
1

A Combinatorial Attack on Ternary Sparse

Learning with Errors (sLWE)
Abul Kalam, Santanu Sarkar, and Willi Meier

Abstract

Sparse Learning With Errors (sLWE) is a novel problem introduced at Crypto 2024 by Jain et al., designed to enhance
security in lattice-based cryptography against quantum attacks while maintaining computational efficiency. This paper presents
the first third-party analysis of the ternary variant of sLWE, where both the secret and error vectors are constrained to ternary
values. We introduce a combinatorial attack that employs a subsystem extraction technique followed by a Meet-in-the-Middle
approach, effectively recovering the ternary secret vector. Our comprehensive analysis explores the attack’s performance across
various sparsity and modulus settings, revealing critical security limitations inherent in ternary sLWE.

Our analysis does not claim to present any attack on the proposal of Jain et al.; rather, it supports their assertion that
sparse LWE is vulnerable for small secrets, particularly for ternary secrets and ternary errors. Notably, our findings indicate
that the recommended parameters, which the developers claim provide security equivalent to LWE with a dimension of 1024,
may not hold true for the ternary variant of sLWE. Our research highlights that, particularly with a modulus of 264, the secret
key can be recovered in a practical timeframe, supporting the developers’ claim of vulnerability in this case. Additionally,
for configurations with moduli of 232 and 216, we observe a significant reduction in the security margin. This suggests that
the actual security level may be significantly weaker than intended. Overall, our work contributes crucial insights into the
cryptographic robustness of ternary sLWE, emphasizing the need for further strengthening to protect against potential attacks
and setting the stage for future research in this area.

Index Terms

Sparse Learning With Errors (sLWE), Ternary sLWE, Combinatorial Attack, Post-Quantum Cryptography

I. INTRODUCTION

In recent years, the study of lattice-based cryptography has become increasingly important, particularly in light of the

growing concerns about quantum computing’s potential to undermine traditional security methods. Lattice-based schemes,

such as those based on the Learning With Errors (LWE) problem, are viewed as promising candidates for post-quantum

cryptography due to their mathematical foundations that appear resistant to quantum attacks. Introduced by Regev in 2005 [1],

the LWE problem serves as a cornerstone in this field, providing a robust framework for constructing secure cryptographic

primitives. An LWE instance, represented as (A,b) ∈ Z𝑚×𝑛
𝑀 ×Z𝑚

𝑀 , involves a matrix A generated randomly over Z𝑀 . The

primary challenge lies in recovering a hidden secret vector s ∈ Z𝑛
𝑀 from a noisy equation A · s = b+ e mod 𝑀 , where

e represents a carefully introduced error term. The difficulty of this problem underpins many cryptographic tools, such as

encryption schemes, digital signatures, and homomorphic encryption [2]–[8], making it vital for ensuring data confidentiality

and integrity in various applications, from secure messaging to cloud computing.

The strength of the LWE problem is supported by its connections to some of the most challenging problems in lattice

theory, which boosts confidence in the security of LWE-based systems. The reductions from these hard problems provide

a theoretical foundation that allows cryptographers to build systems with provable security. However, this proven security

Abul Kalam and Santanu Sarkar are with the Department of Mathematics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036,
India (e-mail: abulkalam.sunny@gmail.com; sarkar.santanu.bir1@gmail.com).

University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Windisch, Switzerland. e-mail: willimeier48@gmail.com

2

often applies only within specific parameter ranges, leading to concerns about practical efficiency in real-world applications.

Consequently, many implementations of LWE choose parameters that go beyond these proven ranges to enhance performance,

a trade-off that must be carefully managed. A significant factor in achieving this balance is the size and structure of the secret

key, which influences not only the security of the system but also its computational efficiency. This has led to the adoption

of binary, ternary, or sparse vector forms in various LWE systems [9]–[15]. By exploring these alternatives, researchers aim

to optimize both security and efficiency, ultimately enhancing the viability of LWE in practical scenarios.

Moreover, the significance of LWE and its variants extends beyond their theoretical foundations; they serve as critical

building blocks for a wide range of cryptographic primitives essential in our digital society. As applications of cryptography

expand, spanning secure communications, privacy-preserving data sharing, and blockchain technologies, the need for robust

and efficient cryptographic methods becomes paramount. These advancements not only ensure the security of individual

systems but also contribute to the overall resilience of the digital ecosystem against various attack vectors. Ongoing research

into LWE’s properties and potential applications is vital for addressing the challenges posed by evolving technological threats

and for ensuring the long-term integrity of cryptographic practices.

Despite the development of various methods to address the LWE problem, the cryptographic security of LWE with sparse

or ternary secrets remains an area of ongoing inquiry. One promising method is combinatorial attacks, which take advantage

of smaller secrets to lower the complexity of attacks, especially when combined with lattice reduction techniques. Among

these, the Meet-in-the-Middle (MitM) attack, proposed by Odlyzko [16], stands out for its effectiveness, achieving an attack

complexity of 𝑆0.5, where 𝑆 represents the search space size for the secret key.

Building on this foundation, May introduced a new MitM combinatorial attack called Meet-LWE, which significantly

improves upon previous methods with an asymptotic complexity of 𝑆0.25 [17]. This innovative approach combines Howgrave-

Graham’s representation technique [18] with a tree-based structure that efficiently organizes secrets and their hash values.

May’s method divides the LWE secret s ∈ {0,±1}𝑛 into two parts, s1 and s2, also in {0,±1}𝑛. By making educated guesses

about certain parts of the error vector e, this method uses multiple representations of s to simplify the list construction process.

A recent study [19] introduces an exciting new variant called the k-Sparse Learning With Errors (k-sLWE) problem,

which examines the computational challenges of using sparse coefficient matrices. Unlike traditional LWE, which uses

dense matrices, k-sLWE employs random k-sparse matrices A ∈ Z𝑚×𝑛
𝑀 , where each row has exactly 𝑘 non-zero elements,

drawn uniformly from Z𝑀 . This fresh approach greatly improves efficiency in both storage and computation, as each k-

sLWE sample consists of only 𝑘+1 elements, resulting in a computation time of 𝑂(𝑘 log𝑀). In comparison, standard LWE

samples require 𝑛+1 elements and take 𝑂(𝑛 log𝑀) time. The parameter 𝑘 is key to maintaining the difficulty of the k-sLWE

problem. An interesting part of this research is the investigation of different settings for 𝑘, including constant, logarithmic,

polylogarithmic, and sublinear values relative to the dimension 𝑛. The findings suggest that choosing 𝑘 to be logarithmic or

polylogarithmic strikes an ideal balance for cryptographic applications, offering both efficiency and strong security. While

a constant 𝑘 can provide theoretical insights under certain sample constraints, it does not achieve the necessary level of

security when the sample size exceeds the linear dimension.

Our Contributions. In this work, we conduct a thorough analysis of the ternary variant of Sparse Learning With Errors

(sLWE). Specifically, we propose a novel combinatorial attack that leverages a subsystem extraction technique to recover the

secret vector efficiently. Our investigation explores the performance of this attack under various sparsity levels and modulus

settings, revealing potential vulnerabilities in the proposed parameters. We show that, for practical moduli such as 264, the

secret can be recovered within a feasible timeframe, casting doubt on the claimed security equivalence to LWE with a

dimension of 1024. Additionally, for smaller moduli such as 232 and 216, we observe a significant reduction in the security

margin, further emphasizing the need for careful parameter selection.

Organization of our paper. The paper is organized as follows. In Section-II, we briefly introduce the Sparse Learning With

Errors (sLWE) problem. Section-III introduces the ternary variant of sLWE. Section-IV describes our method for extracting a

3

Good Subsystem. In Section-V, we estimate the expected number of variables in a system of equations. Section-VI presents

our efficient algorithm for solving an instance of ternary sLWE. Section-VII provides the results of our analysis on ternary

sLWE, while Section-VIII details the experimental verification of the algorithm. Finally, we conclude the paper in Section-IX.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

II-A Notation

Let N = {1, 2, ...} be the natural numbers and Z be the set of integers. Define [𝑛] = {1, 2, · · · , 𝑛} ⊂ N. For a

positive integer 𝑀 , Z𝑀 denotes the ring of integers modulo 𝑀 . We will assume that Z𝑀 = {−⌊𝑀−1
2 ⌋,−⌊

𝑀−1
2 ⌋ +

1, · · · ,−1, 0, 1, · · · , ⌊𝑀2 ⌋− 1, ⌊𝑀2 ⌋}. We use Z𝑛
𝑀 to represent the 𝑛-dimensional vector space over Z𝑀 . Capital bold letters

(e.g., A) are used to denote matrices, while small bold letters (e.g., v) represent vectors. Additionally, we denote probability

by P, variance by V, and covariance by COV.

