
Relaxed Functional Bootstrapping:

A New Perspective on BGV and BFV Bootstrapping

Zeyu Liu
zeyu.liu@yale.edu

Yale University

Yunhao Wang
yunhao.wang@yale.edu

Yale University

November 24, 2024

Abstract

BGV and BFV are among the most widely used fully homomorphic encryption (FHE) schemes,
supporting evaluations over a finite field. To evaluate a circuit with arbitrary depth, bootstrapping
is needed. However, despite the recent progress, bootstrapping of BGV/BFV still remains relatively
impractical, compared to other FHE schemes.

In this work, we inspect the BGV/BFV bootstrapping procedure from a different angle. We provide
a generalized bootstrapping definition that relaxes the correctness requirement of regular bootstrapping,
allowing constructions that support only certain kinds of circuits with arbitrary depth. In addition, our
definition captures a form of functional bootstrapping. In other words, the output encrypts a function
evaluation of the input instead of the input itself.

Under this new definition, we provide a bootstrapping procedure supporting different types of func-
tions. Our construction is 1-2 orders of magnitude faster than the state-of-the-art BGV/BFV bootstrap-
ping algorithms, depending on the evaluated function.

Of independent interest, we show that our technique can be used to improve the batched FHEW/TFHE
bootstrapping construction introduced by Liu and Wang (Asiacrypt 2023). Our optimization provides a
speed-up of 6x in latency and 3x in throughput for batched binary gate bootstrapping and a plaintext-
space-dependent speed-up for batched functional bootstrapping with plaintext space smaller than Z512.

1

Contents

1 Introduction 3
1.1 Our Contribution . 4
1.2 Related Work . 5

1.2.1 BFV Bootstrapping . 5
1.2.2 Recent concurrent works . 6
1.2.3 Bootstrapping of other schemes . 6

1.3 Paper organization . 7

2 Preliminary 7
2.1 B/FV Leveled Homomorphic Encryption . 8

3 Definition of Generalized BFV Bootstrapping 9

4 Our General Framework for Bootstrapping 10
4.1 Bootstrap for Identity Function f1 over [0, t− 1− r, r] . 10
4.2 Bootstrapping for f2 : [u, v, r′]→ Y . 13
4.3 General Framework . 15
4.4 Optimizations . 16

5 A More Fine-grained Construction 17
5.1 Point functions . 18

5.1.1 Efficient Bootstrapping for Two-point Functions . 18
5.1.2 Extending to Multiple Points . 18

5.2 Range Functions . 20
5.2.1 Two Unbalanced Ranges . 21
5.2.2 Generalized Unbalanced Ranges . 23

6 Evaluation 25
6.1 Performance of Our Construction . 25
6.2 Performance Comparisons with Other Works . 27

7 Applications 28
7.1 Oblivious Permutation via BFV . 28
7.2 Other Potential Applicaitons . 29

8 Extension to Batched FHEW/TFHE Bootstrapping 30

9 Conclusion and Discussion 31

Acknowledgements 31

References 32

2

1 Introduction

Fully Homomorphic Encryption (FHE) allows one to securely compute over encrypted data without the
knowledge of the secret key or interaction with the owner of the data, thus resulting in a very strong
primitive. FHE was first realized by Gentry in the groundbreaking work [27]. Since then, there have been
lots of works trying to improve the efficiency of FHE [9, 8, 6, 22, 7, 29, 21, 18, 17].

These works follow a similar paradigm as Gentry’s original work: a ciphertext contains some initial
noise and each operation (e.g., multiplications and additions) introduces some additional noise; the initial
parameter provides some noise budget, and if the noise budget is used up when carrying out operations (i.e.,
the noise has grown to be close to some threshold), computations cannot be continued. This is thus called
the Leveled Homomorphic Encryption (LHE). To make LHE indeed FHE, one needs an additional operation:
bootstrapping.

Essentially, bootstrapping takes a ciphertext with a relatively large error (i.e., only a small amount of
noise budget left) and outputs a new ciphertext encrypting the same plaintext with a relatively small error
(i.e., a large amount of noise budget left). With bootstrapping, one can evaluate circuits of arbitrary depths.
Bootstrapping itself is very costly and a lot of work has been done to improve the efficiency of bootstrapping
(e.g., [21, 18, 54, 16, 13]).

