
AQuery Reconstruction Attack on the Chase-Shen
Substring-Searchable Symmetric Encryption Scheme

Zichen Gui
University of Georgia
zichen.gui@uga.edu

Kenneth G. Paterson
ETH Zurich

kenny.paterson@inf.ethz.ch

Sikhar Patranabis
IBM Research India

sikhar.patranabis@ibm.com

ABSTRACT
Searchable symmetric encryption (SSE) enables queries over sym-
metrically encrypted databases. To achieve practical efficiency, SSE
schemes incur a certain amount of leakage; however, this leads to
the possibility of leakage cryptanalysis, i.e., cryptanalytic attacks
that exploit the leakage from the target SSE scheme to subvert
its data and query privacy guarantees. Leakage cryptanalysis has
been widely studied in the context of SSE schemes supporting
either keyword queries or range queries, often with devastating
consequences. However, little or no attention has been paid to
cryptanalysing substring-SSE schemes, i.e., SSE schemes supporting
arbitrary substring queries over encrypted data. This is despite their
relevance to many real-world applications, e.g., in the context of
securely querying outsourced genomic databases. In particular, the
first ever substring-SSE scheme, proposed nearly a decade ago by
Chase and Shen (PoPETS ’15), has not been cryptanalysed to date.

In this paper, we present the first leakage cryptanalysis of the
substring-SSE scheme of Chase and Shen. We propose a novel
inference-based query reconstruction attack that: (i) exploits a re-
duced version of the actual leakage profile of their scheme, and (ii)
assumes a weaker attack model as compared to the one in which
Chase and Shen originally claimed security. We implement our
attack and experimentally validate its success rate and efficiency
over two real-world datasets. Our attack achieves high query re-
construction rate with practical efficiency, and scales smoothly to
large datasets containing 100, 000 strings.

To the best of our knowledge, ours is the first and only query
reconstruction attack on (and the first systematic leakage crypt-
analysis of) any substring-SSE scheme till date.

1 INTRODUCTION

Searchable Symmetric Encryption. Searchable symmetric en-
cryption (SSE) [10, 13, 15, 26, 60] is a widely studied cryptographic
primitive that supports efficient queries over symmetrically en-
crypted databases. SSE is a key enabler for secure storage-as-a-
service, wherein clients can securely outsource the storage and
processing of large databases to (potentially untrusted) third party
servers. The goal of SSE is to enable efficient query processing
directly over the encrypted database, while ensuring client privacy
by minimizing information “leakage” to the server.

The vast majority of SSE schemes in the literature support single
keyword queries (i.e., given an encrypted document collection in

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
© 2024 Copyright held by the owner/author(s).

which each document is tagged with keywords, it is possible to find
the set of all documents associated with a target keyword). Exam-
ples include [6, 7, 11–13, 15, 26, 43, 60]. SSE schemes supporting a
richer class of Boolean queries over collections of keywords have
also been studied [9, 10, 40, 50, 56, 58]. Other works have investi-
gated SSE schemes for range queries [17–20], as well as for join and
group-by queries over encrypted relational databases [17, 39, 41].

Substring-SSE. In this paper, we focus on applications where the
client needs to query a database for arbitrary substrings, as opposed
to predetermined keywords. Concretely, substring-searchable sym-
metric encryption (substring-SSE) aims to support the following
query functionality: given an encrypted string (where the string is
a sequence of characters picked from some fixed alphabet), return
the positions of all occurrences of a target substring within this
string.

As a motivating use-case, suppose that a medical research lab
wishes to store the genomic data of subjects on a cloud server,
while allowing researchers to issue substring queries to detect the
existence of particular DNA sequences (e.g., to trace the existence of
cancer marker sequences, or to determine the rarity of a potentially
useful probe sequence). For such an application, it is essential to
ensure the privacy of the database as well as the queries. An SSE
scheme that supports arbitrary substring queries would offer a
solution in this case.

The naïve approach of re-purposing SSE for single keyword
search to construct substring-SSE (where each substring of a given
string is modeled as a separate keyword) is inefficient in practice:
for a length 𝑛 string, the number of keywords required would be
𝑂 (𝑛2). Achieving practically efficient substring-SSE is much more
challenging. Indeed, since the seminal work in this direction by
Chase and Shen in PoPETS’15 [14], only a handful of SSE schemes
for substring search have been proposed [20, 36, 51]. Of these,
the solutions proposed in [14] and [51] are based on specialized
encrypted data structures, while [20] and [36] model substring
queries as special cases of conjunctive keyword queries and range
queries, respectively, and obtain SSE schemes for substring search
by adapting SSE schemes for those other types of query.

Leakage in SSE. The term “leakage" is used in the SSE literature
to denote any information that the server learns about either the
database itself or the client’s queries. While optimally private SSE
(with little or no leakage) can be achieved using fully homomorphic
encryption (FHE) [24] and Oblivious RAM (ORAM) [27, 28], these
techniques incur significant computational and/or communication
overheads today, making them impractical at meaningful scale.
Existing SSE designs opt for enhanced performance at the cost
of leaking some information to the server [10, 13, 15]. A typical
security proof for such a scheme establishes, via a simulation-based

https://creativecommons.org/licenses/by/4.0/

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

security model, that the scheme in operation leaks no more than a
certain well-defined leakage pattern.

This approach leaves open the question of whether the leak-
age pattern of a given scheme is acceptable or not in practice.
This calls for an assessment of the real-world impact of that leak-
age, via leakage cryptanalysis. This involves developing concrete
cryptanalytic attacks that exploit the leakage of the SSE scheme to
subvert some security guarantee (such as data or query privacy).
Such attacks are also known as leakage abuse attacks. Starting with
the foundational work of Islam et al. [37], leakage cryptanalysis
has been studied extensively in the context of SSE for keyword
queries [2, 8, 16, 33, 34, 53–55, 59] and SSE for range queries [21, 30–
32, 44–49, 52]. These attacks typically exploit one or more forms
of leakage that commonly occur in SSE schemes, such as : (i) ac-
cess pattern leakage (revealing the set of results matching a given
query), (ii) volume leakage (revealing the number of results match-
ing a given query), (iii) co-occurrence pattern leakage (revealing the
number of common results across a pair of queries), and (iv) search
pattern leakage (revealing whether two queries are identical). Today,
leakage cryptanalysis forms an essential part of the overall security
evaluation of SSE schemes.

Leakage in Substring-SSE. To the best of our knowledge, no prior
work has carried out any leakage cryptanalysis of substring-SSE
schemes. In particular, the seminal paper of Chase and Shen [14]
lacks such an analysis. We note that attempting to cryptanalyze
the leakage from substring queries throws up new challenges that
do not arise in the context of SSE for keyword or range queries.
For example, consider the query equality leakage from keyword
queries. This leakage is essentially “all-or-nothing” – either two
keywords are identical or they are not. This is particularly useful
in many existing attacks that rely on query equality to (informally
speaking) filter the potential set of keywords matching a given
query [2, 8, 34]. However, in the case of substring queries, two
substrings may have varying degrees of overlap in terms of the
number of characters they have in common, which leads to the
possibility of more nuanced, fine-grained query equality leakage,
requiring advanced filtering approaches.

Moreover, unlike in the case of keyword queries, where the set of
potential keywords is fixed a priori (and is typically in the range of
millions for even large real-world document collections), arbitrary
substring queries come from a significantly larger universe (for
example, the number of possible strings of length 5 containing char-
acters from the English alphabet is more than a billion). This limits
the usefulness of previous analysis techniques for SSE schemes.

Given these novel challenges, the lack of prior analysis, and the
central role of such analysis in assessing the real-world security of
SSE schemes, we believe that leakage cryptanalysis of substring-SSE
schemes is a problem deserving of attention.

1.1 Our Contributions
We perform the first leakage cryptanalysis of the seminal substring-
SSE scheme due to Chase and Shen from PoPETS’15 [14] (hence-
forth, the CS scheme). More specifically, we propose a novel query
reconstruction attack against theCS scheme. Our attack only makes
use of a reduced version of the full leakage profile of theCS scheme (as
formally established in [14]), and works in a weaker attack model

as compared to the one in which Chase and Shen originally claimed
their scheme to be secure. We implement our attack and experi-
mentally validate its success rate and practical efficiency over two
real-world datasets – English Wikipedia1 and a genome dataset2
from the National Center for Biotechnology Information (NCBI).

To the best of our knowledge, ours is the first query recovery
attack on (and the first systematic leakage cryptanalysis of) any
substring-SSE scheme. We focus on the CS scheme because it was
the first substring-SSE scheme to be proposed, and notably, has not
been the subject of leakage cryptanalysis over nearly a decade. It
would be interesting to cryptanalyse the leakage of other substring-
SSE schemes [20, 36, 51]; however, we believe that each one would
likely require the development of its own, distinct cryptanalytic
techniques, since they each rely on fundamentally different de-
sign principles and vary widely in their leakage profiles. We leave
(crypt)analyzing these schemes as an interesting open question.

1.2 Technical Overview
We present a detailed technical overview of our contributions below.

Informal Overview of the CS Scheme. We begin with a very
high-level and informal description of the CS scheme, with just
enough detail for a meaningful exposition of our attack approach.
We refer the reader to Section 3 for a more detailed treatment.

As mentioned earlier, the CS scheme is based on suffix trees. A
suffix tree is a data structure that is popularly used to efficiently
perform substring search on non-encrypted data. In a suffix tree-
based representation of a string 𝑠 , the path from the root node
to every other node consists of a sequence of labeled edges that
represents a unique suffix of 𝑠 . Substring search is based on the
following key observation: a string 𝑞 is a substring of 𝑠 if and only if
𝑞 is a prefix of some suffix of 𝑠 . Thus, searching for an occurrence of
𝑞 in 𝑠 reduces to identifying a path from the root to some matching
node for 𝑞 (i.e., a node such that the sequence of labels along the
path from the root to this node matches 𝑞).

Building upon the above idea, the CS scheme uses a combina-
tion of basic symmetric-key cryptographic primitives to enable
an encrypted substring search procedure that, given an encrypted
substring query, allows traversal of select edges in an encrypted
representation of the suffix tree. At a high level, the CS scheme
creates this encrypted representation using a key-value dictionary.
More concretely, each node 𝑢 in the suffix tree is associated with a
pseudorandom key representing the path from the root to 𝑢, and
the associated value encrypts the index for 𝑢. The encrypted ver-
sion of substring search now proceeds as follows: (i) compute the
pseudorandom key for the node matching the query substring 𝑞,
(ii) search the encrypted key-value store for the matching key, and
(iii) if a match is found, retrieve and decrypt the corresponding
index. We reiterate that this is a highly simplified description of
the CS scheme and we are intentionally glossing over many tech-
nical details and optimizations, but should be sufficient to obtain a
high-level overview of our attack approach.

Leakage from the CS Scheme. Our attack relies on three sub-
components of the overall leakage profile of the CS scheme, as

1https://dumps.wikimedia.org/simplewiki/
2https://www.ncbi.nlm.nih.gov/

https://dumps.wikimedia.org/simplewiki/
https://www.ncbi.nlm.nih.gov/

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

established in [14]. We present a simplified and informal summary
of these leakage sub-components (see Section 4 for details): (i)
path length: the length of the path from the root to the matching
node for any queried substring 𝑞 (if such a matching node exists),
(ii) response volume: the number of matching occurrences of any
queried substring 𝑞, and (iii) common prefix length: the length of
the longest common prefix for any pair of queried substrings (𝑞, 𝑞′).

We highlight that the overall leakage profile forCS is significantly
larger than the above sub-components in combination. In fact, as
we discuss in Section 4, a (passive) adversary can derive the above
leakage components directly from just the transcript of messages
exchanged by the client and the server during an execution of the
search protocol of CS. In other words, the attack can be executed
not only by an adversarial server, but any adversarial entity that
can observe the communications between the client and the server.