II-B Sparse Learning With Errors

In this study, we investigate a variant of the Learning With Errors (LWE) problem introduced by Jain et al. in CRYPTO

2024 [19]. We begin by formally defining the variant known as Sparse LWE.

Definition II.1. Let 𝑛,𝑚,𝑀 ∈ Z, and let 𝑘 be a constant or a polylogarithmic function of 𝑛. We consider a random matrix

A ∈ Z𝑚×𝑛
𝑀 , where each row contains exactly 𝑘 non-zero elements uniformly sampled from Z𝑀 . Additionally, let b ∈ Z𝑚

𝑀 .

The Sparse Learning With Errors (sLWE𝑛,𝑘,𝑚,𝑀,𝜎) problem is defined as the task of finding a secret vector s ∈ Z𝑛
𝑀 that

satisfies the equation

As = b+ e,

where e ∈ Z𝑚
𝑀 is an error vector drawn from a discrete Gaussian distribution with mean 0 and noise parameter 𝜎.

Definition II.2. For a modulus 𝑀 and a vector v ∈ Z𝑛
𝑀 , the locality set LocSet(v) is defined as the indices 𝑆 ⊂ [𝑛] where

v[𝑖] ̸= 0 for all 𝑖 ∈ 𝑆.

We demonstrate that if we have an oracle capable of solving the sparse LWE problem for dimension 𝑛 and sparsity 𝑘

with 𝑚 samples, we can use it to solve the standard LWE problem for dimension 𝑘 with the same 𝑚 samples, provided the

modulus 𝑝 is prime.

Given an input pair (A,b = As + e), we will transform it into a new pair (A′,b′ = A′s′ + e) that retains the same

error properties. If b were sampled randomly instead of generated from the LWE distribution, this transformation would

maintain that randomness. The resulting distribution of (A′,b′) will match that of average-case sparse LWE. Importantly,

this method does not alter the error vector e, allowing it to also apply in scenarios like learning parity with noise.

Conversion Procedure. The conversion process works as follows: we start with a dense matrix A of size 𝑚×𝑘 and aim

to convert each column into a corresponding sample in a new sparse matrix A′ of size 𝑚×𝑛, where each row has exactly 𝑘

non-zero entries. The vector b will remain unchanged for now, allowing us to express it as b = Az′ + e. At this point, the

secret z is not uniformly random. To address this, we can add a random term Av′ to b using a randomly selected vector

v. This ensures that the new secret v + z is random and independent of A′.

Next, we need to establish a relationship between A and A′. Specifically, we want to ensure that there exists a matrix C

of size 𝑛× 𝑘 such that the equation A′C = A holds. This allows us to rewrite b as b = A′(Cs) + e.

To construct A′, we first fix the matrix C. We then randomly sample locality patterns 𝑆1, . . . , 𝑆𝑚 from
(︀
𝑛
𝑘

)︀
. For each 𝑖,

we select the non-zero coordinates according to 𝑆𝑖 so that A′[𝑖]C = A[𝑖]. This is feasible because we can view this as a

4

system of linear equations over Z𝑝, where 𝑘 variables correspond to the non-zero entries of A′[𝑖] and 𝑘 equations relate to

the columns of A[𝑖]. We choose C to be a Vandermonde matrix, ensuring that any 𝑘 rows are linearly independent, which

guarantees that our system is solvable.

Randomness of A′. To confirm that A′ is random, we note that each row A′[𝑖] can be described by its locality pattern and

the random non-zero entries corresponding to this pattern. Since the locality patterns are independently chosen at random,

the columns of A′ will be uniformly distributed and independent of one another.

We state the following theorem:

Theorem: [19] If there exists a probabilistic polynomial-time (PPT) algorithm that can solve average-case sLWE𝑛,𝑘,𝑚,𝑝,𝜎

instances in time 𝑇 with success probability 𝜉, where the modulus 𝑝 is a prime and the number of samples 𝑚 < 𝑝, then we

can solve average-case LWE𝑘,𝑚,𝑝,𝜎 instances in time 𝑇 +𝑂(𝑛3𝑚 log 𝑝) with the same success probability 𝜉.

III. TERNARY VARIANT OF SLWE

In [19], the authors posed an open problem regarding the security of small secret sparse LWE. In this work, we introduce

and analyze a novel variant of sparse LWE (sLWE) that incorporates ternary secrets and errors. This variant, which we call

ternary sLWE, is formally defined as follows:

Definition III.1. Consider dimension 𝑛, sparsity parameter 𝑘, a sample complexity 𝑚, modulus 𝑀 . Let A ∈ Z𝑚×𝑛
𝑀 be

a 𝑘-sparse random matrix whose every row has exactly 𝑘 number of non-zero elements and b ∈ Z𝑚
𝑀 . A ternary sLWE

problem asks to find a ternary secret vector s ∈ {−1, 0, 1}𝑛 that holds the identity As = b+ e, where e ∈ {−1, 0, 1}𝑚 is

an arbitrary ternary vector.

We now proceed to analyze an instance of the ternary 𝑘-sLWE problem, where (A,b) ∈ Z𝑚×𝑛
𝑀 × Z𝑚

𝑀 , the dimension is

𝑛, and the number of samples is 𝑚. In this context, each equation derived from the samples involves precisely 𝑘 variables,

and the size of the search space for solution to any individual equation is 3𝑘+1, as the variables involved in the equation

are ternary and the error in the equation is also ternary. Given the random nature of A and b, a randomly chosen element

from the search space satisfies a given equation with probability 1
𝑀 . Consequently, the expected number of solutions to a

single equation is 3𝑘+1

𝑀 .

If 𝑘 is sufficiently small, each equation is expected to have approximately one solution. In this regime, the equations are

independent enough to be solved separately, and the solution to the ternary sLWE problem can be constructed coordinate

by coordinate. We formalize this notion by defining a threshold for the sparsity parameter 𝑘:

Definition III.2. For an instance of ternary sLWE𝑛,𝑘,𝑚,𝑀 , we define the threshold limit 𝛿 ∈ N as the largest integer such

that 3𝛿+1 ≤𝑀 .

In instances where the sparsity parameter 𝑘 is less than or equal to this threshold limit 𝛿, each equation is expected to

have a unique solution. In this case, using Algorithm-2, the solution for each equation can be recovered efficiently.

However, when 𝑘 exceeds the threshold limit 𝛿, solving the entire system of equations directly becomes computationally

infeasible due to the exponential growth of the search space. To address this, we propose decomposing the system into

smaller subsystems, where each subsystem can be solved independently.

Consider a subsystem with 𝜇 equations and 𝑣 variables. The search space for the solution of such a subsystem is 3𝑣+𝜇,

as there are 𝑣 ternary variables and 𝜇 ternary errors to account for. The probability that a randomly chosen element from

this search space satisfies all 𝜇 equations is 1
𝑀𝜇 . Hence, the expected number of solutions for the subsystem is 3𝑣+𝜇

𝑀𝜇 .

If we can extract subsystems where 3𝑣+𝜇

𝑀𝜇 ≈ 1, the solutions to these subsystems can be combined to recover the full

secret vector s. This decomposition strategy leverages the sparsity and structure of the problem, allowing us to tackle larger

instances of ternary sLWE.

5

IV. EXTRACTING AN EFFECTIVE SUBSYSTEM FOR SECRET RECOVERY

Our initial approach is to identify a subsystem of sLWE𝑛,𝑘,𝑚,𝑀 and solve it. We will continue this process until we

determine all the unknown coordinates of the secret vector s. However, if each subsystem yields exponentially many solutions,

pinpointing the exact value of the secret vector will become quite challenging. To address this, we will introduce the following

definition.