Among all the FHE schemes, one critical line of work is BGV/BFV [7, 6, 22], which has a very important
property called “Same Instruction Multiple Data” (SIMD), i.e., one BFV ciphertext encrypts a vector of
D ≫ 1 Zt elements (in D slots). Then, any operation over a ciphertext is done over all these D Zt elements
(element-wise). The state-of-the-art framework for BGV/BFV bootstrapping was first introduced in [33]
and later improved in [14, 26, 25, 59]. While the most recent work [59] has asymptotically achieved a very
efficient construction (requiring only a logarithmic number of ciphertext multiplications), the practicality is
still relatively limited. Concretely, to bootstrap for a single element (amortized over D slots) in Z257, the
state-of-the-art BFV bootstrapping construction takes ∼0.17 second [59]. The main issue is that to design
a suitable bootstrapping scheme for arbitrary circuits, these works make use of some algebraic structure to
improve the efficiency and thus do not take full advantage of the SIMD capability of BGV/BFV. Thus, the
amortized cost of every slot is still relatively large.

However, in some cases, supporting arbitrary circuits might be an overkill. In some circuits, there might
exist some sub-circuit C such that the output is only a subset of the entire plaintext space Zt, or there might
exist some sub-circuit C ′ such that only a subset of Zt is taken as input. In other words, we have C : X → Y
where Y ⊂ Zt, or C ′ : X ′ → Y ′ where X ′ ⊂ Zt. This means that if the bootstrapping comes after C or
before C ′, only the plaintext values in Y or X ′ need to be bootstrapped, respectively. Conditional branching
serves as a great example here: if x ∈ [u, v], 1outputs y; if x ∈ [u′, v′], outputs y′. This branching can then
be modeled as a circuit f : Xf → Yf , where Xf := [u, v] ∪ [u′, v′] and Yf := {y, y′}. Both Xf and Yf are
only a (small) subset of Zt.

In fact, such circuits are common in many applications, like oblivious permutation [23], PSI with com-
putation [36], secure machine learning [44, 38, 45, 39, 20], and so on. See Section 7 for more examples and
detailed discussions. Therefore, the first natural question we ask in this paper is:

Can we achieve better efficiency by relaxing the requirement of supporting arbitrary circuits? In other
words, if we only allow bootstrapping input to be a subset of the entire plaintext space, can we do bootstrapping
more efficiently?

Another inefficiency of regular bootstrapping comes from the fact that, as a standalone component, the
bootstrapping procedure itself does not directly contribute to evaluating the target circuit. Every effort
spent on bootstrapping is an extra cost. Therefore, the second question we pose is:

Can we achieve better efficiency by embedding bootstrapping into the circuit? In other words, can we do
bootstrapping while evaluating a circuit like C or C ′ without introducing much overhead?

In this paper, we make solid progress in both directions. Due to space reasons, please see our full version
[55] for deferred details and clarifications.

1[u, v] denotes {u, u+ 1, . . . , v}.

3

1.1 Our Contribution

Definition of generalized functional bootstrapping. We propose a new generalized definition of
BFV bootstrapping. The definition captures the most fundamental requirement of bootstrapping (i.e., the
output ciphertext has a larger noise budget than the input ciphertext), but also allows some relaxation
on the functionality: the output ciphertext does not need to provide correctness for all plaintexts, but
only a predetermined subset of the plaintext space. In other words, for the input ciphertexts encrypting
invalid plaintexts (i.e., not in that subset), the construction may output a ciphertext encrypting an arbitrary
plaintext, since an expected output is not defined. This relaxation allows us to develop more efficient
bootstrapping constructions for valid inputs.

Moreover, the definition captures a form of functional bootstrapping, which means that the output encrypts
f(x) instead of x, where x is the valid input plaintext and f is some predetermined function. This allows
the bootstrapping itself to be embedded into the circuit for better efficiency.

As an auxiliary property, we define closeness, which captures how the output behaves when the inputs
are invalid. Instead of arbitrary output for invalid input, the algorithm returns the expected output of some
valid input points close to the invalid input in the plaintext space. This property provides extra flexibility
and might be useful in some applications.