Overview of Our Attack. We exploit the above leakage sub-
components to design a query recovery attack against the CS
scheme. The core principle of our attack is as follows: we show
how to develop novel statistical models for substring queries based
on the above leakage sub-components from CS and auxiliary data
in the form of an approximate version of the original database. We
then use the resulting models to develop a new inference-style leak-
age cryptanalysis-based attack that targets query reconstruction.
We additionally highlight that our attack assumes an “honest-but-
curious” (passively eavesdropping) server. While this is the most
commonly assumed adversarial model in the broader SSE literature,
the authors of [14] claimed security of CS in the much stronger
“fully malicious server” model. Thus our attack works in a weaker
attack model as compared to the one in which the CS scheme was
originally claimed to be secure. We refer the reader to Section 4 for
a more detailed description of the attack.

Auxiliary Data. Our attack makes use of auxiliary data, that is, addi-
tional data that is assumed to be distributed in the same way as that
in target database. More precisely, we assume that the target data-
base and the auxiliary database are sampled independently from
the same distribution. This constitutes a weaker attack assumption
as compared to “known-data attacks” (e.g. [2, 8, 34, 37]), where
the auxiliary and target databases are assumed to be identical. The
precise sampling strategy used in our experimental evaluation can
be summarized as follows: given a dataset, we set aside half of it for
use as the attack target, i.e. for generating the leakage, while using
sub-samples of the other half to define auxiliary data. In this way,
we effectively use independent samples from the same empirical
distribution to define the target and auxiliary data distributions.
This is akin to the standard approach of separating training data
from test data that is used, for example, in machine learning. The
approach is described in more detail in Section 5.

It could be argued that our approach of splitting the available
data into two sets, one to create the auxiliary distribution, the other
to use in experiments, is too idealised, in that we effectively give
the adversary a known plaintext distribution. While this is true, we
argue that a) the scheme should still hide queries even in this setting,
b) our assumption is weaker than the known plaintext assumption
used in related work [2, 8, 34, 37], and c) it could be relaxed by
using two different (but related) distributions, or by adding noise

to the auxiliary distribution. We leave the exploration of the latter
options to future work.

Attack Idea. The core idea of our attack is to solve an optimization
problem, where the objective function is the formal likelihood of ob-
serving a given assignment of candidate substrings to queries, given
the observed leakage and auxiliary data as prior information. We
then maximize the objective function using simulated annealing;
this corresponds to maximizing the likelihood of the solution. Thus
the simulated annealing, if it works, will produce “good” solutions
in which many candidate substrings in the solution are correctly
assigned to the corresponding queries. Of course, one could also
use any performant optimization technique in place of simulated
annealing. This approach requires careful mathematical analysis to
derive the likelihood function. We build upon prior work on attack-
ing SSE schemes for keyword search using similar approaches (such
as [33]); the core technical foundation of our work is in adapting
such analyses to the leakage from the CS scheme.

Single vs Multiple Strings. The original CS scheme only handles
single strings, and we generalised it to handle multiple strings.
Some of our experimental attacks were mounted in the multi-string
setting. However, we wish to emphasise that our attacks work
equally well in the single- and multi-string settings. In particular,
their performance in the multi-string setting for a collection of
strings whose sum of lengths is equal to 𝐿 would be identical to that
in the single-string setting for a string of length 𝐿. This is because
in the multi-string setting, the scheme first builds one long string
by concatenating all the strings from the collection using a special
symbol to mark the end of each string; however, our attack never
involves substrings containing this symbol.

Attack Implementation.We then show how to efficiently evaluate
this likelihood function on large sets of queries and leakage. This
is particularly challenging since, unlike prior inference-style attack
approaches for recovering keyword queries (such as [16, 33, 54, 55]),
the candidate sets for arbitrary substrings turn out to be orders of
magnitude larger, even for medium-sized databases. To tackle this,
we designed and implemented several computational optimization
and approximation techniques that make our attack highly scalable
with respect to the number of queried substrings, number of can-
didate substrings in the auxiliary information, and the size of our
target dataset. We developed our own implementation of simulated
annealing for speed and flexibility.

Experimental Evaluation. In Section 5, we present extensive
experimental evaluations to validate the practicality of our proposed
attack over English Wikipedia and the NCBI genome dataset. Our
experiments show that our attack achieves high success rate with
reasonable practical efficiency and while scaling to large datasets.
For EnglishWikipedia (100, 000Wikipedia pages, 2, 000 queries), our
attack recovers over 50% of the queries successfully. If we focus on
recovering the characters of the queries instead, our attack achieves
over 70% character recovery rate. The queries in the experiments
above exclude short queries (queries of length 1 or 2). If such queries
are also allowed, the recovery rates reported above increase to 64%
and 80% respectively. For the NCBI genome dataset (similar number
of characters as 100, 000 Wikipedia pages, 2, 000 queries), our attack

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

successfully recovers more than 60% of the queries, with a character
recovery rate also in excess of 60% .

1.3 Related Work
This section presents a detailed discussion of related work.

Additional Substring-SSE Schemes. To the best of our knowl-
edge, the CS scheme from [14] is the only substring-SSE scheme
to rely on suffix trees. There exist only a handful of other sub-
string SSE schemes [20, 36, 51], all of which use very different
techniques as compared to suffix trees, and thus have incomparable
leakage profiles. Concretely, [20] models substring-matching as
conjunctions over n-grams, and uses techniques inspired by SSE
for conjunctive keyword queries [9, 10, 38]. On the other hand, [36]
treats substring-queries as a special case of range queries, and pro-
poses a construction based on order-preserving encryption [3, 4].
Finally, [51] proposes an approach based on encrypted Ferragina-
Manzini indices [22, 23]. The diverse nature of the techniques and
leakage profiles for these schemes makes a universal attack strategy
against all substring-matching schemes impossible. This is unlike
SSE for keyword/range queries, where the vast majority of schemes
share similar leakage-profiles (see [33] for a detailed discussion).

FHE-based Substring-Matching.Certain prior works (such as [5])
have explored the usage of fully-homomorphic encryption (FHE)
based techniques for substring-matching. The motivation for study-
ing SSE and its leakage is that SSE provides significantly more
efficient and scalable alternatives to FHE for specific query classes
over structured encrypted databases, albeit at the cost of some leak-
age to the adversarial server. As a concrete comparison, [20] reports
a query-processing time of 40s for their substring-SSE scheme on a
10TB-sized database, while [5] reports a query-processing time of
40s for their FHE-based substring SSE scheme on a single string of
length 10 with 1080 characters. Since performance is paramount for
real-world applications, studying substring-SSE as an alternative
to generic FHE-based solutions is clearly well-motivated. At the
same time, understanding the impact of leakage from such SSE
schemes is also extremely important. The traditional method for
this is leakage-cryptanalysis, which was not studied in the context
of substring-SSE prior to our work.

Countermeasures to Leakage Cryptanalysis. Recent works
have investigated techniques for suppressing certain kinds of leak-
age (notably, response volume leakage) from SSE schemes for key-
word search [25, 29, 35, 42, 57] and range queries [17]. Since our
attack exploits response volume leakage from the CS scheme, a
natural question to ask is whether one could generically apply vol-
ume leakage suppression to the CS scheme as a countermeasure
against our attack. Unfortunately, this does not work as the volume
leakage that we exploit in our attack is, in fact, crucial to the query
execution methodology of the CS scheme (the leakage arises from a
value stored in each node of the suffix tree that is used to determine
to how the suffix tree is traversed during query execution – see
Section 3 for a more detailed exposition), and it is unclear how the
scheme would even function once this leakage is suppressed. We
leave it as an interesting open question to design countermeasures
against our proposed attack.

2 PRELIMINARIES
In this section, we introduce notations used throughout the paper.
We also formally define substring-SSE. For the sake of completeness,
we first introduce a syntax for plaintext substring matching. We
then present the substring-SSE definition. The definition is in the
single-client, single-server setting, where the server is assumed to
be passively corrupt (i.e., semi-honest). We note that this is the most
widely studied setting in the SSE literature [9, 10, 13, 15].

Plaintext Substring Matching. Databases for plaintext substring
matching are modelled as follows. Let DB = (𝑆1, . . . , 𝑆𝑁) be a
collection of strings (which we refer to as a database) over a shared
alphabet Σ, i.e. 𝑆𝑖 ∈ Σ∗ for all 𝑖 ∈ [1, 𝑁]. A plaintext substring
query Query : Σ∗ × (Σ∗)∗ → {0, 1}∗ takes as input a plaintext
query string 𝑞 ∈ 𝛼∗ and the plaintext database DB = (𝑆1, . . . , 𝑆𝑁),
and outputs a list of pairs of indices ((𝑖𝑘 , 𝑗𝑘))𝑙𝑘=1 such that

𝑆𝑖𝑘 [𝑗𝑘 , (𝑗𝑘 + |𝑞 |)] = 𝑞 ∀𝑘 = 1, . . . , 𝑙 .

We say that Query is correct if Query(DB, 𝑞) returns all matching
indices of 𝑞 in DB for all DB and 𝑞. For simplicity, we write DB(𝑞)
to mean Query(DB, 𝑞).

Syntax of Substring-SSE. A substring-searchable symmetric en-
cryption (substring-SSE) scheme Π is defined by a tuple of three
algorithms Π = (Gen, Setup, EQuery):
• sk ← GenClt (1𝜆) is a probabilistic algorithm run by the
client Clt. It takes as input a security parameter 1𝜆 and
outputs a secret key sk.
• (⊥,EDB) ← [SetupClt (sk,DB), SetupSvr ()] is an interac-
tive protocol between the client Clt and the server Svr. The
client takes as input a secret key sk and a database DB and
the server does not take any input. After the interaction, the
server outputs an encrypted database EDB.
• (((𝑖𝑘 , 𝑗𝑘))𝑙𝑘=1,⊥) ← [EQueryClt (sk, 𝑞),EQuerySvr (EDB)]
is an interactive protocol between the client Clt and the
server Svr. The client takes as input a secret key sk and a
substring query 𝑞 and the server takes as input the encrypted
database EDB. After the interaction, the client obtains a list
of responses ((𝑖𝑘 , 𝑗𝑘))𝑙𝑘=1 and the server obtains no output.

A substring-SSE scheme should satisfy certain correctness and
security properties, as defined below.

Correctness of Substring-SSE.We say that a substring-SSE scheme
Π is correct if EQuery returns the correct substring matching re-
sults. That is, for any databaseDB and any query 𝑞, when executing
the following sequence:

(1) sk← GenClt (1𝜆)
(2) (⊥,EDB) ← [SetupClt (sk,DB), SetupSvr ()]
(3) (((𝑖𝑘 , 𝑗𝑘))𝑙𝑘=1,⊥) ← [EQueryClt (sk, 𝑞),EQuerySvr (EDB)]

we have ((𝑖𝑘 , 𝑗𝑘))𝑙𝑘=1 = Query(DB, 𝑞).