Definition IV.1. A subsystem of ternary sLWE𝑛,𝑘,𝑚,𝑀 with 𝑣 number of variables and 𝜇 number of equations is called a

Good Subsystem of the instance if 3𝑣+𝜇 ≤𝑀𝜇.

Clearly, a Good Subsystem for a ternary sLWE𝑛,𝑘,𝑚,𝑀 is expected to have exactly one solution. Thus, our goal will be

to identify these Good Subsystems and subsequently solve them. But again, we have a challenge to find a Good Subsystem.

So first we will reduce our problem to the following problem.

Problem IV.2. Let 𝐴0, 𝐴1, . . . , 𝐴𝜇−1 be random subsets of [𝑛] such that |𝐴𝑖| = 𝑘 for 𝑖 = 0, 1, . . . , 𝜇−1. We aim to analyze

the probability of selecting these 𝜇 random subsets such that the cardinality of the union 𝐴0 ∪ 𝐴1 ∪ · · · ∪ 𝐴𝜇−1 does not

exceed 𝑣.

To address this problem, we will aim to establish the following theorem.

Theorem IV.3. Let 𝐴0, 𝐴1, . . . , 𝐴𝜇−1 be random subsets of the set [𝑛] such that |𝐴𝑖| = 𝑘𝑖 for each 𝑖 = 0, 1, . . . , 𝜇 − 1.

Define the random variable 𝑋 as the size of the union 𝐴0 ∪𝐴1 ∪ · · · ∪𝐴𝜇−1. Then, the expected value of 𝑋 is given by

E(𝑋) = 𝑛−
𝑛∑︁

𝑖=1

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂
,

and the variance of 𝑋 can be expressed as:

V(𝑋) = 𝑛

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂
− 𝑛2

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂2

+ 𝑛(𝑛− 1)

𝜇−1∏︁
𝑗=0

(︂
1− 2𝑘𝑗

𝑛
+

𝑘𝑗(𝑘𝑗 − 1)

𝑛(𝑛− 1)

)︂
.

Proof. Let 𝐴 = 𝐴0∪𝐴1∪· · ·∪𝐴𝜇−1. To analyze the union, we introduce indicator random variables 𝑋𝑖𝑗 defined as follows:

𝑋𝑖𝑗 =

⎧⎨⎩1 if 𝑖 ∈ 𝐴𝑗 ,

0 otherwise

for each 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 0, 1, . . . , 𝜇− 1. It follows that for fixed 𝑖, the variables 𝑋𝑖𝑗 are independent, and we can

compute their expected values as E(𝑋𝑖𝑗) =
𝑘𝑗

𝑛 . Additionally, we define another indicator variable 𝑋𝑖 for each 𝑖:

𝑋𝑖 =

⎧⎨⎩1 if 𝑖 ∈ 𝐴,

0 otherwise

Also, we have the following relations:

𝑋𝑖 = 1−
𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗) and 𝑋 =

𝑛∑︁
𝑖=1

𝑋𝑖.

To find E(𝑋), we calculate:

E(𝑋) =

𝑛∑︁
𝑖=1

E(𝑋𝑖) = 𝑛−
𝑛∑︁

𝑖=1

E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠ .

6

Applying the independence of the 𝑋𝑖𝑗 for a fixed 𝑖 yields:

E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠ =

𝜇−1∏︁
𝑗=0

E(1−𝑋𝑖𝑗) =

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂
.

Thus, we have the expected value of 𝑋:

E(𝑋) = 𝑛−
𝑛∑︁

𝑖=1

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂
.

Next, we will compute the variance V(𝑋):

V(𝑋) = V

(︃
𝑛∑︁

𝑖=1

𝑋𝑖

)︃

= V

⎛⎝𝑛−
𝑛∑︁

𝑖=1

𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠
= V

⎛⎝ 𝑛∑︁
𝑖=1

𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠
=

𝑛∑︁
𝑖=1

V

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠+ 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑟=𝑖+1

COV

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗),

𝜇−1∏︁
𝑗=0

(1−𝑋𝑟𝑗)

⎞⎠
=

𝑛∑︁
𝑖=1

⎡⎢⎣E
⎛⎝𝜇−1∏︁

𝑗=0

(1−𝑋𝑖𝑗)
2

⎞⎠−
⎧⎨⎩E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠⎫⎬⎭
2
⎤⎥⎦

+ 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑟=𝑖+1

⎡⎣E
⎛⎝𝜇−1∏︁

𝑗=0

(1−𝑋𝑖𝑗)(1−𝑋𝑟𝑗)

⎞⎠− E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑟𝑗)

⎞⎠⎤⎦ .

From the independence of 𝑋𝑖𝑗 for a fixed 𝑖, we have

E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)
2

⎞⎠−
⎧⎨⎩E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠⎫⎬⎭
2

=

𝜇−1∏︁
𝑗=0

E
(︀
(1−𝑋𝑖𝑗)

2
)︀
−

𝜇−1∏︁
𝑗=0

{E (1−𝑋𝑖𝑗)}2

=

𝜇−1∏︁
𝑗=0

E (1−𝑋𝑖𝑗)−
𝜇−1∏︁
𝑗=0

{E (1−𝑋𝑖𝑗)}2

=

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂
−

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂2

Similarly, we can get

E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)

⎞⎠E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑟𝑗)

⎞⎠ =

𝜇−1∏︁
𝑗=0

E (1−𝑋𝑖𝑗)

𝜇−1∏︁
𝑗=0

E (1−𝑋𝑟𝑗) =

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂2

Also,

E

⎛⎝𝜇−1∏︁
𝑗=0

(1−𝑋𝑖𝑗)(1−𝑋𝑟𝑗)

⎞⎠ =

𝜇−1∏︁
𝑗=0

E ((1−𝑋𝑖𝑗)(1−𝑋𝑟𝑗))

7

=

𝜇−1∏︁
𝑗=0

E (1−𝑋𝑖𝑗 −𝑋𝑟𝑗 +𝑋𝑖𝑗𝑋𝑟𝑗)

=

𝜇−1∏︁
𝑗=0

(1− E(𝑋𝑖𝑗)− E(𝑋𝑟𝑗) + E(𝑋𝑖𝑗𝑋𝑟𝑗))

=

𝜇−1∏︁
𝑗=0

(︂
1− 2𝑘𝑗

𝑛
+

𝑘𝑗(𝑘𝑗 − 1)

𝑛(𝑛− 1)

)︂
After substituting all these values into our variance expression, we obtain:

V(𝑋) = 𝑛

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂
− 𝑛2

𝜇−1∏︁
𝑗=0

(︂
1− 𝑘𝑗

𝑛

)︂2

+ 𝑛(𝑛− 1)

𝜇−1∏︁
𝑗=0

(︂
1− 2𝑘𝑗

𝑛
+

𝑘𝑗(𝑘𝑗 − 1)

𝑛(𝑛− 1)

)︂
This completes the proof of the theorem, establishing both the expected value and variance of the random variable 𝑋 .

From the above theorem, we have the following corollary:

Corollary IV.4. Let 𝐴0, 𝐴1, . . . , 𝐴𝜇−1 be random subsets of the set [𝑛] such that |𝐴𝑖| = 𝑘 for each 𝑖 = 0, 1, . . . , 𝜇 − 1.

Define the random variable 𝑋 as the size of the union 𝐴0 ∪𝐴1 ∪ · · · ∪𝐴𝜇−1. Then, the expected value of 𝑋 is given by

E(𝑋) = 𝑛

[︂
1−

(︂
1− 𝑘

𝑛

)︂𝜇]︂
,

and the variance of 𝑋 can be expressed as:

V(𝑋) = 𝑛

(︂
1− 𝑘

𝑛

)︂𝜇

− 𝑛2

(︂
1− 𝑘

𝑛

)︂2𝜇

+ 𝑛(𝑛− 1)

[︂
1− 2𝑘

𝑛
+

𝑘(𝑘 − 1)

𝑛(𝑛− 1)

]︂𝜇
.