Constructions of generalized functional bootstrapping. In addition, we show a general framework
for this (relaxed) BFV bootstrapping. While our framework cannot be used to achieve regular bootstrapping,
we show that it can be used to efficiently achieve relaxed bootstrapping while evaluating three different types
of functions:

• Point functions: the function takes m points and maps them to m points. This type of function is like
an arbitrary lookup table, but only the specified m points are valid inputs, where m ≪ t for t being
the plaintext modulus. The runtime is essentially linear in c ·m (where c is some tuneable parameter)
instead of t as in regular BFV bootstrapping constructions.

• Range functions: the function takes k ranges and maps them to k points, each range containing m
consecutive points 2. This type of function is more limited, but can be evaluated more efficiently than
the point functions: even if there are m ·k valid input points, the runtime cost is only (m+c) ·k instead
of c ·m · k.

• Unbalanced range functions: the function takes 2 ranges and maps them into 2 different points, where
the first range contains m1 points and the second range contains m2 ≫ m1 points. This is a special
case of the range functions. However, with m2 ≫ m1, we construct a bootstrapping scheme running in
m1+ c+log(t) time, which is much more efficient than the m1+m2+2c (the efficiency of applying the
algorithm for the general range functions). We also extend this result to functions with k > 2 ranges,
where the k-th range is larger than all the other ranges combined. In this case, our construction can
evaluate it more efficiently than naively evaluating it as normal range functions.

We implement our construction as a C++ library, and show that it is indeed concretely more efficient
than regular BFV bootstrapping: the amortized cost is about 1-2 orders of magnitude faster than regular
BFV bootstrapping, depending on the function that is evaluated by our functional bootstrapping procedure.

To showcase the practicality of our construction, in Section 7 we specifically demonstrate that our relaxed
functional bootstrapping constructions could bring a 20x speedup to oblivious permutation [23] compared to
using the bootstrapping from prior works, and also discuss some other applications that could take advantage
of our constructions.

Batched LWE ciphertexts bootstrapping. As an independent contribution, we show that our tech-
niques can be applied to improve the batched functional bootstrapping construction for LWE ciphertexts
introduced by [54]. Our benchmark shows that for binary-gate batched bootstrapping, our construction is
about 3x faster than [54]. Moreover, with optimizations allowing the runtime to scale with the plaintext

2Each range may contain a different amount of points, but for simplicity here, we assume they all have m points.

4

space, our construction greatly brings down the overall bootstrapping runtime for smaller plaintext space.
Compared to the uniform runtime for any plaintext space smaller than Z512 in the prior work, our work is
more efficient when considering the functional/programmable bootstrapping for plaintext space with 3-8-bit.

1.2 Related Work

1.2.1 BFV Bootstrapping

All the prior works about BFV bootstrapping are regular bootstrapping whose goal is simply to reduce the
error (or equivalently increase the noise budget) of the input ciphertexts [6, 22, 33, 14, 26]. This allows one
to evaluate circuits with arbitrary depth.

In Table 1, we compare our result with the prior works on regular BFV bootstrapping [33, 14, 26, 25, 59].
Our protocol supports several different types of functions: fpts maps a random set X to another random set

Y, with |Y| ≤ |X | ≤ ⌊t/r⌋ (for Zt being the plaintext space, and r = O(
√
h) where h is the hamming weight

of the BFV secret key); franges represents a range-to-point mapping for multiple ranges, while fub maps one
range to some point and the other much larger range 3 to another point (i.e., an unbalanced range mapping).
Note that franges and fub both map ranges to points and both require the ranges to be separated by r (for
example, if the inputs are composed of k ranges, we need [ui − r/2, vi + r/2] ∩ [uj − r/2, vj + r/2] = ∅ for
all i ̸= j ∈ [k]). f1 and f2 are two additional types of functions that serve as stepping stones toward our
final construction, where f1 is the identity function on a subset of Zt with static intervals r, and f2 is its
generalized version with potentially small static intervals.

The closeness property is a new property we define additional to standard correctness (which does not
put any constraint on invalid inputs): for any invalid input, the output still needs to be the outputs of one
of the closest ℓ valid input points to that invalid input. This property can be useful in some applications
but is not a hard requirement as constructions may take advantage of not having it for better efficiency. See
Section 7 for further discussion regarding applications (with ands without closeness requirement).