Security of Substring-SSE. We define simulation-based security
of substring-SSE against a semi-honest adversarial server (i.e., the
server follows the specification of the scheme, but tries to learn
information about the underlying plaintext database and queries).
Our definition is in the real-world, ideal-world paradigm, and

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

closely follows the traditional simulation-based security defini-
tions that are widely used in the SSE literature [9, 10, 13, 15]. Let
Π = (Gen, Setup,EQuery) be a substring-SSE scheme. Consider
the following probabilistic experiments where A is a stateful prob-
abilistic polynomial-time (PPT) adversary, S is a PPT simulator,
and L = (LSetup,LEQuery) is a stateful leakage function:
• RealΠ,A (1𝜆): the challenger begins by running GenClt (1𝜆)
to generate a secret key sk. The adversary A outputs a
database DB. The challenger and the adversary A inter-
act to output (⊥,EDB) ← [SetupClt (sk,DB), SetupSvr ()],
where the challenger plays the client andA plays the server.
The adversary A then makes a polynomial number of adap-
tive substringmatching queries: each query involves running
[EQueryClt (sk, 𝑞),EQuerySvr (EDB)] on an adversarially
chosen 𝑞, with the challenger acting as the client Clt andA
acting as the server. Finally, A returns a bit 𝑏 that is output
by the experiment.
• IdealΠ,A,S (1𝜆): The adversary A outputs a database DB.
The simulator S and the adversary A interact to output
(⊥,EDB) ← [S(LSetup (DB)), SetupSvr ()], where S plays
the client and A plays the server. The adversary A then
makes a polynomial number of adaptive substring matching
queries: each query involves running the simulated query
protocol [S(LEQuery (𝑞)), EQuerySvr (EDB)] on an adver-
sarially chosen 𝑞, with the simulator S acting as the client
Clt and A acting as the server. Finally, A returns a bit 𝑏
that is output by the experiment.

We say that a substring-SSE scheme Π is L-secure against adaptive
chosen-query attacks if for every PPT adversary A, there exists a
PPT simulator S such that���Pr[RealΠ,A (1𝜆) = 1] − Pr[IdealΠ,A,S (1𝜆) = 1]

��� ≤ negl(𝜆) .

Inference-style Leakage Cryptanalysis. Note that the above
security definition informally captures the fact that a semi-honest
adversarial server does not learn any information about the client’s
plaintext database and queries beyond what is captured by the
leakage function L = (LSetup,LEQuery). In this paper, we design
query reconstruction attacks where a semi-honest adversary ex-
ploits the leakage function L to recover the client’s queries. Our
attack is an inference attack. More specifically, we assume that the
attacker has access to some auxiliary statistical information about
the underlying plaintext database. Given this statistical information
about the database and the transcript of encrypted query execu-
tions, the semi-honest attacker attempts to infer the underlying
plaintext queries.

Semi-Honest vs Malicious Corruptions.We remark here that
Chase and Shen [14] originally claimed security of their CS scheme
in a strictly stronger model of security for substring-SSE where
the server is allowed to be maliciously corrupt. In the security
definitions above, we only consider semi-honest corruptions of
the server, which is a weaker adversarial model (besides this, the
security definition above is the same as that in [14]). We choose to
present the security definition for substring-SSE in the semi-honest
adversarial model to maintain consistency with our proposed attack
setting, which assumes a semi-honest adversary.

3 THE CS SCHEME AND ITS LEAKAGE
In this section, we present an overview of the first substring-SSE
scheme CS proposed by Chase and Shen [14]. We also present a
discussion on its leakage profile, which we subsequently exploit
for our query reconstruction attack.

The rest of this section is organized as follows. In Section 3.1,
we give a brief introduction to suffix trees, which is the main data
structure underlying theCS scheme. Next, in Section 3.2, we present
a description of the CS scheme. Finally, in Section 3.3, we outline
the leakage of the CS scheme.

3.1 Suffix Trees
In this section, we present an introduction to suffix trees, the pri-
mary data structure used in the CS scheme.

Suffix Tree. Let 𝑆 be a string of length 𝑛. A suffix tree T𝑆 for string
𝑆 is a tree with the following properties:

• The tree has exactly 𝑛 leaves.
• Except for the root, each internal node has at least two chil-
dren.
• Each edge is labelled with a non-empty substring of 𝑆 .
• No two edges with the same starting node share the same
starting character.
• Let N be an internal node or a leaf node of T𝑆 . The string on
the path from the root to node N is defined as the concatena-
tion of strings on the edges from the root to node N. Node
N stores the starting index of the first instance of the string
on the path from the root to node N in 𝑆 .

From now on, we write ind(N) to denote the string index stored in
node N and path(N) to denote the string on the path from the root
to the node N.

Suffix Tree for Multiple Strings. The suffix tree described above
can be generalised to support multiple strings. The resultant data
structure is known as a generalised suffix tree [1]. The main differ-
ence between a suffix tree and a generalised suffix tree is that in
the latter case, the nodes no longer store just the starting indices
of the matches. Instead, the nodes store the string indices (i.e. in
which strings the substring appears) and the starting positions of
the matches. We will still call the content stored in the nodes index
for convenience. Figure 1 gives an example of a generalised suffix
tree for the two strings “hello” and “help”.

Although Chase and Shen [14] only described how to use their
scheme to search over a single string, their scheme can be extended
easily to support searching over multiple strings. In our attack, we
consider the version of their scheme that supports multiple strings,
but our attacks work just as well for the original single-string
version.

Substring Query using Generalised Suffix Trees. We now il-
lustrate how to efficiently perform (plaintext) substring matching
using a generalised suffix tree representing multiple strings. Con-
sider a substring query “ell”. By traversing the suffix tree (Figure 1)
with “ell”, we will end on node N9. Although the node N9 stores
the starting index for the suffix “ello”, the index is also the starting
index of substring “ell” since “ell” is a prefix of “ello”. As a result,

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

Figure 1: The generalised suffix tree for “hello” and “help”. The
nodes in the tree store the index of the first occurrence of the string
from the root node (N1) to the current node. For example, N2 stores
(1, 1) since the first occurrence of “hel” occurs at the first position
of the first string. The node N12 stores (2, 3) since “lp” occurs at the
third position in the second string. Some examples for the nota-
tions used: ind(N7) = (1, 1) ; path(N7) = “hello”; initpath(N9) = “ell”;
leafpos(N3) = 3; num(N3) = 2.

we obtain the correct query response corresponding to the query
“ell” by traversing the suffix tree.

The suffix tree also supports substring queries with multiple
matches. To illustrate that, consider a substring query on “he”. Here,
instead of retrieving the index stored in node N2, one can retrieve
all the indices stored in the leaf nodes of the subtree rooted at node
N2. Since these leaf nodes contain all the starting indices of suffixes
starting with “he”, retrieving all indices stored in the leaf nodes
yield all matches of “he”.

3.2 The CS Scheme: Building Substring-SSE
from Suffix Trees

In this section, we show how Chase and Shen [14] built their
substring-SSE scheme CS from suffix trees. Following their presen-
tation, we show three attempts at building a substring-SSE scheme.

A First Attempt. The first idea from [14] is as follows. Let F be a
pseudorandom function and Γ be a CPA-secure symmetric encryp-
tion scheme. Let sk1 be a key for F and sk2 be a key for Γ. Let node
N be a non-root node of the suffix tree. The substring-SSE scheme
encrypts compute a PRF value 𝑡 = Fsk1 (path(N)) and encrypts the
index stored in node N as 𝑐 = Γ.Encsk2 (ind(N)). The scheme stores
(𝑡, 𝑐) in an encrypted dictionary D where 𝑡 is used as the key and
𝑐 is used as the value. This process is performed on all non-root
nodes.

This scheme allows the client to query all substrings that are
paths in the suffix tree by using encrypted queries of the form
𝑒𝑞 = Fsk1 (𝑞). If 𝑞 is one of the paths, then the PRF value Fsk1 (𝑞)
is in the encrypted dictionary D, and the value stored in D[𝑡] is
an encryption of the index of the first match for 𝑞. Note that this
scheme only returns the index of the first match since tree traversal
is impossible with the encrypted dictionary D.

Returning a Possible Match. Define initpath(N) as the concate-
nation of strings on the edges from the root to node N as before,
except that for the last edge (closest to N), only the first charac-
ter of the string on the edge is used. For example, in Figure 1,
initpath(N7) = “hell” and initpath(N9) = “ell”.

In the second attempt, Chase and Shen make the following
changes. Instead of querying node Nwith Fsk1 (path(N)), we query
node initpath(N). This can be done by computing the encrypted
query as 𝑒𝑞 = (Fsk1 (𝑞 [1, 1]), . . . , Fsk1 (𝑞 [1, |𝑞 |])). Given 𝑒𝑞, the server
finds the PRF value with the longest substring of 𝑞 in the encrypted
dictionary D and returns the value associated with it. The client
then decrypts the value to obtain a string index (𝑖, 𝑗). After that, the
client sends (𝑖, 𝑗 |𝑞 |) to the server, retrieves the following encrypted
values (these should be stored on the server in the Setup phase):

Γ.Encsk2 (𝑆𝑖 [𝑗]), . . . , Γ.Encsk2 (𝑆𝑖 [𝑗 + |𝑞 | − 1]),

and checks if the decryptions of the characters are the same as
𝑞. If the characters match, then (𝑖, 𝑗) is an index for the match.
Otherwise, 𝑞 does not have any match in the database.

Returning All Occurrences. A trivial solution to allow the client
to retrieve all matching occurrences of a query is to store all match-
ing indices in the encrypted dictionary. However, this solution has
a linear storage blow-up (with respect to the lengths of the strings
the server stores) in the worst case.

To overcome this problem, Chase and Shen used the fact that if
node N is the node that matches a query in the second attempt, all
matching indices of the query must be exactly the indices stored
in the leaf nodes in the subtree of N. Hence, it suffices to store the
indexing information of the subtree ofN inN, so that the leaf nodes
can be accessed later.

This is done as follows. Let leaf𝑖 be the 𝑖-th leaf node of the
suffix tree. In the Setup phase, the client creates an encrypted
array L where L[𝑖] = Γ.Encsk2 (ind(leaf𝑖)). This is the same in-
dex as the encrypted dictionary D stores for the leaf nodes in
the second attempt. As for the encrypted dictionary D, in addi-
tion to the index of the first occurrence, we also store the sub-
tree information for every entry. For node N, define leafpos(N)
as the position of the leftmost leaf node in the subtree of N. De-
fine num(N) as the number of leaf nodes in the subtree of N.3
Then, for the entry with dictionary key Fsk1 (initpath(N)), we store
Γ.Encsk2 (ind(N), leafpos(N), num(N)).

An encrypted substring query will now proceed as follows.
Let 𝑞 be a query string. The client begins by computing 𝑒𝑞 =

(Fsk1 (𝑞 [1, 1]), . . . , Fsk1 (𝑞 [1, |𝑞 |])) and sending it to the server. The
server finds the PRF value with the longest substring of 𝑞 in the
encrypted dictionary D and returns the value associated with it.
The client decrypts the value and get ind(N), leafpos(N), num(N)
for some node N that is a prefix of 𝑞. The client retrieves

Γ.Encsk2 (𝑆𝑖 [𝑗]), . . . , Γ.Encsk2 (𝑆𝑖 [𝑗 + |𝑞 | − 1]),

and checks if the decryptions of the characters are the same as 𝑞. If
they are the same, the client retrieves

L[leafpos(N)], . . . , L[leafpos(N) + num(N) − 1],

and decrypts them to obtain all indices of matching occurrences.
Otherwise, the client knows that there are no matching occurrences
for query 𝑞.

Further Modifications. The final CS scheme makes the following
modifications to the third attempt to reduce its leakage:

3See Figure 1 for an example.

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

• The search tokens are encrypted and the content of the en-
crypted dictionary is modified so that the scheme only leaks
information when two queries have a shared prefix.
• Node degrees and the number of nodes in the suffix tree
are obfuscated by padding. The order of children nodes are
hidden by permuting them.
• The string indices are hidden by permuting the encrypted
ciphertexts, i.e. Γ.Encsk2 (𝑆1 [1]), . . . , Γ.Encsk2 (𝑆𝑁 [|𝑆𝑁 |]).

3.3 Leakage Profile of the CS Scheme
We now describe the leakage profile of the CS scheme. We include
an example to illustrate the leakage.

Leakage Description. During Setup, the scheme leaks the total
length of the strings. That is, if DB = (𝑆1, . . . , 𝑆𝑁), then we have

LSetup (DB) =
𝑁∑︁
𝑖=1
|𝑆𝑖 |.