Thus, based on the above result, we can derive the mean and variance for the random variable 𝑋 . We can then apply the

Normal Distribution to determine the probability of selecting 𝜇 random subsets of 𝑆 such that the size of their union is at

most 𝑣, which is equivalent to P(𝑋 ≤ 𝑣). Consequently, this probability can be expressed as P
(︀

𝑣−mean
standard deviation ≤ 1

)︀
. This

value can be obtained from the Z-table of the Standard Normal Distribution.

In this context, we must address one additional crucial point. Suppose we have identified a Good Subsystem containing

at most 𝑣 variables and 𝜇 equations. However, what happens if there are one or two equations within the subsystem that

do not overlap with the others? In this scenario, while the large overlapping class may yield a unique solution, the isolated

equations could generate exponentially many solutions, thereby exponentially increasing the overall number of solutions for

the subsystem. Therefore, we will remove those isolated equations from the subsystem, and as a consequence, the expected

number of solutions to this refined subsystem will be one.

To address this problem, let us introduce the following relation.

Definition IV.5. Let 𝑆 be a collection of sets. We define a relation 𝜎 on 𝑆 as follows:

For any 𝐴1, 𝐴2 ∈ 𝑆, we say 𝐴1 𝜎 𝐴2 if and only if there exists a sequence of sets 𝐴3, 𝐴4, . . . , 𝐴𝑛 ∈ 𝑆 such that the

following conditions hold:

∙ 𝐴1 ∩𝐴3 ̸= ∅,

∙ 𝐴3 ∩𝐴4 ̸= ∅,

∙ 𝐴4 ∩𝐴5 ̸= ∅,

∙
...

∙ 𝐴𝑛 ∩𝐴2 ̸= ∅.

Clearly, the relation 𝜎 on 𝑆 is an equivalence relation, which allows us to derive a partition from this relation on 𝑆. As

8

an initial intuition, our motive will be to extract the largest equivalence class. We present the following algorithm:

Algorithm 1: GetSubsystem(𝑣, 𝜇)
Input: sLWE𝑛,𝑘,𝑚,𝑀 , 𝑣, 𝜇

Output: A good refined subsystem of sLWE𝑛,𝑘,𝑚,𝑀

1 repeat
2 repeat
3 Randomly select 𝜇 equations from the sample;

4 𝑆𝑠𝑢𝑏 ← Subsystem formed by the selected 𝜇 equations;

5 until;
6 The number of distinct variables in 𝑆𝑠𝑢𝑏 ≤ 𝑣;

7 𝑆 ← Collection of all index sets of variables associated with the 𝜇 equations in 𝑆𝑠𝑢𝑏;

8 Compute partition on 𝑆 using equivalence relation 𝜎;

9 𝐶1 ← Largest equivalence class;

10 𝑆′
𝑠𝑢𝑏 ← Collection of equations corresponding to 𝐶1;

11 𝜇′ = |𝑆′
𝑠𝑢𝑏|, 𝑣′ =

⃒⃒⃒⋃︀
𝐴∈𝑆′

𝑠𝑢𝑏
𝐴
⃒⃒⃒
;

12 if 3𝑣
′+𝜇′ ≤𝑀𝜇′

then
13 return 𝑆′

𝑠𝑢𝑏;

14 until;
15 A Good Subsystem is found;

The time complexity of the above algorithm is entirely dependent on finding a subsystem with at most 𝑣 variables and

𝜇 equations. This is because we will select 𝑣 and 𝜇 such that the condition 3𝑣+𝜇 ≤ 𝑀𝜇 holds. This condition enhances

the overlap between the equations, which suggests a high probability that the refined subsystem with 𝑣′ variables and 𝜇′

equations will also satisfy the condition 3𝑣
′+𝜇′ ≤𝑀𝜇′

.

V. ESTIMATING NUMBER OF VARIABLES IN 𝛾 EQUATIONS FROM THE SUBSYSTEM

In the worst-case scenario, let’s consider a subsystem with exactly 𝑣 variables and 𝜇 equations. We aim to determine the

expected number of variables present in 𝛾 equations from this subsystem. We can translate our problem into the following:

We are considering 𝜇 subsets 𝐴0, 𝐴1, . . . , 𝐴𝜇−1 of the set [𝑛], where each subset consists of 𝑘 elements. The task is to

find the expected size of the union
⋃︀𝛾−1

𝑖=0 𝐴𝑖, given that the total number of distinct elements in the union of all 𝜇 subsets,⋃︀𝜇−1
𝑖=0 𝐴𝑖, is equal to 𝑣. This can be expressed mathematically as

E

(︃⃒⃒⃒⃒
⃒
𝛾−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ |
⃒⃒⃒⃒
⃒
𝜇−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ = 𝑣

)︃
.

To compute this expectation, we need to evaluate the conditional probability

P

(︃⃒⃒⃒⃒
⃒
𝛾−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ = ℓ |

⃒⃒⃒⃒
⃒
𝜇−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ = 𝑣

)︃
for all possible sizes ℓ. According to Bayes’ theorem, we can express this conditional probability as

P

(︃⃒⃒⃒⃒
⃒
𝛾−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ = ℓ |

⃒⃒⃒⃒
⃒
𝜇−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ = 𝑣

)︃
=

P
(︁⃒⃒⃒⋃︀𝜇−1

𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑣 |

⃒⃒⃒⋃︀𝛾−1
𝑖=0 𝐴𝑖

⃒⃒⃒
= ℓ
)︁
· P
(︁
|
⋃︀𝛾−1

𝑖=0 𝐴𝑖| = ℓ
)︁

∑︀
𝑗 P
(︁⃒⃒⃒⋃︀𝜇−1

𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑣 |

⃒⃒⃒⋃︀𝛾−1
𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑗
)︁
· P
(︁
|
⋃︀𝛾−1

𝑖=0 𝐴𝑖| = 𝑗
)︁ .

To find P
(︁
|
⋃︀𝛾−1

𝑖=0 𝐴𝑖| = 𝑗
)︁

, we need to consider how the elements are drawn from a total of 𝑛 distinct items when

9

selecting 𝑘 items for each of the 𝛾 subsets. The probability of obtaining exactly 𝑗 distinct outcomes can be modeled using

the Hypergeometric Distribution, which is appropriate for situations where we are sampling without replacement. This

distribution provides the necessary framework to calculate the likelihood of achieving various distinct counts after 𝛾 draws.

When 𝛾 = 1, the calculation becomes simpler because there is only one subset to consider. For this case,

P

(︃⃒⃒⃒⃒
⃒
𝛾−1⋃︁
𝑖=0

𝐴𝑖

⃒⃒⃒⃒
⃒ = 𝑗

)︃
= P(|𝐴0| = 𝑗) =

⎧⎨⎩1, if 𝑗 = 𝑘,

0, otherwise.

To efficiently track the probabilities of different union sizes after 𝛾 draws, we introduce an array denoted as Λ𝛾 , which

has a size of 𝑛 such that Λ𝛾 [𝑗] = P
(︁
|
⋃︀𝛾−1

𝑖=0 𝐴𝑖| = 𝑗
)︁

for each 𝑗 from 1 to 𝑛. This array serves as a compact representation

of the probabilities associated with each possible size of the union
⋃︀𝛾−1

𝑖=0 𝐴𝑖.

We begin by initializing the array Λ𝛾 to represent the state after a single draw. Since the first subset contains exactly 𝑘

elements, so we have 𝑘 initial elements and thus we set Λ𝛾 [𝑘] = 1, indicating that after one draw, the size of the union is

exactly 𝑘. All other values in the array are initially set to zero.

The process then iterates for each of the additional 𝛾 − 1 draws. Each iteration updates Λ𝛾 to reflect the new possible

sizes of the union after adding another subset. Let us assume that, after the 𝑖𝑡ℎ iteration, the size of 𝐴0 ∪𝐴1 ∪ · · · ∪𝐴𝑖 is 𝑗.

Then we calculate the probability of reaching all possible new sizes 𝑗1 after adding the next subset 𝐴𝑖+1. The probability of

transitioning from a union of size 𝑗 to size 𝑗1 is computed using Hypergeometric Distribution and update the probabilities

stored in Λ𝛾 . This process repeats for each subsequent draw, updating the array Λ𝛾 to reflect the distribution of possible

union sizes after each subset is added. When all 𝛾 draws are completed, the final array Λ𝛾 contains the probabilities for all

possible sizes of the union
⋃︀𝛾−1

𝑖=0 𝐴𝑖.