In Algorithm 7 in Section 5.2.2, we provide an alternative construction to evaluate the type franges (i.e.,
type (2) function of our result). This alternative construction is more efficient when the k-th range is larger
than the other k − 1 ranges combined and provides k-closeness (Definition 3.2). Let the total size of the
first k − 1 ranges be S. The depth is log(S + r(k − 1)) + log(t); number of scalar multiplications is S; and
the number of non-sclar multiplications is S + log(t). To avoid extra complexity, we do not include it in the
table.

From Table 1, we can see that the total cost of our construction is dependent on the functions and
thus more fine-grained. For example, for fpts, if |X| = O(1), our construction cost can also be O(1) (as

r = O(
√
h) and h is viewed as a constant in prior works [26, Section 7.2]). Note that since function f1, f2

can be treated as special cases of fpts, they achieve the same efficiency asymptotically as fpts. On the other
hand, although fub is also a special case of franges, fub is both asymptotically and concretely more efficient
when |v1 − u1| ≪ |v2 − u2| (due to symmetry, it also works for functions with |v1 − u1| ≫ |v2 − u2|).

Lastly, our construction supports a lot more slots: N compared to N/d. In practice, d≫ 1. For example,
for the parameters tested in [14], N/d ≈

√
N (we refer readers to the caption of Table 1 for more detailed

parameter definitions). Thus, prior works inherently support a lot fewer slots due to their techniques and
can hardly be extended. Thus, our amortized efficiency is much better than prior works.

Method-wise, our construction uses a different idea to reduce costs. [33, 14, 26] focuses on temporarily
enlarging the plaintext space to accommodate the partial decryption value. In more detail, when computing
b− ⟨⃗a, sk⟩ for ciphertext (⃗a, b),4 instead of computing it over Zte , they compute it over Zte′ for some e′ > 1

satisfying b − ⟨⃗a, sk⟩ ≪ te
′
when evaluated in the integer domain; thus, they obtain k · t + m + ϵ < te

′
for

some integer k. To recover m, one of their main steps is then to remove k · t. In contrast, our construction
directly computes the partial decryption over Zt, and thus do not need this step.

3Can be almost as large as all the other points in Zt.
4Notice that for readability, we use LWE ciphertext as an illustration here, while in the construction, we use RLWE ciphertext

instead.

5

A recent work [59] explores the algebraic structure of the plaintext space, they can reduce the number
of non-scalar multiplications from O(

√
p) to O(log(p)) (other works in the table has O(

√
p) non-scalar

multiplications instead). Despite their interesting techniques and great asymptotic improvement, it still only
supports N/d slots, and concretely, the construction is only about 1.6x faster than the prior constructions
[14]. We provide a concrete comparison in Section 6.

1.2.2 Recent concurrent works

Comparison with [41]. A recent concurrent and independent work [41] uses CKKS to bootstrap BFV.
With this interesting novel idea, they achieve a concrete amortized runtime comparable to our construction.
While they have some advantages over our solution (they support regular BFV bootstrapping and can more
easily support larger plaintext modulus), they also have some disadvantages: (1) since their technique focuses
on noise removal, it is inherently hard to extend their scheme to support functional bootstrapping; (2) their
concrete runtime increases relatively fast when the noise budget after bootstrapping grows; (3) since they
rely on CKKS, two sets of evaluation keys are needed for both CKKS and BFV when using BFV with
their bootstrapping method; (4) relying on CKKS may introduce extra security concerns as discussed in
[50]; however, note that they only use CKKS as an intermediate step and thus this may not be an issue
any all; but it may be a concern for some applications and thus may require further investigation. With
these different pros and cons, we believe that our scheme and their scheme may be preferred by different
applications. We give a concrete comparison in Section 6.