We now focus on the leakage during queries, i.e., LEQuery. For a
substring query 𝑞, let initpath(N) where N is a node in the suffix
tree T be the longest prefix of 𝑞. When processing a query 𝑞, the
scheme leaks the length of the query |𝑞 | and the length of the prefix
|initpath(N) |. For a sequence of queries 𝑞1, . . . , 𝑞𝑙 , the CS scheme
leaks three additional patterns:
• The query prefix pattern QP(DB, 𝑞1, . . . , 𝑞𝑙) for query 𝑞𝑙 in-
dicates for every node visited by query 𝑞𝑙 , if the node is
visited by any of the previous queries. The pattern can be
represented by an 𝑙 × 𝑛𝑖 matrix, where 𝑛𝑖 is the number of
nodes visited by query 𝑞𝑙 . The (𝑖, 𝑗)-th entry of the matrix
is 1 if 𝑞𝑖 visited the 𝑗-th node that is visited by query 𝑞𝑙 ; the
entry is 0 otherwise.
• The leaf intersection pattern LP(DB, 𝑞1, . . . , 𝑞𝑙) for query 𝑞𝑙
indicates which leaf indices retrieved by query 𝑞𝑙 are also re-
trieved by previous queries. The pattern can be represented
by an 𝑙 ×𝑚 𝑗 matrix, where𝑚 𝑗 is the number of leaf nodes
retrieved by query 𝑞𝑙 . Let 𝑟1 : [𝑚 𝑗] → [𝑚 𝑗] be a random
permutation. The (𝑖, 𝑗)-th entry of the leaf intersection pat-
tern matrix is 1 if the 𝑟𝑖 (𝑖)-th leaf retrieved by query 𝑞𝑙 is
also retrieved by query 𝑞𝑖 ; the entry is 0 otherwise.
• The index intersection pattern IP(DB, 𝑞1, . . . , 𝑞𝑙) for query 𝑞𝑙
indicates which string indices retrieved by query 𝑞𝑙 are also
retrieved by previous queries. The pattern can be represented
by an 𝑙 × |𝑞𝑙 | matrix. Let 𝑟2 : [|𝑞𝑙 |] → [|𝑞𝑙 |] be a random
permutation. The (𝑖, 𝑗)-th entry of the index intersection
pattern matrix is 1 if the 𝑖-th string index retrieved by query
𝑞𝑙 is also retrieved by query 𝑞𝑖 ; the entry is 0 otherwise.

Leakage Illustration using an Example. To illustrate the leakage
of the scheme, consider the database DB = (“hello”, “help”). The
server learns that there are 9 leaf nodes from |L|, which is exactly
the total length of the strings.

Now, consider query 𝑞1 = “ello” and 𝑞2 = “elp”. The server
learns that |𝑞1 | = 4 and |𝑞2 | = 3 since the server sees 4 and 3
encrypted PRF values, respectively. The server also learns that
| (initpath(“ello”)) | = |“ell”| = 3 and | (initpath(“elp”)) | = |“elp”| =
3 since the PRF values used to retrieve the nodes associated to these
initial paths reveal that the inputs to the PRF have length 3. When

looking at 𝑞1 and 𝑞2 together, we see that a semi-honest adversary
can immediately infer the following:

• The query prefix pattern: The server sees node N3 is a shared
prefix for both queries since it is visited by both queries. The
server also sees that |initpath(N3)) | = 1 since it has to be
retrieved with Fsk1 (𝑞1 [1, 1]) or Fsk1 (𝑞2 [1, 1]).
• The leaf intersection pattern: The server does not see any leaf
intersection since the two queries visit disjoint sets of nodes
({N9} and {N10} respectively). However, the server can infer
that both queries have query response volume 1.
• The index intersection pattern: The server does not see any
index intersection since the first string is on the first occur-
rence of initpath(𝑞1) and the second string is on the first
occurrence of initpath(𝑞2).

4 OUR QUERY RECOVERY ATTACK
In this section, we describe our query reconstruction attack against
the CS scheme. We begin by highlighting the main leakage compo-
nents that we exploit in our attack. We then introduce the general
idea of our attack and present its pseudocode.

4.1 Notable Leakage Components
Our attack exploits the following leakage components of the scheme.

• Length of the initial path: Our attack aims to recover the
initial paths of the queries. The length of the initial path, or
ipLen𝑖 = |initpath(𝑞𝑖) | is useful for the attacker to restrict
the set of guesses it can make on the initial path.
• Query response volume: The query response volume, or vol𝑖 =
|DB(initpath(𝑞𝑖)) | can be inferred from the leaf intersection
pattern. This allows an attacker to extract frequency infor-
mation about the initial path in the database.
• Character equality between the queries: From the leaf inter-
section pattern, the attacker can find out if two queries start
with the same characters. This can be done as follows. Con-
sider queries 𝑞1 =“ell” and 𝑞2 =“elp” on the suffix tree in
Figure 1. The attacker learns that both queries visit N3. This
is only possible if the first two characters of the two queries
are the same. Note that the number of shared characters
is leaked because the length of the initial paths of the two
queries is one more than the string on the path of N3. We
write charEq(𝑖, 𝑗) = 𝑘 to mean that𝑞𝑖 and𝑞 𝑗 have𝑘 common
characters. In the example above, charEq(1, 2) = 2. Charac-
ter equality between the queries can be used by the attacker
to refine its guesses for the queries.

Leakage Extraction. The above leakage components can be de-
rived directly from the transcript of an execution of the CS scheme.
We show how this can be done below.

Extracting the Length of the Initial Path. Recall that for query 𝑞,
the client sends Fsk1 (𝑞 [1, 1]), . . . , Fsk1 (𝑞 [1, |𝑞 |]) to the server. The
server finds the largest𝑚 such that Fsk1 (𝑞 [1,𝑚]) is in the encrypted
database. Since𝑚 is equal to the length of the initial path by con-
struction, the server can learn the length of the initial path from
the transcript.

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

Extracting the Query Response Volume. In the last step of the search,
suppose that the longest initial path matching the query is N. Then,
the client will retrieve L[leafpos(N)], . . . , L[leafpos(N)+num(N)−
1] (a permuted version of this is used in the final scheme). The
number of leaf nodes retrieved is equal to num(N), i.e. the the
number of indices matching N. This allows the server to learn the
query response volume directly.

Extracting Character Equality across Queries. For simplicity, con-
sider queries 𝑞𝑖 and 𝑞 𝑗 . For 𝑞𝑖 , the client computes and sends to
the server the PRF values Fsk1 (𝑞1 [1, 1]), . . . , Fsk1 (𝑞1 [1, |𝑞 |]). For 𝑞2,
these values are Fsk1 (𝑞 𝑗 [1, 1]), . . . , Fsk1 (𝑞 𝑗 [1, |𝑞 |]). Crucially, if 𝑞𝑖
and 𝑞 𝑗 have a non-empty common prefix, i.e. there exists 𝑘 ≥ 1
such that 𝑞𝑖 [1, 𝑘] = 𝑞 𝑗 [1, 𝑘], then the first 𝑘 PRF values from the
two queries will be the same. As a result, the server can learn the
character equality between the queries just by comparing the PRF
values sent by the client.

Leakage Representation. In our attack, we process the leakage
described above and represent the encrypted queries as lists of
tokens where each token is an integer. If the same token appears in
two encrypted queries, it means the corresponding characters in the
two queries are the same. For example, for 𝑞1 =“ell” and 𝑞2 =“elp”,
since charEq(1, 2) = 2, we can represent the encrypted version of
the queries as (1, 2, 3) and (1, 2, 4) respectively. Our attack then tries
to map the tokens to the alphabets used in the queries. It is worth
noting that the encrypted queries we are interested in are only as
long as the initial paths of the original queries. This is because the
server can only learn information about the initial path by design.
We use the following notations in the description of our attack be-
low. We abuse the notation and write 𝑒𝑞𝑖 = (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

) where
𝑚𝑖 is the length of the initial path of query 𝑞𝑖 . We write |DB(𝑒𝑞𝑖)) |
to mean the query response volume of (the initial path of) query 𝑞𝑖 .
Using the notation above, the leakage input to our attack is simply
the collection of sequences of tokens (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)𝑙
𝑖=1 where

𝑙 is the number of queries made, and their corresponding query
response volumes (vol𝑖)𝑙𝑖=1 where vol𝑖 =

��DB((tk𝑖,1, . . . , tk𝑖,𝑚𝑖
))
��.

4.2 Our Attack
Given the leakage above, we design an inference attack that tries
to recover the alphabets corresponding to the tokens. By doing so,
we recover the initial path of the queries.

Main Ideas. There are three core components in our attack.
• First of all, we need to identify the set of guesses we want to
make on each encrypted query. We call this the candidate set
of the encrypted query. On a high level, given some auxiliary
information, we can use the length of the initial path and
the query response volume to filter out unlikely guesses
for each encrypted query. Then, we can use the character
equality leakage between the queries to reduce the size of
the candidate sets further.
• Secondly, once we obtain the candidate sets for all the en-
crypted queries, we need to have a statistical model to mea-
sure how well guesses on the encrypted queries fit the ob-
served leakage. For this, we model the number of occur-
rences of the substrings with a Poisson distribution, where
the parameters of the distribution are determined by some

auxiliary data. Then, we compute the likelihood of a guess
given the observed leakage components.
• Finally, we need to use an efficient algorithm to search over
the set of possible guesses and find the most likely one given
the statistical model.

Identifying the Candidate Sets. Define CandSet : N∗ → P(Σ∗)
as a map that maps a sequence of tokens to a subset of all possible
strings. Our goal is to find candidate sets of each encrypted query.
We aim to make the candidate sets as small as possible so that the
search procedure later will be as efficient as possible.

In our attack, we identify the candidate sets in two steps. In
the first step, we rely on frequency analysis. Suppose that there is
some auxiliary information Aux : Σ∗ → R such that Aux(𝑠) tells
the attacker the expected query response volume of query 𝑠 . The
attacker can simply set CandSet((tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)){𝑠 : |𝑠 | =𝑚𝑖 ∧����DB((tk𝑖,1, . . . , tk𝑖,𝑚𝑖
))
�� − Aux(𝑠)�� < 𝜀 ·

√︃��DB((tk𝑖,1, . . . , tk𝑖,𝑚𝑖
))
��}

for some threshold 𝜀. This is exactly what we do in our attack.
Looking ahead, we describe in Section 5 how the threshold 𝜀 is
determined in our experiments over real-world datasets.

However, the problem with the step above is that the candidate
sets produced are often very large (on the order of 103 in size or
more). For 𝑙 queries, the search space is then roughly 103𝑙 in size.
This makes efficient search over the space infeasible. As a result, we
introduce a procedure to trim the search space before running the
main algorithm of our attack. The idea of the trimming algorithm
is that we can look at the candidate sets for each token (instead of
the whole token sequence) by making use of the candidate sets and
determine the most likely characters for each token. This can then
be used to trim the candidate sets.

As an example, consider the following candidate sets. For token
sequence (1, 2, 3), CandSet((1, 2, 3)) = {“ell”, “ali”}. And for token
sequence (1, 2, 4), CandSet((1, 2, 4)) = {“elp”, “bob”}. From these,
we can conclude that the character corresponding to token 1 is most
likely “e” since it appears in both candidate sets. This then allows
us to trim both of the candidate sets to CandSet((1, 2, 3)) = {“ell”}
and CandSet((1, 2, 4)) = {“elp”} respectively. One complication
here is that it is possible that the true query may not be included
in the candidate set (because the observed query response volume
is too far from the expected frequency of the substring). For this
reason, we opt for a soft decision procedure where characters that
do not appear in all candidate sets for a particular token may still
be regarded as likely. In the paragraph below, we describe more
formally how the trimming process is done.