Once the array Λ𝛾 has been computed for the first 𝛾 draws, the next step involves calculating the probability distribution

for the size of
⋃︀𝜇−1

𝑖=0 𝐴𝑖, conditioned on the size of the union
⋃︀𝛾−1

𝑖=0 𝐴𝑖. This is done by building a matrix ℳ, where each

row represents the possible sizes of the union
⋃︀𝛾−1

𝑖=0 𝐴𝑖, and each column represents the possible sizes of the union
⋃︀𝜇−1

𝑖=0 𝐴𝑖.

For each possible size 𝑗 of
⋃︀𝛾−1

𝑖=0 𝐴𝑖, we compute the distribution of union sizes
⋃︀𝜇−1

𝑖=0 𝐴𝑖 by invoking the rest 𝜇 − 𝛾

draws with an initial size of 𝑗. This creates a probability distribution for how the union can grow from size 𝑗 to different

sizes after the remaining 𝜇− 𝛾 subsets are added. The result is stored in the 𝑗𝑡ℎ row of the matrix ℳ.

Once the matrixℳ is constructed, we focus on the 𝑣𝑡ℎ column, which contains the probabilities of obtaining |
⋃︀𝜇−1

𝑖=0 𝐴𝑖| =
𝑣, for each possible initial size of

⋃︀𝛾−1
𝑖=0 𝐴𝑖, that is ℳ[𝑗][𝑣] = P

(︁⃒⃒⃒⋃︀𝜇−1
𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑣 |

⃒⃒⃒⋃︀𝛾−1
𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑗
)︁

for all 𝑗 = 1, 2, · · · , 𝑛.

Utilizing Bayes’ theorem, we can now compute P
(︁⃒⃒⃒⋃︀𝛾−1

𝑖=0 𝐴𝑖

⃒⃒⃒
= ℓ |

⃒⃒⃒⋃︀𝜇−1
𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑣
)︁

for all possible size ℓ and consequently

we can compute the expected size of
⋃︀𝛾−1

𝑖=0 𝐴𝑖 when it is given that
⃒⃒⃒⋃︀𝜇−1

𝑖=0 𝐴𝑖

⃒⃒⃒
= 𝑣.

VI. OUR ALGORITHM TO SOLVE TERNARY SLWE

Case-1: Sparsity is less than or equal to the threshold limit
Consider an instance of the ternary sLWE problem with dimension 𝑛, sample complexity 𝑚, and a sparsity parameter 𝑘 that

is less than or equal to the threshold limit 𝛿 for this instance. In this case, we will select 𝜇 equations from the samples such

that they involve all the variables of the secret vector s. This can be done by randomly selecting 𝜇 equations and checking

whether all variables are present.

Once such equations are identified, we solve them individually using Algorithm-2 to recover the secret vector s. Algorithm-

2 efficiently handles a single equation of the form

𝑘−1∑︁
𝑖=0

𝑎𝑖𝑥𝑖 = 𝑏+ 𝑒,

10

where the unknowns 𝑥𝑖 are ternary values in {−1, 0, 1}. This algorithm employs a Meet-in-the-Middle strategy by splitting

the equation into two parts and searching for solutions in smaller spaces. Let ℓ = ⌈𝑘2 ⌉. We first focus on the left half of the

equation, which involves the first ℓ terms:

𝑇left =

{︃(︃
𝑦,

ℓ−1∑︁
𝑖=0

𝑎𝑖𝑦𝑖

)︃
: 𝑦 ∈ {−1, 0, 1}ℓ

}︃
and for the right half of the equation, which involves the remaining 𝑘 − ℓ terms, we compute:

𝑇right =

{︃(︃
𝑦, 𝑏−

𝑘−1∑︁
𝑖=ℓ

𝑎𝑖𝑦𝑖−ℓ

)︃
: 𝑦 ∈ {−1, 0, 1}𝑘−ℓ

}︃
.

Both 𝑇left and 𝑇right are sorted based on the second element of each pair, which is the sum computed for that half of the

equation. The goal is to match pairs of partial solutions from 𝑇left and 𝑇right whose sums differ by a small value, within the

range allowed by the noise 𝑒, that is

𝑧1 − 𝑧2 ∈ {−1, 0, 1},

where 𝑧1 is the sum from 𝑇left and 𝑧2 is the sum from 𝑇right.

Once matching pairs are found, the corresponding vectors 𝑦1 from 𝑇left and 𝑦2 from 𝑇right are concatenated to form a

complete solution vector (𝑦1||𝑦2). This vector is a valid solution for the original equation and stored in the table 𝑇 .

Algorithm 2: Solve

Input: An equation
∑︀𝑘−1

𝑖=0 𝑎𝑖𝑥𝑖 = 𝑏+ 𝑒

Output: A table consisting of solutions for the given equation

1 𝑇 ← ∅;

2 ℓ←
⌈︀
𝑘
2

⌉︀
// Initialize empty table and half-length

3 𝑇left ← {(𝑦,
∑︀ℓ−1

𝑖=0 𝑎𝑖𝑦𝑖) | 𝑦 ∈ {−1, 0, 1}ℓ} // Left partial sums

4 𝑇right ← {(𝑦, 𝑏−
∑︀𝑘−1

𝑖=ℓ 𝑎𝑖𝑦𝑖−ℓ) | 𝑦 ∈ {−1, 0, 1}𝑘−ℓ} // Right partial sums

5 Sort 𝑇left and 𝑇right by their last coordinate;

6 foreach (𝑦1, 𝑧1) ∈ 𝑇left and (𝑦2, 𝑧2) ∈ 𝑇right do
7 if 𝑧1 − 𝑧2 ∈ {−1, 0, 1} then
8 𝑇 ← (𝑦1 ‖ 𝑦2) // Concatenate solutions

9 return 𝑇 ;

Case-2: Sparsity is greater than threshold limit
In this case, first we select optimal parameters 𝑣 and 𝜇 and then we begin by obtaining a Good Subsystem that consists of

at most 𝑣 variables and 𝜇 equations. This subsystem forms the core of our combinatorial approach to solving the ternary

k-sLWE problem.

To efficiently manage the solution space of the selected subsystem, we organize the solutions of the 𝜇 equations into two

primary tables. These tables facilitate a structured merging process that progressively narrows down the possible solutions.

To construct the first table 𝑇1, we focus on the first ⌈𝜇/2⌉ equations. For each equation, say the 𝑖𝑡ℎ equation (𝑖 ∈ [⌈𝜇/2⌉])
we construct a table 𝑇𝐴𝐵𝑖 that contains all its solutions using Algorithm-2.

Next we will merge all these tables using Algorithm-3. The MergeTable algorithm combines solutions from ⌈𝜇/2⌉
equations into a single table by identifying and merging matching solutions based on their shared variables.

The algorithm starts by taking the first table 𝑇𝐴𝐵1 as the initial table 𝑇1, and the variables involved in first equation are

11

Combinatorial Key Search on Ternary sLWE

. . .

...

T1 = TAB1 TAB2 T2 = TAB
′
1TAB

′
2

T1 TAB3 T2TAB
′
3

T1
TAB4 TAB

′
4

T2

T1
T2

Solution

stored in a variable set called ‘var’. For every subsequent equation (starting from the second one), the following steps are

performed:

First, the common variables between the current set of variables (‘var’) and the variables of the current equation are

identified. These common variables are important because solutions from different tables can only be merged if they agree

on the values of these variables. Next, both the current table 𝑇1 and the solution table 𝑇𝐴𝐵𝑖 for the new equation are sorted

according to the common variables. Sorting ensures that we can efficiently compare solutions by aligning them based on

these shared variables. Then, the algorithm checks each pair of elements 𝑋 from 𝑇1 and 𝑌 from 𝑇𝐴𝐵𝑖. If the solutions

for the common variables match, the two solutions are merged, and the combined solution is added to a new temporary

table, ‘Tab’. Once all pairs of solutions have been checked, the variable set ‘var’ is updated to include the variables of the

current equation, and the temporary table ‘Tab’ replaces the current table 𝑇1. The algorithm returns the final table 𝑇1, which

contains solutions consistent across all ⌈𝜇/2⌉ equations, and the corresponding set of variables ‘var’.