Comparison with [56]. Another recent concurrent and independent work [56] also focuses on BFV/BGV
bootstrapping (using only BFV/BGV but not CKKS). Similar to all existing BFV/BGV works, this work
focuses on removing the noise using BFV/BGV. With their elegant new techniques, their runtime is depen-
dent on B where B is the number of digits of the noise that need to be removed, instead of log(p). Thus,
their runtime is about 1-2x faster than [25] for the parameters tested in [25]. They additionally test some
parameters that can hardly be tested using [25] and achieve 1-2 orders of magnitude improvement. While
this improvement is impressive and they support regular BFV/BGV bootstrapping, their amortized run-
time is still slower than ours. Furthermore, as discussed, we in addition support function evaluation during
bootstrapping. Therefore, we believe these pros and cons can make our scheme favorable in some cases and
theirs favorable in other cases. We give a concrete comparison in Section 6.

Comparison with [43]. One recent concurrent and independent work [43] also introduces a way to do
functional bootstrapping for BGV/BFV. Similar to our functionality, they support a function evaluation
while performing a bootstrapping. They support functions Zp → Zq where q ̸= p, which means that their
plaintext modulus before their functional bootstrapping is Zp and plaintext modulus after is Zq. This is
different from our functionality and may be suitable for different applications. Note that this also means
that after one bootstrapping followed by a deep circuit, to perform a second bootstrapping, the application
needs to perform either a regular bootstrapping or find some q′ ̸= q and then use their bootstrapping.5

Additionally, their runtime scales linearly in q, and thus their practical q choice is relatively small (e.g., Z17

as they show in their benchmarks). Lastly, like past works in regular BFV bootstrapping [33, 14, 26, 25, 59],
they also explore some algebraic structures and thus require special parameter choices for BFV. Therefore,
they can support much fewer slots than ours, thereby worse amortized efficiency.

1.2.3 Bootstrapping of other schemes

CKKS bootstrapping. CKKS bootstrapping is another line of work [13, 34, 47, 35, 5, 46, 42]. Similar
to regular BFV bootstrapping, CKKS bootstrapping also only supports (approximate) identity function.
Unlike BFV, CKKS instead computes with (approximate) real numbers. Therefore, their decryption process
takes a different strategy from our construction or the BFV bootstrapping: they use sine to approximate a
mod function, and then use a polynomial function to approximate the sine function.

5Via private communication with the authors.

6

Supported functions Depth
of scalar
multiplications

of non-scalar
multiplications

Plaintext
space

slots
Closeness
(Definition 3.2)

Regular BFV
Bootstrapping
[33, 14, 26, 25, 59]

Identity function
over the entire
plaintext space

log(h) + log log(pe)
logp(h) · (logp(h) + e) · p (logp(h) · (

√
e+

logp(h)) · log p)
R(pe, d)

N/d N/A
(logp(h)·(logp(h)+e)·p)

d

(logp(h) · (
√
e+

logp(h)) · log p)/d
Zpe

Our result

(1) fpts : X → Y
X, Y ⊂ Zt

Algorithm 4
log(|X| · r) |X| · r

√
|X| · r

Zt N

ℓ = |Y|, if |X| = t−1
r ;

no, o.w.

(2) franges(m) = yi if m ∈ [ui, vi]
ui, vi, yi ∈ Zt, i ∈ [k], k ≥ 2
Algorithm 5

log(
∑

i∈[k](|vi − ui|+ r))
∑

i∈[k](|vi − ui|+ r)
√∑

i∈[k](|vi − ui|+ r)
ℓ = 2 with overhead
(Remark 5.4)

(3) fub(m) = yi if m ∈ [ui, vi]
ui, vi, yi ∈ Zt, i ∈ [2]
Algorithm 6

log(|v1 − u1|+ r) + log(t) 1 |v1 − u1|+ r + log(t) ℓ = 2

Our result
(Stepping stone)

(4) f1 : identity function
over [0, t− 1, r]
Algorithm 1

log(t) t
√
t ℓ = 2

(5) f2 : [u, v, r′]→ Y
u, v, r′ ∈ Zt, Y ⊂ Zt

Algorithm 2
log(r(v − u)/r′) r(v − u)/r′

√
r(v − u)/r′

ℓ = 2, if r′ = r;
ℓ = |Y|, o.w.