We initialise an array 𝐴𝑟𝑟 : N × Σ → N that maps tokens
and characters in the alphabet to an integer. This array is ini-
tialised with all possible token-character pairs and the values are
set to zero. Then, for every token sequence (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

) we
observe, we tally the characters that appear at each position in
the candidate set CandSet((tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)). For every token tk
in the token sequence and every character 𝑐 that appears in the
corresponding positions, we increment 𝐴𝑟𝑟 (tk, 𝑐) by 1. After this
process is completed for all token sequences, we create a map
TokenCandSet : N → P(Σ) that maps each token to a subset of
the alphabet. The entries of TokenCandSet are such that for token
tk, TokenCandSet(tk) is set to the collection of characters 𝑐 such

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

Algorithm 1 Identifying Candidate Sets
Parameters: Parameter for the initial identification of the candidate sets 𝜀 ,

parameter for trimming the candidate sets t.
Input: Query response volumes (vol𝑖)𝑙𝑖=1 , sequences of tokens extracted from
the encrypted queries (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)𝑙
𝑖=1 , auxiliary distribution Aux.

Output: Candidate set CandSet : N∗ → P(Σ∗) that maps each sequence of
tokens to a set of plaintext strings.

Candidate_Set((vol𝑖)𝑙𝑖=1, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖
)𝑙
𝑖=1,Aux)

1: Initialise CandSet as an empty map
2: for 𝑖 ← 1, . . . , 𝑙 do
3: CandSet((tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)) ← {𝑠 ∈ Aux | |𝑠 | =𝑚1 ∧ |vol𝑖 − Aux(𝑠) | ≤
𝜀 ·
√
vol𝑖 } ⊲ Initial filtering of candidate sets based on query response volumes.

𝑠 ∈ Aux means getting the strings used to index Aux.
4: CandSet′ ← CandSet
5: CandSet← Trim_Candidates(CandSet)
6: while CandSet′ ≠ CandSet do
7: CandSet′ ← CandSet
8: CandSet← Trim_Candidates(CandSet)
9: return CandSet

10: Trim_Candidates(CandSet)
11: Initialise𝐴𝑟𝑟 : N × Σ→ N as an array filled with zeros
12: for 𝑖 ∈ 1, . . . , 𝑙 do
13: for 𝑗 ∈ 1, . . . ,𝑚𝑖 do
14: for 𝑐 ∈ Σ do
15: if ∃ cand ∈ CandSet((tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)) such that cand[𝑗] = 𝑐 then
16: 𝐴𝑟𝑟 (tk𝑖,𝑗 , cand[𝑗]) ← 𝐴𝑟𝑟 (tk𝑖,𝑗 , cand[𝑗]) + 1
17: Initialise TokenCandSet : N→ P(Σ) as an empty map
18: for tk ∈ tk1,1, . . . , tk𝑙,𝑚𝑙

do
19: Let 𝑐1, . . . , 𝑐𝑘 be the second input of𝐴𝑟𝑟 sorted by decreasing𝐴𝑟𝑟 (tk, ·)
20: TokenCandSet(tk) ← {𝑐1, . . . , 𝑐t }
21: if 𝐴𝑟𝑟 (tk, 𝑐t) =𝐴𝑟𝑟 (tk, 𝑐t+1) then ⊲ Handling the special case where more

than t characters have the same frequency in𝐴𝑟𝑟 (tk, ·)
22: 𝑗 ← t
23: while𝐴𝑟𝑟 (tk, 𝑐 𝑗) =𝐴𝑟𝑟 (tk, 𝑐 𝑗+1) do
24: TokenCandSet(tk) ← TokenCandSet(tk) ∪ {𝑐 𝑗+1 }
25: CandSet′ ← {}
26: for (tk1, . . . , tk𝑙) ∈ CandSet do
27: CandSet(cand) = { (𝑐1, . . . , 𝑐𝑙) ∈ CandSet((tk1, . . . , tk𝑙)) | 𝑐𝑖 ∈

TokenCandSet(tk𝑖)∀𝑖 }
28: return CandSet′

that the values𝐴𝑟𝑟 (tk, 𝑐) are the t largest among𝐴𝑟𝑟 (tk, ·). If more
than t characters share the largest value, then all characters with
the largest value in 𝐴𝑟𝑟 (tk, ·) are added to TokenCandSet(tk). The
map TokenCandSet can then be used to trim CandSet. This pro-
cess is repeated until CandSet does not change by the trimming
process. The pseudocode of the trimming process can be found in
Algorithm 1.

Statistical Model of the Observed Leakage. Given the candidate
set CandSet, the attacker can start making guesses guess : N∗ →
Σ∗ on the plaintexts of the initial paths of the queries. However, we
still need to measure how good each guess is so that we can pick the
best one as the output of the attack. To do this, we model the query
response volumes of the queries using Poisson distributions. These
individual distributions are put together to form a joint distribution
over all queries. We then apply standard statistical techniques to
turn the joint distribution into a likelihood function.

The Likelihood Function. Due to the limitation on space, we
present the derivation of the likelihood function in Appendix A.

In the rest of this section, we describe how the attacker can
search for a guess that maximizes the likelihood function.

Algorithm 2 Simulated Annealing-based Attack Procedure
Input: Query response volumes (vol𝑖)𝑙𝑖=1 , sequences of tokens extracted from

the encrypted queries (tk𝑖,1, . . . , tk𝑖,𝑚𝑖
)𝑙
𝑖=1 , candidate set CandSet, auxiliary

distribution Aux, the maximum number of iterations for simulated annealing itermax .
Output: A guess for the tokens of the encrypted queries guess : N→ Σ.

Simulated_annealing((vol𝑖)𝑙𝑖=1, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖
)𝑙
𝑖=1,CandSet, Aux, itermax):

1: guess← Initial_solution(CandSet)
2: for 𝑖 ← 1, . . . , itermax do
3: T← Cooling(T)
4: guess′ ← Neighbour(guess,CandSet)
5: sc← score(guess, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)𝑙
𝑖=1, (vol𝑖)𝑙𝑖=1,Aux)

6: sc′ ← score(guess′, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖
)𝑙
𝑖=1, (vol𝑖)𝑙𝑖=1,Aux)

7: if Accept_prob(sc, sc′, T) == 1 then
8: guess← guess′

9: return guess

Initial_solution(CandSet) :
10: guess← {}
11: for (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

) ∈ CandSet do ⊲ 𝑡 ∈ CandSet means getting the keys of
the map.

12: cand
$←− CandSet((tk𝑖,1, . . . , tk𝑖,𝑚𝑖

))
13: for 𝑗 ∈ 1, . . . ,𝑚𝑖 do
14: guess(tk𝑖,𝑗) ← cand[𝑗]
15: return guess

Neighbour(guess,CandSet) :
16: guess′ ← guess

17: (tk𝑖,1, . . . , tk𝑖,𝑚𝑖
) $←− CandSet ⊲ 𝑡

$←− CandSet means sampling a random key
from the map.

18: cand $←− CandSet((tk𝑖,1, . . . , tk𝑖,𝑚𝑖
))

19: for 𝑗 ∈ 1, . . . ,𝑚𝑖 do
20: guess′ (tk𝑖,𝑗) ← cand[𝑗]
21: return guess′

Accept_prob(sc, sc′, T) :
22: return exp

{
sc′−sc

T

}
> rand(0, 1) ⊲ rand(0, 1) is an uniform random variable

with range from 0 to 1.

Consistency in the Guesses.Note that in the description of our at-
tack above, guesses are made on each query separately. This means
it is possible to have guess((1, 2, 3)) = “elp” and guess((1, 2, 4)) =
“bob” even though we know the two queries must have the same
first two characters. In our attack, we choose to make guesses iter-
atively and keep track of the guesses we make on the individual
tokens. A new guess on a token is allowed to overwrite an old
guess. Concretely, for the example above, we will make the guess
guess((1, 2, 3)) = “elp” first followed by guess((1, 2, 4)) = “bob”.
Since the second guess overwrites the guesses for token 1 and
2, it changes guess((1, 2, 3)) to “bop”. This approach allows us to
maintain consistency of token equality at the cost of potentially
sub-optimal guesses for the queries. We believe that this is not a
major issue as the sub-optimal guesses yield low likelihood scores
and they are unlikely to be accepted by the optimization algorithm
we describe subsequently.

Maximizing the Likelihood Function.We use simulated anneal-
ing [61] to maximize the likelihood function. The corresponding
pseudocode can be found in Algorithm 2 (the score function score()
is precisely the likelihood function, which was described mathe-
matically above). Th procedure involves five main subroutines:

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

• Initial_solution(CandSet): The algorithm takes as input
the candidate set CandSet and outputs a guess guess which
will be used as the initial solution of simulated annealing.
• Neighbour(guess,CandSet): The algorithm takes as input
the current guess guess and the candidate set CandSet, and
output a new guess guess′ that is close to guess.
• score(guess, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)𝑙
𝑖=1, (vol𝑖)

𝑙
𝑖=1,Aux): The algo-

rithm takes as input a guess guess, a list of tokens (tk𝑖,1, . . . ,
tk𝑖,𝑚𝑖

)𝑙
𝑖=1, a list of observed query response volumes (vol𝑖)𝑙𝑖=1,

and an auxiliary distribution Aux, and output a score sc.
• Cooling(T): The algorithm takes as input a temperature T
and outputs a new temperature T′.
• Accept_prob(sc, sc′, T): The algorithm takes as input two
scores sc and sc′ and a temperature T, and outputs 0 or 1
depending on the inputs and some randomness.

The five subroutines are combined as follows in a full run of simu-
lated annealing:
• First, guess← Initial_solution(CandSet) is run to get an
initial guess guess.
• Next, a temperature T is initialised.
• Subsequently, the following procedure is executed iteratively
for a fixed number of iterations:
– The cooling subroutine Cooling(T) is invoked to obtain a
new temperature T′. A neighbour guess′ ← Neighbour(guess,CandSet)
of the current guess is also computed.

– Then, a score sc′ ← score(guess′, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖
)𝑙
𝑖=1,

(vol𝑖)𝑙𝑖=1,Aux) is computed on the guess. Assume that
the old score sc ← score(guess′, (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)𝑙
𝑖=1,

(vol𝑖)𝑙𝑖=1,Aux) is kept by simulated annealing, it can call
Accept_prob(sc, sc′, T) to get an output 0 or 1.

– If the output is 0, then nothing happens, and simulated
annealing proceeds to the next iteration.

– If the output is 1, the old guess guess is overwritten by
the new guess guess′, and simulated annealing proceeds
to the next iteration.

5 EXPERIMENTAL EVALUATION
In this section, we present extensive experimental evaluations to val-
idate the practicality of our proposed attack. We use two real-world
datasets – English Wikipedia4, and a genome dataset5 from the Na-
tional Center for Biotechnology Information (NCBI). A description
of these datasets can be found in Appendix B. Our experiments
show that our attack achieves a high success rate with reasonable
practical efficiency while scaling to large datasets. Our attack code
is publicly available on Github.6

5.1 Experiments on Simple English Wikipedia
We now present the experimental results for our attack with the
Simple English Wikipedia as target dataset.

ExperimentalData andAuxiliary Information. From the dataset,
we randomly pick 100, 000 Wikipedia pages as the auxiliary dataset.
From the remaining Wikipedia pages, we picked from 20, 000 to
4https://dumps.wikimedia.org/simplewiki/
5https://www.ncbi.nlm.nih.gov/
6https://github.com/substring-SSE-attack/substring-attack

100, 000 Wikipedia pages in steps of 20, 000 pages as the target
dataset.