A similar procedure is followed for the second set of equations, which constitutes the last ⌊𝜇/2⌋ equations, to construct

table 𝑇2. After obtaining both tables, 𝑇1 and 𝑇2, we compare and merge their solutions based on the common variables

between them.

At this stage, in Algorithm-4 we perform another merging step, where the elements of 𝑇1 and 𝑇2 are sorted according

to the values of their common variables. For each pair of elements from 𝑇1 and 𝑇2, if they share the same values for

these variables, the solutions are merged into a final table 𝑇 . If multiple solutions remain in 𝑇 , further intersections with

previously stored solutions (in the set 𝑆𝑇𝑂𝑅𝐸) are performed. If the resulting table 𝑇 contains exactly one solution after the

intersection, the corresponding values of the secret vector s are extracted. In the case where 𝑇 contains multiple solutions,

12

these are added to the set 𝑆𝑇𝑂𝑅𝐸 for future intersections. The subsystem equations are then removed from the sample,

and the process repeats until the number of unrecovered variables is less than or equal to the threshold limit 𝛿.

Finally, we iteratively solve for the remaining unrecovered variables by substituting the known values into the remaining

equations and solving each equation independently. This process continues until the entire secret vector s is recovered.

Algorithm 3: MergeTable
Input: Collection of equations (𝒞)
Output: A table of solutions corresponding to equations in (𝒞)
// Extract variables and solve each equation

1 foreach equation in (𝒞) do
2 var𝑖 ← variables in the equation;
3 𝑇𝐴𝐵𝑖 ← Solve(equation);

// Initialize the solution table
4 𝑇 ← 𝑇𝐴𝐵1, var ← var1;
// Merge solutions from all equations

5 for 𝑖 ≥ 2 do
6 Tab ← ∅;
7 CommonVar ← var ∩ var𝑖;
8 Sort 𝑇 and 𝑇𝐴𝐵𝑖 with respect to the coordinates of CommonVar;
9 foreach 𝑋 ∈ 𝑇 and 𝑌 ∈ 𝑇𝐴𝐵𝑖 do

10 if 𝑋[CommonVar] = 𝑌 [CommonVar]) then
11 Tab ← Merge(𝑋,𝑌);

// Update the set of variables and solution table
12 var ← var ∪ var𝑖;
13 𝑇 ← Tab;

14 return 𝑇, var;

VI-A Correctness and Complexity Analysis

Case-1: Sparsity is less than or equal to the threshold limit
The memory complexity of Algorithm-2 is 𝒪(max{|𝑇left|, |𝑇right|}), which evaluates to 𝒪

(︁
3⌈

𝑘
2 ⌉
)︁

. The time complexity of

Algorithm-2 is determined by the sorting of the tables 𝑇left and 𝑇right. Therefore, the time complexity of Algorithm-2 is

𝒪
(︁

𝑘
2 · 3

⌈ 𝑘
2 ⌉
)︁

.

Since there are 𝜇 equations, Algorithm-2 must be repeated 𝜇 times. Thus, the overall time complexity for the entire

process becomes 𝒪
(︁

𝜇𝑘
2 · 3

⌈ 𝑘
2 ⌉
)︁

. Also, the probability of involving all variables in 𝜇 equations can be approximated using

the Normal Distribution, with the mean and variance as calculated in Section-IV. Let this probability be denoted as 𝑝.

Therefore, solving the instance requires finding 𝜇 equations that involve all variables and solving those equations, resulting

in an overall time complexity of 𝒪
(︁
max{𝜇𝑘2 · 3

⌈ 𝑘
2 ⌉, 1

𝑝}
)︁

.

Furthermore, to achieve optimal time complexity, we select an optimal value of 𝜇 by imposing the following condition:

𝜇𝑘

2
· 3⌈ 𝑘

2 ⌉ ≈ 1

𝑝
.

Case-2: Sparsity is greater than the threshold limit
The overall time complexity of the procedure is primarily determined by two factors: the search for a subsystem containing

at most 𝑣 variables and 𝜇 equations, and the efficiency of the MergeTable algorithm.

We have previously discussed in Section-IV the probability of locating such a subsystem, let us denote this probability

as Prssy. Therefore, if we randomly select 𝜇 equations from a sample of size 𝑚, the expected number of attempts required

to successfully find one subsystem with at most 𝑣 variables and 𝜇 equations can be expressed as:

13

Algorithm 4: Algorithm for Solving Ternary 𝑘-sLWE
Input: (A,b) ∈ Z𝑚×𝑛

𝑀 × Z𝑚
𝑀 , sparsity 𝑘 ∈ N

Output: Ternary vector s ∈ Z𝑛
𝑀 such that e = As− b mod 𝑀 is ternary

1 Choose optimal parameters 𝑣 and 𝜇 for subsystem;
2 Compute threshold limit 𝛿 as the largest integer such that 3𝛿+1

𝑀 ≤ 1;
3 Initialize empty set: 𝑆𝑇𝑂𝑅𝐸 ← ∅;
4 repeat

◁ Extract a subsystem and process it
5 GetSubsystem(𝑣, 𝜇);
6 Update values of recovered variables;
7 𝑇1, var1 ← MergeTable(first ⌈𝜇/2⌉ equations);
8 𝑇2, var2 ← MergeTable(last ⌊𝜇/2⌋ equations);
9 Initialize empty set: 𝑇 ← ∅;

10 CommonVar ← var1 ∩ var2;
◁ Sort tables by shared variables

11 Sort 𝑇1 and 𝑇2 according to CommonVar;
12 foreach 𝑋 ∈ 𝑇1 and 𝑌 ∈ 𝑇2 do
13 if 𝑋[CommonVar] = 𝑌 [CommonVar] then
14 𝑇 ← Merge(𝑋,𝑌);

◁ Handle multiple solutions if necessary
15 if size of 𝑇 > 1 then
16 Perform intersection with elements in 𝑆𝑇𝑂𝑅𝐸 sharing variables with 𝑇 ;

17 if size of 𝑇 = 1 after intersection then
18 Collect values of the secret vector coordinates s;

19 else
20 Insert elements into 𝑆𝑇𝑂𝑅𝐸;

21 Remove the equations of the subsystem from the sample;
22 until number of unrecovered variables ≤ 𝛿;

◁ Solve any remaining unrecovered variables
23 repeat
24 Find an equation EQN involving unrecovered variables;
25 Substitute values of recovered variables in EQN;
26 Solve(EQN);
27 Remove EQN from sample;
28 until all variables are recovered;
29 return secret vector s;

𝒯find = 𝒪
(︂

1

Prssy

)︂
.

Additionally, it is very crucial to analyze the constraints to find a subsystem:

∙ Uniqueness of Solutions: For a subsystem consisting of at most 𝑣 variables and 𝜇 equations, the total number of

variables including the error terms is 𝑣 + 𝜇. This indicates that the size of the search space for ternary solutions and

ternary errors is 3𝑣+𝜇. We can examine the probability that a randomly selected solution from this search space satisfies

all 𝜇 equations simultaneously. In the ring Z𝑀 , each arbitrary element from the search space will satisfy all 𝜇 equations

with a probability of:

1

𝑀𝜇
.

As a result, the expected number of valid solutions for the subsystem can be calculated as follows:

14

Expected Number of Solutions =
3𝑣+𝜇

𝑀𝜇
.

To ensure that the subsystem has a unique solution, we need to satisfy the following condition:

3𝑣+𝜇 ≤𝑀𝜇.

From this inequality, we can derive a formula for 𝜇:

𝜇 ≥ 𝑣 log(3)

log(𝑀)− log(3)
.

This derived relationship serves an essential purpose: it quantifies how the number of equations 𝜇 must scale with

respect to the number of variables 𝑣 in the subsystem.