Table 1: Asymptotic behavior of our construction compared to prior works on regular BFV bootstrapping
(ignoring some constants). [a, b, c] := {a, a + c, a + 2c, . . . , b} (i.e., the set of all the integers x ∈ [a, b] such
that x − a divides c), where c divides b − a, p is some small prime satisfying gcd(p,m) = 1, e ≥ 1, the
plaintext space is given as pe, and d the multiplicative order of p in Z∗

2N . t is some prime satisfying t ≡ 1

mod 2N , and r = O(
√
h) is the modulus switching error range. Concretely speaking, for most practical

parameters benchmarked in our work and prior works, t ≈ pe (or t≫ pe for some parameters [59, 25]). h is
the hamming weight of the secret key, and r = O(

√
h). At a high level, ℓ-closeness means that the output

of all the out-of-the-range invalid inputs are mapped to the evaluation result of one of their closest ℓ valid
inputs. Depth here means the multiplicative depth of the bootstrapping circuit.

(Batched) FHEW/TFHE bootstrapping. FHEW/TFHE bootstrapping [21, 18, 48] focuses on boot-
strapping for a single LWE ciphertext. Recently, some works bootstrap multiple LWE ciphertexts at the
same time, denoted as batched bootstrapping [57, 30, 58, 52, 53, 54]. This line of work also supports arbi-
trary function evaluation during bootstrapping. Looking ahead, some of our techniques can be applied to
improve the batched bootstrapping method proposed in [54], as discussed in Section 8.

Functionality-wise, our major advantage over batched FHEW/TFHE bootstrapping is that our boot-
strapping is embedded inside BFV circuits. One can easily perform multiplications and additions before or
after our bootstrapping, which is inherently hard in the FHEW/TFHE case.

1.3 Paper organization

The rest of the paper is organized as follows. Section 2 introduces the notations and necessary background for
the rest of the paper. Section 3 gives the formal definition of our generalized BFV functional bootstrapping.
Section 4 describes the overall framework of our construction with two stepping-stone function families.
Section 5 shows how our framework can be applied to more general function families. Section 6 includes the
concrete efficiency of our construction and how it compares to prior works. Section 7 discusses some example
applications that can take advantage of our generalized bootstrapping constructions. Section 8 presents how
our technique can be used to improve batched FHEW/TFHE bootstrapping. Section 9 concludes the paper.

2 Preliminary

Let N be a power of two. Let [u, v, r] denote the range from u to v with step value r (i.e., [u, v, r] :=
{u, u + r, u + 2r, . . . , v} and r divides u − v). Let R = Z[X]/(XN + 1) denote the 2N -th cyclotomic ring
where N is a power-of-two, and RQ = R/QR for some Q ∈ Z. Let [n] denote the set {1, . . . , n}. Let a⃗
denote a vector and a⃗[i] denote the i-th element of a⃗. Similarly, if A is a matrix, let A[i][j] denote the
element on the i-th row and j-th column of matrix A. Let ∥x⃗∥ℓ denote the ℓ-norm for vector x⃗ (calculated

7

as (
∑

i∈|x⃗| x⃗[i]
ℓ)1/ℓ). If x ∈ R, let ∥x∥ℓ denote the ℓ-norm of the coefficient vector of x, and let x[i] denote

the i-th coefficient of x.
Unless otherwise specified, the key is taken implicitly and correctly for functions (e.g., Dec(ct) where ct

is some LWE ciphertext and Dec is the decryption procedure of LWE scheme).
All the divisions (i.e., a/b or a

b) and roundings (i.e., ⌈·⌋ , ⌈·⌉ , ⌊·⌋) are performed in real numbers. All the
other operations (including a−1) are performed in finite field Zt for some prime t (where t is specified if not
obvious), unless otherwise noted.

2.1 B/FV Leveled Homomorphic Encryption

The BFV leveled homomorphic encryption scheme is first introduced in [6] using standard LWE assumption,
and later adapted to ring LWE assumption by [22].

Given a polynomial ∈ Rt = Zt[X]/(XN +1), the BFV scheme encrypts it into a ciphertext consisting of
two polynomials, where each polynomial is from a larger cyclotomic ring RQ = ZQ[X]/(XN + 1) for some
Q > t. We refer t as the plaintext modulus, Q as the ciphertext modulus, and N as the ring dimension. t
satisfies that t ≡ 1 mod 2N , where N is a power of two. 6

Plaintext encoding. In practice, instead of having a polynomial in Rt = Zt[X]/(XN + 1) to encrypt,
applications usually have a vector of messages m⃗ = (m1, . . . ,mN) ∈ ZN

t . Thus, to encrypt such input
messages, BFV first encodes it by constructing another polynomial y(X) =

∑
i∈[N] yiX

i−1 where mi = y(ζj),

ζj := ζ3
j

mod t, and ζ is the 2N -th primitive root of unity of t. Such encoding can be done using an
Inverse Number Theoretic Transformation (INTT), which is a linear transformation represented as matrix
multiplication.