We computed Aux by building a suffix tree with the auxiliary
dataset. For every initial path initpath in the suffix tree, we assign
Aux(initpath) = vol, where vol is the number of times initpath
appears in the auxiliary dataset. For each attack we run, Aux is nor-
malised by dividing by the total length of the texts in the auxiliary
dataset and multiplying by the total length of the texts in the target
dataset. For the target datasets, we build suffix trees and extract
leakage using the process described below.

Attack Parameters. We now discuss how we picked the attack
parameters for our attack on the Simple English Wikipedia. We
begin by recalling the parameters 𝜀 and t.

Parameters. Parameter 𝜀 is used to control the number of substrings
we add to the candidate set for each query in the initial identification
of the candidate sets. A larger 𝜀 means it is more likely for the
candidate sets to include the correct guess. On the other hand,
a larger 𝜀 also makes the candidate sets larger. This reduces the
effectiveness of simulated annealing as it becomes harder to pick
the correct guesses from the candidate sets.

Parameter t is used to trim the candidate sets. A larger t means
we are more forgiving in the trimming step, so it is more likely
for the correct guess to remain in the candidate set. On the other
hand, a larger t is not so effective in reducing the candidate sets,
thus, making it harder for the simulated annealing step to find the
correct guesses.

Considerations. In summary, there are two conflicting considerations
in parameter selections. The first consideration is the sizes of the
candidate sets. We want them to be as small as possible. In our
experiments, we report the product of the sizes of the candidate
sets as the size of the reconstruction space (in log10). The second
consideration is how often are the correct guesses captured in
the candidate sets. We want this to be as often as possible. In our
experiments, we report the fraction of the candidate sets including
the correct guesses as the hit rate.

Experimental Results. We pick 𝜀 from 3 to 7 and t from 3 to 7 in our
experiments (with 100, 000 strings and 10, 000 queries). In addition,
we also run experiments without using a threshold t. A selection
of our experimental results are shown in Table 2 in Appendix C.

There are two interesting observations. Firstly, the size of the
reconstruction space does not decrease monotonically with increas-
ing 𝜀. For example, with 𝜀 = 3, t = 3, the reconstruction space has
size 1015039.46, whereas with 𝜀 = 7, t = 3, the reconstruction space
has size 107757.57. This is different fromwhat one intuitively expects.
However, it can be explained by the trimming step of our attack.
When 𝜀 is too small, the candidate sets do not contain enough cor-
rect guesses for the trimming step to be effective, and that leads to
significantly larger reconstruction spaces.

Secondly, the threshold t is very effective at reducing the size
of the reconstruction space without sacrificing the hit rate. For
example, the reconstruction space for 𝜀 = 7 and no trimming is
1010787.98 and the hit rate is 91.32%. By trimming with t = 3, we
reduce the search space by a factor of 103030 while only sacrificing
0.42% of the hit rate.

https://dumps.wikimedia.org/simplewiki/
https://www.ncbi.nlm.nih.gov/
https://github.com/substring-SSE-attack/substring-attack

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

Chosen Parameters. Out of all combinations of parameters we have
tested, 𝜀 = 7, t = 3 achieves the best balance between the size of the
reconstruction space and the hit rate. So this setting is used in our
main attack against the Simple English Wikipedia dataset.

Query Generation. Queries in our experiments are generated
randomly. For each query, we randomly pick aWikipedia page from
the target dataset. Then, we pick a random initial position inside the
Wikipedia page. The final position is picked by generating a random
number (specified later) and adding it to the initial position. The
plaintext query is then the substring specified by the initial position
and the final position in the randomly pickedWikipedia page. There
are several conditions the plaintext query must meet before being
consumed. These conditions are: (1) the query must have a specific
length (to be specified later), (2) the query response volume must
be larger than 100 (this is to avoid using erroneously extracted
plaintexts or uncommon short strings as queries; an example of that
would be “== == Other" in the Simple English Wikipedia article on
Alan Turing7), and (3) the letters in the queries should only contain
English letters, space and hyphen.

We generate 10, 000 random queries for the target datasets with
20, 000 to 80, 000 Wikipedia pages. For the target with 100, 000
Wikipedia pages, we generate 2, 000 to 10, 000 random queries.

Metrics. We use four metrics to measure the attack success rate:
• Unique token recovery rate: The percentage of unique
tokens our attack recovers correctly. For example, if our
attack correctly recovers tokens (1, 2, 3) as “elp" and wrongly
recovers tokens (1, 2, 4) as “elt", the unique token recovery
rate will be 3/4 = 75%, since tokens 1 and 2 are only counted
once.
• Token recovery rate with repetition: The percentage of
tokens (with repetition) our attack recovers correctly. For
example, if our attack correctly recovers tokens (1, 2, 3) as
“elp" and wrongly recovers tokens (1, 2, 4) as “elt", the unique
token recovery ratewill be 5/6 = 75%. Thismetric reflects the
percentage of characters we can guess correctly per query
on average.
• Initial path recovery rate: The percentage of the initial
paths of the queries our attack recovers correctly. This is
equivalent to the percentage of queries for which we can
guess all of the tokens correctly. For example, if our attack
correctly recovers tokens (1, 2, 3) as “elp" and wrongly re-
covers tokens (1, 2, 4) as “elt", the initial path recovery rate
will be 1/2 = 50%.
• Query recovery rate: The percentage of queries recovered
correctly.

Attack Experiments.Wepresent three sets of experimental results
against the CS scheme. In these experiments, we investigate how
well our attack scales with the number of queries and with the
number of strings.

For the first set of experiments, we use 100, 000 Wikipedia pages
as the target dataset and 10, 000 queries to generate the leakage.
The lengths of the queries are specified in Table 1. We observe that
the attack performs the best when queries with lengths 1 and 2

7https://simple.wikipedia.org/wiki/Alan_Turing

Query Length Recovery Metrics
Unique Token Token with Repetition Initial Path Query

1-11 60.1% 81.9% 66.3% 63.6%
3-7 56.4% 75.5% 57.3% 56.6%
3-9 53.5% 74.2% 55.5% 54.1%
3-11 51.9% 71.6% 52.0% 49.8%
3-13 51.8% 72.3% 53.2% 50.4%
Table 1: Performance of our attack on Simple English Wikipedia
with respect to the query length (indicated by the first column). 𝑎-𝑏
in the first column means that the query length is uniformly picked
between 𝑎 and 𝑏 (inclusive).

are allowed. Naturally, as queries with lengths 1 and 2 have the
largest query response volumes, they are easier to recover. More
interestingly, these short queries also help with the query recovery
rate of longer queries. In particular, in our experiment with query
lengths from 1 to 11, the initial path recovery rate for the queries
with lengths from 3 to 11 is 65.1%. This is 13.1% higher than in the
attack with only queries with lengths from 3 to 11. The reason for
this improvement is that the queries with lengths 1 and 2 have small
candidate sets (since they have the largest query response volumes
which made them easy to identify). Since these short queries share
the same initial paths (and hence, the tokens in our attack) with the
longer queries, the smaller candidate sets for the short queries also
help to reduce the size of the candidate sets for the longer queries,
and ultimately lead to a higher query recovery rate.

For the second set of experiments, we use 100, 000 Wikipedia
pages as the target dataset and use 2, 000 to 10, 000 queries (with
lengths between 3 and 11) to generate the leakage. The results
are shown in Figure 2a. The unique token reconstruction rate, the
initial path reconstruction rate and the query reconstruction rate
are similar in all our experiments. These go from 37% when 2, 000
queries are made to 49%when 10, 000 queries are made. This is likely
because more queries lead to more intersections in the initial paths,
helping to refine the candidate sets better. The token reconstruction
rate with repetition is significantly higher than the other metrics.
With 10, 000 queries, the token reconstruction rate with repetition
is over 70%. That is, for every query, the attacker can guess 70% of
the characters correctly.

For the last set of experiments, we use 20, 000 to 100, 000Wikipedia
pages as the target dataset and 10, 000 queries (with lengths between
3 to 11) to generate the leakage. The results are shown in Figure 2b.
We do not see any significant trend in the metrics with respect
to the number of strings used. This suggests that the number of
strings is not a limiting factor for our attack and 20, 000 strings are
sufficient for our attack to perform well.

5.2 Experiments on Genome Dataset

Experimental Data and Auxiliary Information. From the origi-
nal NCBI genome dataset, we use half of the data to build the target
dataset for our attack and reserve the other half of the data as the
auxiliary data. The scale of the experiments in terms of the length of
the texts in the target and auxiliary datasets on the genome dataset
is comparable to that of the experiments with 100, 000 Simple Eng-
lish Wikipedia pages.

Attack Parameters. The attack parameters are chosen in a manner
similar to our attack experiments on Simple English Wikipedia.

https://simple.wikipedia.org/wiki/Alan_Turing

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

2000 4000 6000 8000 10000
#queries

20

30

40

50

60

70

80
Re

co
ve

ry
 ra

te
 (%

)

Unique token
Token with repetition
Initial path
Query

(a) With respect to the number of queries.

20000 40000 60000 80000 100000
#strings

20

30

40

50

60

70

80

Re
co

ve
ry

 ra
te

 (%
)

Unique token
Token with repetition
Initial path
Query

(b) With respect to the number of strings.

Figure 2: Effectiveness of our attack on Simple English Wikipedia.
In particular, we repeat the same parameter-tuning experiments
described above on the Genome dataset (with 10, 000 queries). The
value of 𝜀 we use ranges from 3 to 7 and the value of t we use
is either 2 or 3. The experimental results are shown in Table 3 in
Appendix C.

We observe that the reconstruction space is significantly smaller
for the Genome dataset as compared to the Simple EnglishWikipedia
dataset. The hit rate for the Genome dataset is close to 100% for
all of the tested parameters. We pick 𝜀 = 5, t = 2 as the parameters
corresponding to the smallest reconstruction space.

Query Generation. We use the same process to generate the
queries as before. The conditions for the queries to be considered
valid are as follows: (1) the query must have length between 3 and
9, and (2) the query response volume must be larger than 100 (this
is to avoid queries on erroneous genome sequences [62]).

Experiments.We present one set of experiments on the genome
dataset to investigate how the attack scales with the number of
queries. We generate between 2, 000 and 10, 000 queries and run our
attack on the leakages resulting from the queries. Our results are
reported in Figure 3. We are able to recover between 63% and 72%
of the queries correctly and between 87% and 92% of the characters
of the queries correctly. This shows that databases with a smaller
alphabet size are significantly more vulnerable to our attack.

6 CONCLUSION
Our work initiates the study of leakage cryptanalysis of substring-
SSE, focussing on the seminal scheme due to Chase and Shen from
PoPETS’15 [14]. We proposed a query reconstruction attack against

2000 4000 6000 8000 10000
#queries

40

50

60

70

80

90

100

Re
co

ve
ry

 ra
te

 (%
)

Unique token
Token with repetition
Initial path
Query

Figure 3: Effectiveness of our attack with respect to the num-
ber of queries on the NCBI genome dataset.

this scheme. We implemented our attack and experimentally val-
idated its high query-recovery rate and practical efficiency over
two real-world datasets – English Wikipedia and a genome dataset
from NCBI. Our experiments show that our attack achieves high
success rate with reasonable practical efficiency and that it scales
to large datasets. For the English Wikipedia (100, 000 Wikipedia
pages, 2, 000 queries), our attack recovers over 50% of the queries
successfully, with 70% character recovery rate (64% and 80%, re-
spectively, if we also include short queries of length 1 or 2). For
the NCBI genome dataset (similar number of characters as 100, 000
Wikipedia pages, 2, 000 queries), we achieve over 60% query and
character recovery rate.

