a final lattice reduction step. Our techniques for integrating hints include sparsifying the lattice, projecting onto and intersecting with hyperplanes, and/or altering the distribution of the...

2020/291 Last updated: 2020-07-21
Unforgeability in the quantum world
Myrto Arapinis, Mahshid Delavar, Mina Doosti, Elham Kashefi
Foundations

Defining unforgeability and designing cryptographic primitives that provide unforgeability in the quantum setting, i.e. where the adversary has quantum capabilities including quantum oracle access to the primitive, has proven to be a hard challenge. The classical notions and techniques do not transpose directly to the quantum setting. In this paper, we continue the line of work initiated by Boneh and Zhandry at CRYPTO 2013 and EUROCRYPT 2013 in which they formally define the notion of...

2020/290 (PDF) Last updated: 2020-03-07
Linear Cryptanalysis of Reduced-Round SIMON Using Super Rounds
Reham Almukhlifi, Poorvi Vora
Secret-key cryptography

We present attacks on 21-rounds of SIMON 32/64, 21-rounds of SIMON 48/96, 25-rounds of SIMON 64/128, 35-rounds of SIMON 96/144 and 43-rounds of SIMON 128/256, often with direct recovery of the full master key without repeating the attack over multiple rounds. These attacks result from the observation that, after four rounds of encryption, one bit of the left half of the state of 32/64 SIMON depends on only 17 key bits (19 key bits for the other variants of SIMON). Further, linear...

2020/275 (PDF) Last updated: 2020-03-04
Pholkos -- Efficient Large-state Tweakable Block Ciphers from the AES Round Function
Jannis Bossert, Eik List, Stefan Lucks, Sebastian Schmitz
Secret-key cryptography

With the dawn of quantum computers, higher security than $128$ bits has become desirable for primitives and modes. During the past decade, highly secure hash functions, MACs, and encryption schemes have been built primarily on top of keyless permutations, which simplified their analyses and implementation due to the absence of a key schedule. However, the security of these modes is most often limited to the birthday bound of the state size, and their analysis may require a different security...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.