Encryption and decryption. The BFV ciphertext encrypting m⃗ under sk← D has the following format:
ct = (a, b) ∈ R2

Q, which satisfies b − a · sk = ⌊Q/t⌋ · y + e where ⌊Q/t⌋ · y ∈ RQ and y is the polynomial
encoded in the way above, and e is a small error term sampled from a Gaussian distribution over RQ with
some constant standard deviation.

Symmetric key encryption can be done by simply sampling a random a and constructing b accordingly
using sk. Public key encryption can also be achieved easily but it is not relevant to our paper so we refer
the readers to prior works (e.g., [6, 22, 40]) for details.

Decryption is thus calculating y′ ← ⌈(t/Q) · (b− a · sk)⌋ ∈ Rt (note that (b−a · sk) is done over RQ), and
then decodes it by applying a procedure to revert the encoding process (which is also a linear transformation).
For simplicity, we assume BFV.Dec also embeds the decoding procedure and thus outputs plaintext y′ ∈ ZN

t

in the decoded form directly (instead of a polynomial y ∈ Rt). Similarly, we assume BFV.Enc contains the
encoding process, thus taking a plaintext y′ ∈ ZN

t . In addition, define PartialDec(sk, ct = (a, b) ∈ R2
Q) :=

b− a · sk ∈ RQ (i.e., decryption without performing the rounding to Rt).

BFV operations. BFV essentially supports addition, multiplication, rotation, and polynomial function
evaluation, satisfying the following property:

• (Addition) BFV.Dec(ct1 + ct2) = BFV.Dec(ct1) + BFV.Dec(ct2)

• (Multiplication) BFV.Dec(ct1 × ct2) = BFV.Dec(ct1)× BFV.Dec(ct2)

• (Rotation) BFV.Dec(rot(ct, j))[i] = BFV.Dec(ct)[i+ j (mod N)],∀i, j ∈ [N]

• (Polynomial evaluation) BFV.Dec(BFV.Eval(ct, f)) = f(BFV.Dec(ct)), where f : Zt → Zt is a polyno-
mial function. Note that this is implied by addition and multiplication.

• (Vector-matrix multiplication) BFV.Dec(ct×A) = BFV.Dec(ct)×A, where A ∈ ZN×D
t for any D > 0.

6Note that this is the relationship between t,N does not need to be satisfied in general (e.g., see [31, 32] for the general
encoding). However, throughout our paper, we suppose it holds to maximize the concrete efficiency and thus introduce it this
way for simplicity.

8

Given a BFV ciphertext ct and its corresponding secret key sk, we also assume that its noise budget can be
derived via interface B(sk, ct). A noise budget is essentially the gap between the plaintext encrypted under
ct and the noise inside ct, which is used to allow operations (e.g., multiplications) over the ciphertexts. For
simplicity, B with subscripts is also used to refer to hardcoded noise budget bounds (e.g., Bin represents the
noise budget requirement of the input).

All operations are operated over the entire plaintext vector m ∈ ZN
t (element-wise). Thus, all messages

need to be evaluated using the same polynomial f by default. This is also known as the Single Instruction
Multiple Data (SIMD) property of BFV. Note that vector-matrix multiplication can be realized using scalar
multiplication (implied by addition) and rotation. All of these BFV operations are used as blackboxes in our
main constructions and we refer the readers to [6, 22, 40, 33, 31] to see how these operations are accomplished
in detail. In this paper, we sometimes directly refer to the interfaces (e.g., Dec) for short without the BFV
prefix (e.g., BFV.Dec).