∙ Existence of the Subsystem: We can choose 𝜇 equations from a sample of size 𝑚 in
(︀
𝑚
𝜇

)︀
different ways. This

combinatorial expression represents the number of possible combinations of 𝜇 equations that can be selected from the

total available 𝑚 equations. Each selection offers a unique set of equations that may or may not lead to the desired

subsystem.

To find a subsystem containing at most 𝑣 variables and 𝜇 equations, we need to repeat the selection process 𝒯find times.

Each iteration corresponds to a new attempt at identifying a valid subsystem based on the chosen equations. Given the

nature of the problem, this repeated selection is essential for increasing our chances of success in locating a suitable

subsystem that satisfies the constraints of having at most 𝑣 variables and 𝜇 equations.

To ensure that we can reliably find such a subsystem within the available sample, we impose the following constraint:

𝒯find ≤
(︂
𝑚

𝜇

)︂
.

This inequality indicates that the number of attempts 𝒯find should not exceed the total number of ways to choose 𝜇

equations from 𝑚 equations.

Now, let us analyze the time and memory complexity of the MergeTable algorithm. The MergeTable algorithm processes

a collection of equations, consider first ⌈𝜇2 ⌉ equations, to generate a table of solutions corresponding to those equations.

Below, we break down the time and memory complexities involved in this process.

Memory Complexity: During 𝑖𝑡ℎ iteration of the loop, the algorithm constructs a table 𝑇 𝑖 that contains the solutions for

the first 𝑖 equations. Let us denote the size of this table as 𝒯𝑖. The memory required for the algorithm is determined by the

largest table created throughout the iterations. Thus, the overall memory complexity is expressed as:

𝒪(max
𝑖
{𝒯𝑖}).

Time Complexity for Table Construction: After the initial tables 𝑇𝐴𝐵𝑖s are constructed, the algorithm merges these

tables based on the common variables between them. To facilitate this merging in the 𝑖𝑡ℎ iteration, the algorithm needs to

sort the current table with size 𝒯𝑖 and the initial table 𝑇𝐴𝐵𝑖 with respect to their common variables. The sorting process

in every iteration incurs a time complexity of:

𝒪(log(max
𝑖
{𝒯𝑖}) ·max

𝑖
{𝒯𝑖}).

The nested loop that merges the tables involves checking for common variable values and merging pairs of solutions

(𝑋,𝑌) when their common variable values match. The time complexity for this merging process in the 𝑖𝑡ℎ iteration depends

15

on max{𝒯𝑖, 𝒯𝑖+1}. Therefore, the total time complexity of the algorithm MergeTable is

𝒪(log(max
𝑖
{𝒯𝑖}) ·max

𝑖
{𝒯𝑖}).

Now we will find the expected value 𝒯𝑖 that is the expected size of the table that consists the solutions of first 𝑖 equations.

If those 𝑖 equations involve 𝜈 number of variables then the expected value of 𝒯𝑖 will be 3𝜈+𝑖

𝑀𝑖 . Therefore, it suffices to

compute the expected value for 𝜈, which can be derived using the results from Section-V.

Thus, the time complexity for one iteration that is finding a subsystem and solving that subsystem is 𝒪(max{log(max𝑖 𝒯𝑖)·
max𝑖 𝒯𝑖, 𝒯find}), while the memory complexity is 𝒪(max𝑖 𝒯𝑖). To determine the optimal complexity, we introduce an

additional constraint on 𝑣 and 𝜇, such that 𝒯find ≈ log(max𝑖 𝒯𝑖) ·max𝑖 𝒯𝑖.
Let us assume that we repeat the process 𝑟 times, and let 𝑉𝑖 represent the set of variables in the subsystem corresponding

to the 𝑖𝑡ℎ iteration. The expected size of ∪𝑟𝑖=1𝑉𝑖 is given by 𝑛 [1− (1− 𝑣/𝑛)𝑟]. We will terminate the procedure when

the number of remaining variables falls below the threshold limit 𝛿. Therefore, we need to find the minimum 𝑟 such that

𝑛− 𝑛 [1− (1− 𝑣/𝑛)𝑟] ≤ 𝛿, or equivalently, 𝑛(1− 𝑣/𝑛)𝑟 ≤ 𝛿.

Hence, the overall time complexity for solving a ternary sLWE instance is 𝒪(𝑟 ·max{log(max𝑖 𝒯𝑖) ·max𝑖 𝒯𝑖, 𝒯find}) and

the memory complexity is 𝒪(max𝑖 𝒯𝑖).

VII. OUR RESULT

Table I
RECOMMENDED DIMENSIONS FOR SLWE WITH SECURITY GUARANTEES EQUIVALENT TO LWE WITH DIMENSION 1024

Sparsity Parameter 𝑘

Number of Samples 𝑚
213 217 221

20 1218 1425 1656

30 1143 1265 1395

40 1110 1195 1285

50 1090 1158 1234

The authors claim that the recommended parameters with modulus 264, 232 or 216 provide security equivalent to LWE

with a dimension of 1024. However, our analysis, presented in the Table-II, Table-III and Table-IV, reveals significant

vulnerabilities in ternary sLWE using the parameters in Table-I.

When the modulus is set to 264, we found that the secret key can be recovered in a reasonable timeframe, pointing to

a serious security flaw. Moreover, in many configurations with moduli of 232 and 216, our results indicate a significant

reduction in the security margin, although a number of instances would resist our analysis, if a 128-bit security level is

targeted. Our results raise important concerns about the overall strength of the system under these settings, suggesting that

the actual security may be considerably weaker than expected, which aligns with the developers’ concerns.

VIII. EXPERIMENTAL VERIFICATION

We present a proof-of-concept attack to validate the effectiveness of our technique. To ensure efficiency, we select small

parameters for our sLWE instance. Specifically, we use a dimension of 𝑛 = 200, a sparsity parameter 𝑘 = 14, a sample

complexity of 𝑚 = 28, and a modulus 𝑀 = 218. With these parameters, we construct an instance of ternary sLWE.

To tackle this instance, we define a subsystem with 60 variables and 6 equations. The theoretical expected number of

variables in 6 equations is 70.6, with a variance of 7.9, which can be derived from the formulas in Section-IV. Using a

16

Table II
SUMMARY OF MEMORY AND TIME COMPLEXITY RELATIVE TO PARAMETERS (𝑣, 𝜇) FOR THE SUBSYSTEM WITH MODULUS 264

𝑘 𝑚 = 213 𝑚 = 217 𝑚 = 221

𝑛 𝑣 𝜇
Time
(bits)

Memory
(bits) 𝑛 𝑣 𝜇

Time
(bits)

Memory
(bits) 𝑛 𝑣 𝜇

Time
(bits)

Memory
(bits)

20 1218 20 1 28 16 1425 20 1 28 16 1656 20 1 29 16

30 1143 30 1 35 24 1265 30 1 36 24 1395 30 1 36 24

40 1110 74 2 43 32 1195 74 2 43 32 1285 74 2 43 32

50 1090 232 6 49 40 1158 235 6 49 40 1234 236 6 49 40

Table III
SUMMARY OF MEMORY AND TIME COMPLEXITY RELATIVE TO PARAMETERS (𝑣, 𝜇) FOR THE SUBSYSTEM WITH MODULUS 232

𝑘 𝑚 = 213 𝑚 = 217 𝑚 = 221

𝑛 𝑣 𝜇
Time
(bits)

Memory
(bits) 𝑛 𝑣 𝜇

Time
(bits)

Memory
(bits) 𝑛 𝑣 𝜇

Time
(bits)

Memory
(bits)

20 1218 38 2 28 16 1425 38 2 28 16 1656 38 2 28 16

30 1143 383 20 94 79 1265 422 22 101 86 1395 460 24 113 93

40 1110 556 29 201 190 1195 594 31 218 203 1285 633 33 236 215

50 1090 670 35 316 304 1158 710 37 334 322 1234 762 40 356 344

Table IV
SUMMARY OF MEMORY AND TIME COMPLEXITY RELATIVE TO PARAMETERS (𝑣, 𝜇) FOR THE SUBSYSTEM WITH MODULUS 216

𝑘 𝑚 = 213 𝑚 = 217 𝑚 = 221

𝑛 𝑣 𝜇
Time
(bits)

Memory
(bits) 𝑛 𝑣 𝜇

Time
(bits)

Memory
(bits) 𝑛 𝑣 𝜇

Time
(bits)

Memory
(bits)

20 1218 636 70 240 229 1425 742 82 285 268 1656 864 95 321 309

30 1143 827 91 479 468 1265 909 100 535 513 1395 1007 111 581 567

40 1110 942 104 686 672 1195 1013 112 746 724 1285 1089 120 786 774

50 1090 1003 111 837 826 1158 1065 118 888 876 1234 1133 125 945 931

Normal Distribution with mean 70.6 and variance 7.9, we estimated the probability of finding a subsystem with at most 60

variables and 6 equations as approximately 1
213 .