An interesting direction of future research would be to develop
query (and possibly even data) reconstruction attacks on other
substring-SSE schemes [20, 36, 51]. This seems to require new in-
sights, since each of the schemes has significantly different fea-
tures and leakage. As has been done with SSE schemes for range
queries [30–32, 44, 49], it would then be valuable to try to develop
attacks that are generic in the sense of only requiring certain, lim-
ited types of leakage for their operation. This could lead to a better
understanding of the privacy impact of different kinds of leakage
in substring-SSE and inform the design of future schemes.

A number of recent works [17, 25, 35, 42, 57] have attempted to
provide provably secure defenses against leakage cryptanalysis of
SSE for keyword queries. Such an approach would also be valuable
in the context of substring-SSE. We also leave it as a challenging
open question to design either empirical or provably secure coun-
termeasures against our query reconstruction attack on the scheme
of Chase and Shen.

REFERENCES
[1] Bieganski, Riedl, Cartis, and Retzel. 1994. Generalized suffix trees for biologi-

cal sequence data: applications and implementation. In 1994 Proceedings of the
Twenty-Seventh Hawaii International Conference on System Sciences, Vol. 5. 35–44.
https://doi.org/10.1109/HICSS.1994.323593

[2] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In ISOC Network and Distributed System Security Symposium –
NDSS 2020. The Internet Society, San Diego, CA, USA.

[3] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.
Order-Preserving Symmetric Encryption. In Advances in Cryptology – EURO-
CRYPT 2009 (Lecture Notes in Computer Science, Vol. 5479), Antoine Joux (Ed.).
Springer, Heidelberg, Germany, Cologne, Germany, 224–241. https://doi.org/10.

https://doi.org/10.1109/HICSS.1994.323593
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-01001-9_13

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

1007/978-3-642-01001-9_13
[4] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. In Advances in Cryptology – CRYPTO 2011 (Lecture Notes in Computer
Science, Vol. 6841), Phillip Rogaway (Ed.). Springer, Heidelberg, Germany, Santa
Barbara, CA, USA, 578–595. https://doi.org/10.1007/978-3-642-22792-9_33

[5] Charlotte Bonte and Ilia Iliashenko. 2020. Homomorphic String Search with
Constant Multiplicative Depth. In ACM SIGSAC CCSW’20, Yinqian Zhang and
Radu Sion (Eds.). 105–117.

[6] Raphael Bost. 2016. Σ𝑜𝜙𝑜𝜍 : Forward Secure Searchable Encryption. In ACM
CCS 2016: 23rd Conference on Computer and Communications Security, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi (Eds.). ACM Press, Vienna, Austria, 1143–1154. https://doi.org/10.1145/
2976749.2978303

[7] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward
Private Searchable Encryption from Constrained Cryptographic Primitives. In
ACM CCS 2017: 24th Conference on Computer and Communications Security, Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM
Press, Dallas, TX, USA, 1465–1482. https://doi.org/10.1145/3133956.3133980

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In ACM CCS 2015: 22nd Confer-
ence on Computer and Communications Security, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 668–679. https:
//doi.org/10.1145/2810103.2813700

[9] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption
in Very-Large Databases: Data Structures and Implementation. In ISOC Network
and Distributed System Security Symposium – NDSS 2014. The Internet Society,
San Diego, CA, USA.

[10] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In Advances in Cryptology – CRYPTO 2013,
Part I (Lecture Notes in Computer Science, Vol. 8042), Ran Canetti and Juan A.
Garay (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 353–373.
https://doi.org/10.1007/978-3-642-40041-4_20

[11] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New Constructions for Forward and Backward Private
Symmetric Searchable Encryption. InACMCCS 2018: 25th Conference on Computer
and Communications Security, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 1038–1055. https:
//doi.org/10.1145/3243734.3243833

[12] Yan-Cheng Chang andMichael Mitzenmacher. 2005. Privacy Preserving Keyword
Searches on Remote Encrypted Data. In ACNS 05: 3rd International Conference on
Applied Cryptography and Network Security (Lecture Notes in Computer Science,
Vol. 3531), John Ioannidis, Angelos Keromytis, and Moti Yung (Eds.). Springer,
Heidelberg, Germany, New York, NY, USA, 442–455. https://doi.org/10.1007/
11496137_30

[13] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In Advances in Cryptology – ASIACRYPT 2010 (Lecture Notes in Com-
puter Science, Vol. 6477), Masayuki Abe (Ed.). Springer, Heidelberg, Germany,
Singapore, 577–594. https://doi.org/10.1007/978-3-642-17373-8_33

[14] Melissa Chase and Emily Shen. 2015. Substring-Searchable Symmetric Encryption.
Proceedings on Privacy Enhancing Technologies 2015, 2 (April 2015), 263–281.
https://doi.org/10.1515/popets-2015-0014

[15] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-
able symmetric encryption: improved definitions and efficient constructions. In
ACM CCS 2006: 13th Conference on Computer and Communications Security, Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati (Eds.). ACM Press,
Alexandria, Virginia, USA, 79–88. https://doi.org/10.1145/1180405.1180417

[16] Marc Damie, Florian Hahn, and Andreas Peter. 2021. A Highly Accurate Query-
Recovery Attack against Searchable Encryption using Non-Indexed Documents.
In USENIX Security 2021: 30th USENIX Security Symposium, Michael Bailey and
Rachel Greenstadt (Eds.). USENIX Association, 143–160.

[17] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via
Adjustable Leakage. In USENIX Security 2020: 29th USENIX Security Symposium,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 2433–2450.

[18] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos N. Garofalakis. 2016. Practical Private Range Search Revis-
ited. In ACM SIGMOD 2016. 185–198.

[19] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, Minos N. Garofalakis, and Charalampos Papamanthou. 2018. Practical
Private Range Search in Depth. ACM Trans. Database Syst. 43, 1 (2018), 2:1–2:52.

[20] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin
Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact
Matches. In ESORICS 2015: 20th European Symposium on Research in Computer
Security, Part II (Lecture Notes in Computer Science, Vol. 9327), Günther Pernul,
Peter Y. A. Ryan, and Edgar R. Weippl (Eds.). Springer, Heidelberg, Germany,

Vienna, Austria, 123–145. https://doi.org/10.1007/978-3-319-24177-7_7
[21] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, Adam Rivkin,

Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two
Dimensions. In ACM CCS 2020: 27th Conference on Computer and Communications
Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM
Press, Virtual Event, USA, 443–460. https://doi.org/10.1145/3372297.3417275

[22] Paolo Ferragina and Giovanni Manzini. 2000. Opportunistic Data Structures
with Applications. In 41st Annual Symposium on Foundations of Computer Science.
IEEE Computer Society Press, Redondo Beach, CA, USA, 390–398. https://doi.
org/10.1109/SFCS.2000.892127

[23] Paolo Ferragina and Giovanni Manzini. 2005. Indexing compressed text. J. ACM
52, 4 (2005), 552–581.

[24] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st An-
nual ACM Symposium on Theory of Computing, Michael Mitzenmacher (Ed.). ACM
Press, Bethesda, MD, USA, 169–178. https://doi.org/10.1145/1536414.1536440

[25] Marilyn George, Seny Kamara, and Tarik Moataz. 2021. Structured Encryp-
tion and Dynamic Leakage Suppression. In Advances in Cryptology – EURO-
CRYPT 2021, Part III (Lecture Notes in Computer Science, Vol. 12698), Anne Canteaut
and François-Xavier Standaert (Eds.). Springer, Heidelberg, Germany, Zagreb,
Croatia, 370–396. https://doi.org/10.1007/978-3-030-77883-5_13

[26] Eu-Jin Goh. 2003. Secure Indexes. Cryptology ePrint Archive, Report 2003/216.
https://eprint.iacr.org/2003/216.

[27] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation
by Oblivious RAMs. In 19th Annual ACM Symposium on Theory of Computing,
Alfred Aho (Ed.). ACM Press, New York City, NY, USA, 182–194. https://doi.org/
10.1145/28395.28416

[28] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473.

[29] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,
Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing for
Encrypted Data Stores. In USENIX Security 2020: 29th USENIX Security Symposium,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 2451–2468.

[30] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
2018. Pump up the Volume: Practical Database Reconstruction from Volume
Leakage on Range Queries. In ACM CCS 2018: 25th Conference on Computer
and Communications Security, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 315–331. https:
//doi.org/10.1145/3243734.3243864

[31] Paul Grubbs, Marie-Sarah Lacharité, BriceMinaud, and Kenneth G. Paterson. 2019.
Learning to Reconstruct: Statistical Learning Theory and Encrypted Database
Attacks. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, San Francisco, CA, USA, 1067–1083. https://doi.org/10.1109/SP.2019.00030

[32] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:
New Volume Attacks against Range Queries. In ACM CCS 2019: 26th Conference
on Computer and Communications Security, Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, London, UK, 361–378.
https://doi.org/10.1145/3319535.3363210

[33] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. 2023. Rethinking
Searchable Symmetric Encryption. In IEEE Symposium on Security and Privacy
2023. IEEE, 1401–1418.

[34] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan Warinschi.
2020. SWiSSSE: System-Wide Security for Searchable Symmetric Encryption.
Cryptology ePrint Archive, Report 2020/1328. https://eprint.iacr.org/2020/1328.

[35] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and BogdanWarinschi. 2024.
SWiSSSE: System-Wide Security for Searchable Symmetric Encryption. Proc.
Priv. Enhancing Technol. 2024, 1 (2024), 549–581.

[36] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. 2018. Practical and Secure
Substring Search. In SIGMOD 2018. ACM, 163–176.

[37] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.
In ISOC Network and Distributed System Security Symposium – NDSS 2012. The
Internet Society, San Diego, CA, USA.

[38] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. 2013. Outsourced symmetric private information retrieval.
In ACM CCS 2013: 20th Conference on Computer and Communications Security,
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, Berlin,
Germany, 875–888. https://doi.org/10.1145/2508859.2516730

[39] Charanjit S. Jutla and Sikhar Patranabis. 2022. Efficient Searchable Symmetric
Encryption for Join Queries. In Advances in Cryptology – ASIACRYPT 2022, Part III
(Lecture Notes in Computer Science, Vol. 13793), Shweta Agrawal and Dongdai
Lin (Eds.). Springer, Heidelberg, Germany, Taipei, Taiwan, 304–333. https:
//doi.org/10.1007/978-3-031-22969-5_11

[40] Seny Kamara and Tarik Moataz. 2017. Boolean Searchable Symmetric Encryption
with Worst-Case Sub-linear Complexity. In Advances in Cryptology – EURO-
CRYPT 2017, Part III (Lecture Notes in Computer Science, Vol. 10212), Jean-Sébastien
Coron and Jesper Buus Nielsen (Eds.). Springer, Heidelberg, Germany, Paris,
France, 94–124. https://doi.org/10.1007/978-3-319-56617-7_4

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1515/popets-2015-0014
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/978-3-319-24177-7_7
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-030-77883-5_13
https://eprint.iacr.org/2003/216
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1109/SP.2019.00030
https://doi.org/10.1145/3319535.3363210
https://eprint.iacr.org/2020/1328
https://doi.org/10.1145/2508859.2516730
https://doi.org/10.1007/978-3-031-22969-5_11
https://doi.org/10.1007/978-3-031-22969-5_11
https://doi.org/10.1007/978-3-319-56617-7_4

() Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis

[41] Seny Kamara and Tarik Moataz. 2018. SQL on Structurally-Encrypted Databases.
InAdvances in Cryptology –ASIACRYPT 2018, Part I (Lecture Notes in Computer Sci-
ence, Vol. 11272), Thomas Peyrin and Steven Galbraith (Eds.). Springer, Heidelberg,
Germany, Brisbane, Queensland, Australia, 149–180. https://doi.org/10.1007/978-
3-030-03326-2_6

[42] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. In Advances in Cryptology – EUROCRYPT 2019, Part II (Lec-
ture Notes in Computer Science, Vol. 11477), Yuval Ishai and Vincent Rijmen
(Eds.). Springer, Heidelberg, Germany, Darmstadt, Germany, 183–213. https:
//doi.org/10.1007/978-3-030-17656-3_7