From the 28 samples, we arbitrarily select 6 equations and count the total number of variables involved. We conduct this

experiment 3, 812 times, ultimately identifying a subsystem consisting of 60 variables and 6 equations. Next, we divide the 6

equations into two groups: the first three and the last three. The first group contains 37 variables, while the second contains

36. These values align well with the theoretical expectation of 36.53 variables, as discussed in Section-V. We solve each

equation in the first group individually, focusing on the relevant variables, and record the solutions in a table. The size of

the table corresponding to one equation is 52, which aligns closely with the theoretical value of 314+1

218 ≈ 55.

We then merge the tables for the first three equations into a single table (𝑇1), which has a size of 495. This also matches

the theoretical estimate of 337+3

218×3 ≈ 678. We repeat this process for the last three equations, creating a second table (𝑇2)

with a size of 235, which is consistent with the theoretical value of 336+3

218×3 ≈ 225.

Finally, we merge the tables 𝑇1 and 𝑇2 to obtain the solution for all 6 equations, resulting in exactly one solution for the

60 variables. The entire process was repeated 10 times, reducing the number of unrecovered variables to below the threshold

limit of 10.

17

IX. CONCLUSION

In this work, we have conducted the first third-party analysis of the ternary Sparse Learning With Errors (sLWE) problem,

emerging from the recent advancements presented at Crypto 2024. By leveraging a novel combination of subsystem extraction

and Meet-in-the-Middle strategies, we have effectively mounted a combinatorial attack on ternary sLWE instances. Our

theoretical and experimental analyses support the developers’ claims that sLWE, especially in its ternary variant, exhibits

vulnerabilities when used with small secrets. In particular, when the modulus is set to 264, we were able to recover the

secret key within a practical timeframe, demonstrating a clear security weakness. For configurations using smaller moduli

such as 232 and 216, our analysis revealed a further reduction in the security margin, reinforcing the developers’ concerns

regarding the robustness of ternary sLWE under these parameter choices.

These results confirm that sLWE, particularly in the ternary case, is susceptible to attacks when small secrets are employed,

and emphasize the importance of choosing secure parameter sets. Although we focused on ternary secrets and ternary errors,

our methodology can be extended to other scenarios involving small max-norm secrets. Our work provides additional evidence

of the need for cryptographic strengthening in such configurations and serves as a foundation for future efforts to enhance

the security of this problem.

X. REFERENCES

[1] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in STOC, 2005, p. 84–93.

[2] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal, “NTRU prime: Reducing attack surface at low

cost,” in SAC 2017, ser. LNCS, C. Adams and J. Camenisch, Eds. Heidelberg: Springer, 2017, vol. 10719, p. 235–260.

[3] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé,

“Crystals-kyber: a cca-secure module-lattice-based KEM,” in 2018 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE, 2018, p. 353–367.

[4] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in 41st ACM STOC, M. Mitzenmacher, Ed. ACM

Press, 2009, p. 169–178.

[5] V. Lyubashevsky, “Lattice signatures without trapdoors,” in EUROCRYPT 2012, ser. LNCS, D. Pointcheval and

T. Johansson, Eds. Heidelberg: Springer, 2012, vol. 7237, p. 738–755.

[6] C. Peikert, “Public-key cryptosystems from the worst-case shortest vector problem: extended abstract,” in 41st ACM

STOC, M. Mitzenmacher, Ed. ACM Press, 2009, p. 333–342.

[7] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in 37th ACM STOC, H. N. Gabow

and R. Fagin, Eds. ACM Press, 2005, p. 84–93.

[8] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, “Efficient public key encryption based on ideal lattices,” in

ASIACRYPT 2009, ser. LNCS, M. Matsui, Ed. Heidelberg: Springer, 2009, vol. 5912, p. 617–635.

[9] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck, T. Saito, P. Schwabe, W. Whyte, K. Xagawa,

T. Yamakawa, and Z. Zhang, “PQC round-3 candidate: NTRU,” Tech. Rep., 2020, accessed: 2022-05-20.

[10] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice signatures and bimodal gaussians,” in Annual

Cryptology Conference. Springer, 2013, p. 40–56.

[11] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, “Practical lattice-based cryptography: A signature scheme for

embedded systems,” in International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2012,

p. 530–547.

18

[12] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarhoven, R. Rietman, M.-J. O. Saarinen, L. Tolhuizen,

and Z. Zhang, “Round5: Compact and fast post-quantum public-key encryption,” in International Conference on Post-

Quantum Cryptography. Springer, 2019, p. 83–102.

[13] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Efficient bootstrapping for approximate homo-

morphic encryption with non-sparse keys,” in Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, 2021, p. 587–617.

[14] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision bootstrapping of RNS-CKKS homomorphic

encryption using optimal minimax polynomial approximation and inverse sine function,” in Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2021, p. 618–647.

[15] Y. Lee, J.-W. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and H. Kang, “High-precision bootstrapping for approximate

homomorphic encryption by error variance minimization,” in Advances in Cryptology–EUROCRYPT 2022: 41st Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May

30–June 3, 2022, Proceedings, Part I. Springer, 2022, p. 551–580.

[16] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem,” in Algorithmic Number

Theory, J. P. Buhler, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, p. 267–288.

[17] A. May, “How to meet ternary LWE keys,” in Advances in Cryptology – CRYPTO 2021, T. Malkin and C. Peikert,

Eds. Cham: Springer International Publishing, 2021, p. 701–731.

[18] N. Howgrave-Graham, “A hybrid lattice-reduction and meet-in-the-middle attack against NTRU,” in Advances in

Cryptology - CRYPTO 2007, A. Menezes, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, p. 150–169.

[19] A. Jain, H. Lin, and S. Saha, “A systematic study of sparse LWE,” in Advances in Cryptology – CRYPTO 2024, ser.

Lecture Notes in Computer Science, L. Reyzin and D. Stebila, Eds. Cham: Springer, 2024, vol. 14922, p. to appear.

Abul Kalam received the M.Sc degree in Mathematics from Visva Bharati University, India, in 2022. He is currently a

Ph.D student, holding the post of Junior Research Fellow at Indian Institute of Technology Madras under the supervision

of Prof. Santanu Sarkar. His research interests include cryptology and security.

Santanu Sarkar received the PhD degree in mathematics from the Indian Statistical Institute, Kolkata, India, in 2011. He

is currently professor at IIT Madras, India. He was a guest researcher at the National Institute of Standards and Technology

(NIST), Gaithersburg, Maryland. His research interests include cryptology and number theory.

Willi Meier received the Diploma degree in mathematics and the doctoral degree in mathematics from the Swiss Federal

Institute of Technology Zurich (ETHZ), Zürich, Switzerland, in 1972 and 1975, respectively. He has been a Guest Researcher

with Oxford University and Heidelberg University; and a Research Assistant with the University of Siegen, Germany.

Since 1985, he has been a Professor of mathematics and computer science with the University of Applied Sciences and

Arts Northwestern Switzerland, Windisch, Switzerland. His current interests include analysis and design of cryptographic

primitives like stream ciphers and hash functions.

	I Introduction
	II Mathematical Preliminaries and Notation
	II-A Notation
	II-B Sparse Learning With Errors

	III Ternary Variant of sLWE
	IV Extracting an Effective Subsystem for Secret Recovery
	V Estimating Number of Variables in Equations from the Subsystem
	VI Our Algorithm To Solve Ternary sLWE
	VI-A Correctness and Complexity Analysis

	VII Our Result
	VIII Experimental verification
	IX Conclusion
	X References