[43] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic
searchable symmetric encryption. In ACM CCS 2012: 19th Conference on Computer
and Communications Security, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.).
ACM Press, Raleigh, NC, USA, 965–976. https://doi.org/10.1145/2382196.2382298

[44] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic
Attacks on Secure Outsourced Databases. In ACM CCS 2016: 23rd Conference on
Computer and Communications Security, Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,
Vienna, Austria, 1329–1340. https://doi.org/10.1145/2976749.2978386

[45] Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and
Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying Privacy
in Searchable Encryption. In ACM CCS 2022: 29th Conference on Computer and
Communications Security, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi (Eds.). ACM Press, Los Angeles, CA, USA, 1829–1842. https://doi.org/10.
1145/3548606.3560593

[46] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2019. Data Recovery on Encrypted Databases with k-Nearest Neighbor Query
Leakage. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, San Francisco, CA, USA, 1033–1050. https://doi.org/10.1109/SP.2019.00015

[47] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the
Uniform Query Distribution. In 2020 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, San Francisco, CA, USA, 1223–1240. https://doi.
org/10.1109/SP40000.2020.00029

[48] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized
Leakage-Abuse Attacks. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1502–1519. https://doi.org/10.
1109/SP40001.2021.00044

[49] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved
Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In 2018
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San
Francisco, CA, USA, 297–314. https://doi.org/10.1109/SP.2018.00002

[50] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopad-
hyay, Ron Steinfeld, Shifeng Sun, Dongxi Liu, and Cong Zuo. 2018. Result Pattern
Hiding Searchable Encryption for Conjunctive Queries. In ACM CCS 2018: 25th
Conference on Computer and Communications Security, David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON,
Canada, 745–762. https://doi.org/10.1145/3243734.3243753

[51] Iraklis Leontiadis and Ming Li. 2018. Storage Efficient Substring Searchable
Symmetric Encryption. In SCC@AsiaCCS 2018. ACM, 3–13.

[52] Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, and William
Schor. 2021. Reconstructingwith Less: LeakageAbuseAttacks in TwoDimensions.
In ACM CCS 2021: 28th Conference on Computer and Communications Security,
Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event, Republic of
Korea, 2243–2261. https://doi.org/10.1145/3460120.3484552

[53] Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu Li, Jian Weng,
and Robert H. Deng. 2021. LEAP: Leakage-Abuse Attack on Efficiently Deployable,
Efficiently Searchable Encryption with Partially Known Dataset. In ACM CCS
2021: 28th Conference on Computer and Communications Security, Giovanni Vigna
and Elaine Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 2307–2320.
https://doi.org/10.1145/3460120.3484540

[54] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not
Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In USENIX
Security 2021: 30th USENIX Security Symposium, Michael Bailey and Rachel Green-
stadt (Eds.). USENIX Association, 127–142.

[55] Simon Oya and Florian Kerschbaum. 2022. IHOP: Improved Statistical Query
Recovery against Searchable Symmetric Encryption through Quadratic Optimiza-
tion. In USENIX Security 2022: 31st USENIX Security Symposium, Kevin R. B. Butler
and Kurt Thomas (Eds.). USENIX Association, Boston, MA, USA, 2407–2424.

[56] Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo. 2021. Effi-
cient Boolean Search over Encrypted Data with Reduced Leakage. In Advances
in Cryptology – ASIACRYPT 2021, Part III (Lecture Notes in Computer Science,
Vol. 13092), Mehdi Tibouchi and Huaxiong Wang (Eds.). Springer, Heidelberg,
Germany, Singapore, 577–607. https://doi.org/10.1007/978-3-030-92078-4_20

[57] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating
Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps
via Hashing. In ACM CCS 2019: 26th Conference on Computer and Communications

Security, Lorenzo Cavallaro, Johannes Kinder, XiaoFengWang, and Jonathan Katz
(Eds.). ACM Press, London, UK, 79–93. https://doi.org/10.1145/3319535.3354213

[58] Sikhar Patranabis and Debdeep Mukhopadhyay. 2021. Forward and Backward
Private Conjunctive Searchable Symmetric Encryption. In ISOC Network and
Distributed System Security Symposium –NDSS 2021. The Internet Society, Virtual.

[59] David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference
Attacks on Efficiently Deployable, Efficiently Searchable Encryption. In ACM
CCS 2016: 23rd Conference on Computer and Communications Security, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi (Eds.). ACM Press, Vienna, Austria, 1341–1352. https://doi.org/10.1145/
2976749.2978401

[60] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical
Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society Press, Oakland, CA, USA, 44–55.
https://doi.org/10.1109/SECPRI.2000.848445

[61] Peter J. van Laarhoven. 1987. Simulated annealing theory and applications. Kluwer.
[62] Xin Victoria Wang, Natalie Blades, Jie Ding, Razvan Sultana, and Giovanni Parmi-

giani. 2012. Estimation of sequencing error rates in short reads. BMC Bioinfor-
matics 13, 1 (30 Jul 2012), 185. https://doi.org/10.1186/1471-2105-13-185

A DERIVATION OF THE LIKELIHOOD
FUNCTION

In this section, We give a concrete derivation of the likelihood
function used in our attack. The likelihood function takes four
inputs, namely:
• A guess guess : N→ Σ. The allocation guess(tk) = 𝑎 means
that our guess for token tk is letter 𝑎.
• Tokens (tk𝑖,1, . . . , tk𝑖,𝑚𝑖

)𝑙
𝑖=1.

• A list of observed query response volumes (vol𝑖)𝑙𝑖=1, indicat-
ing that the 𝑖-th query has returned vol𝑖 matching indices.
• An auxiliary distribution Aux : P(Σ) → R. Aux(𝑠) = 𝑟

means that we model the distribution of the query response
volume for string 𝑠 as a Poisson distribution with rate 𝑟 .

We begin by writing down the probability of observing the query
response volumes given the guess. The tokens and the auxiliary
distribution will show up as constants in the expression.

Pr[(vol𝑖)𝑙𝑖=1 | guess] =
𝑙∏

𝑖=1
Pr[Pois(Aux((guess(tk𝑖,1), . . . , guess(tk𝑖,𝑚𝑖

)))) = vol𝑖]

In the expression, 𝑠 = (guess(tk𝑖,1), . . . , guess(tk𝑖,𝑚𝑖
)) is the guess

we have for the 𝑖-th query (as a string). Aux(𝑠) gives the rate of the
string in the auxiliary information and Pr[Pois(Aux(𝑠)) = vol𝑖]
computes the probability of 𝑞𝑖 having query response volume vol𝑖
given the guess. Finally, the product in the end is due to our as-
sumption on the independence of the distributions of the individual
query response volumes.

Given the probability expression, we can use Bayes’ theorem to
turn the probability into a likelihood.

L[guess | (vol𝑖)𝑙𝑖=1] =
Pr[guess] · Pr[(vol𝑖)𝑙𝑖=1 | guess]

Pr[(vol𝑖)𝑙𝑖=1]

∝Pr[guess] · Pr[(vol𝑖)𝑙𝑖=1 | guess]
We assume that all guesses are equally likely in our attack, so the
likelihood function is proportional to Pr[(vol𝑖)𝑙𝑖=1 | guess].

One caveat is that if 𝑠 = (guess(tk𝑖,1), . . . , guess(tk𝑖,𝑚𝑖
)) is not

in Aux, then Pr[Pois(Aux(𝑠)) = vol𝑖] will be zero. This will make
the whole likelihood function zero as well, due to its multiplicative
nature. In practice, as the search space is sparse (meaning that only

https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/3548606.3560593
https://doi.org/10.1145/3548606.3560593
https://doi.org/10.1109/SP.2019.00015
https://doi.org/10.1109/SP40000.2020.00029
https://doi.org/10.1109/SP40000.2020.00029
https://doi.org/10.1109/SP40001.2021.00044
https://doi.org/10.1109/SP40001.2021.00044
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1145/3243734.3243753
https://doi.org/10.1145/3460120.3484552
https://doi.org/10.1145/3460120.3484540
https://doi.org/10.1007/978-3-030-92078-4_20
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1186/1471-2105-13-185

AQuery Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme ()

𝜀 t Reconstruction Space (log10) Hit rate (%)
3 2 14268.36 98.84%
3 3 14330.88 98.88%
5 2 4517.15 99.93%
5 3 4617.95 99.93%
7 2 5245.26 99.99%
7 3 5351.36 99.99%

Table 3: The size of the reconstruction space and the hit rate for a
selected few choices of 𝜀 and t on the NCBI genome dataset.

a small number of guesses yield non-zero likelihood), having zero
in some of the multiplicative terms is unavoidable. On the other
hand, we want to avoid these cases since the search algorithm we
use depends on comparing the likelihoods of different guesses (zero
is not helpful for this). For this reason, we use Laplace smoothing
(with 𝛼 = 1) whenever Aux(𝑠) = 0. In addition, we use the log of
the likelihood in our implementation to maintain accuracy in the
otherwise very small numbers.

B DESCRIPTION OF THE DATASETS

Simple English Wikipedia. The Simple English Wikipedia is a
collection of Wikipedia pages in Simple English words and gram-
mar. There are over 220, 000 Simple English Wikipedia pages. We
used the latest dump of the Simple English Wikipedia8 in our ex-
periments. We treat the text (after converting them to the lower
case) in each Wikipedia page as a string. We randomly pick half
of the strings as the target dataset and reserve the other half as
the auxiliary dataset. For the target dataset, we build a generalised
suffix tree and extract leakage from it by generating random queries.
For the auxiliary dataset, we generate a generalised suffix tree and
extract substring frequencies (only for the initial paths of the suffix
tree) from it.

Genome Dataset.We obtained our genome dataset from the Na-
tional Center for Biotechnology Information (NCBI).9. For a fair
comparison between our attack on the Simple English Wikipedia
and on a genome dataset, we decide to use a genome dataset that
has text length similar to that of the Simple English Wikipedia.
The dataset we used is the genome for Spialia galba.10 We refer
to the dataset as the genome dataset from here on. The genome
dataset contains 283, 530 shotgun sequences (short fragments of
genome) in total. We used half of the sequences as the target dataset
and reserved the other half as the auxiliary dataset. We process
the datasets in the same way as we have described for the Simple
English Wikipedia.

C ATTACK PARAMETER SELECTION

𝜀 t Reconstruction Space (log10) Hit rate (%)
3 3 15039.46 80.13%
3 7 15640.57 82.37%
3 - 16654.44 84.41%
5 3 8680.20 87.95%
5 7 9890.36 89.25%
5 - 11158.75 89.79%
7 3 7757.57 90.90%
7 7 9287.07 91.13%
7 - 10787.98 91.32%

Table 2: The size of the reconstruction space and the hit rate for a
selected few choices of 𝜀 and t on the Simple English Wikipedia. “-"
in the t column means the trimming step is not executed.

8https://dumps.wikimedia.org/simplewiki/
9https://www.ncbi.nlm.nih.gov/
10https://www.ncbi.nlm.nih.gov/datasets/taxonomy/2705556/

https://dumps.wikimedia.org/simplewiki/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/2705556/

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	3 The CS Scheme and its Leakage
	3.1 Suffix Trees
	3.2 The CS Scheme: Building Substring-SSE from Suffix Trees
	3.3 Leakage Profile of the CS Scheme

	4 Our Query Recovery Attack
	4.1 Notable Leakage Components
	4.2 Our Attack

	5 Experimental Evaluation
	5.1 Experiments on Simple English Wikipedia
	5.2 Experiments on Genome Dataset

	6 Conclusion
	References
	A Derivation of the Likelihood Function
	B Description of the Datasets
	C Attack Parameter Selection