3 Definition of Generalized BFV Bootstrapping

We first define a more general BFV bootstrapping procedure.7 As discussed in Section 1, the main goal of this
generalized definition is to capture (1) the relaxation that not the entire plaintext space needs to be valid, and
for the invalid plaintexts, the corresponding correctness does not need to be guaranteed by the construction;
(2) the bootstrapping itself contains an evaluation of a given function, thus making the bootstrapping
procedure itself more useful and can be embedded directly into the circuit without inducing stand-alone
bootstrapping overhead. These two properties are captured as follows: given a function f : X → Y and
input ciphertext encrypting x ∈ X , after the bootstrapping procedure, the output ciphertext encrypts
y = f(x) ∈ Y. If x ̸∈ X , the output is not defined, and thus can be arbitrarily decided by the construction.

The definition also captures the most basic requirement of bootstrapping: the output ciphertext has more
noise budget (or equivalently less noise) compared to the input ciphertext, such that bootstrapping can be
used to support circuits with arbitrary depth.

Formally, the general BFV bootstrapping procedure is defined as follows, consisting of two PPT algo-
rithms:

• pp = (N, t,Bin,Bout,F , ppaux), sk, btk ← Setup(1λ): Setup takes a security parameter λ, and outputs a
secret key sk, a bootstrapping key btk, and a public parameter pp including ring dimension N , plaintext
space t, input noise budget Bin, output noise budget Bout, a function family F , and auxiliary public
parameters ppaux.

• ct′ ← Boot(pp, btk, f, ct): takes the public parameter pp, a bootstrapping key btk, a function f ∈ F , a
ciphertext ct and outputs a ciphertext ct′.

Definition 3.1 (Correctness). The bootstrapping procedure is correct, if it satisfies the following: let
(pp = (N, t,Bin,Bout,F , ppaux), sk, btk) ← Setup(1λ), for any function f : X → Y ∈ F (where X ,Y ⊆ Zt

and |X | ≥ |Y| ≥ 2),8 any honest input ciphertext ct with B(sk, ct) ≥ Bin, let ct′ ← Boot(pp, btk, f, ct),
m⃗← Dec(sk, ct) ∈ ZN

t , m⃗′ ← Dec(sk, ct′) ∈ ZN
t , it holds that:

Pr

[
∀ i ∈ [N], if m⃗[i] ∈ X , f(m⃗[i]) = m⃗′[i]

∧ B(sk, ct′) ≥ Bout > Bin

]
≥ 1− negl(λ)

In some cases, applications may require that even if x ̸∈ X , the result does not “deviate” too much
(such that the error can be predicted and algorithmically handled). To capture this demand, we define an
additional property we call “ℓ-closeness”. Essentially, it means that even if x ̸∈ X , the output ciphertext
encrypts y ∈ S, where S ⊆ Y contains the evaluation results of the ℓ points of X that are the “closest” to x
(for a point x′ ∈ X , the smaller |x− x′| is, the closer x′ and x are).

7We focus on BFV in this work, but all our results can be directly transformed to BGV with minimum modification (e.g.,
with techniques in [3, Sec A]).

8For |Y| = |[y]| = 1, a trivial yet valid bootstrapping is to directly output a BFV ciphertext with all slots encrypting y.

9

Note that this property is auxiliary to the regular correctness, and may not be needed in some applications
(see Section 7 for discussion). Looking ahead, some of our constructions achieve the closeness property while
some do not. The ones that do not achieve it take advantage of such further relaxation to achieve even better
efficiency. With these in mind, we define ℓ-closeness formally as follows.

Definition 3.2 (ℓ-closeness). The bootstrapping procedure is ℓ-close, if it satisfies the following: for the
same quantifiers as correctness; for all x ∈ Zt \ X , let yx,1, . . . , yx,|Y| denote all the points in Y satisfying
|f−1

x (yx,1)− x| ≤ |f−1
x (yx,2)− x| ≤ · · · ≤ |f−1

x (yx,|Y|)− x|,910 and Sx := {yx,1, . . . , yx,ℓ}; it holds that for all
i ∈ [N], if m⃗[i] ̸∈ X :

Pr
[
f(m⃗[i]) ∈ Sm⃗[i]

]
> 1− negl(λ)11

Remark 3.1. The regular BFV bootstrapping, which only supports F = {I} with I : Zt → Zt being the
identity function, is a special case of our definition.

Remark 3.2. Naturally, we want at least Bout > Bin + B×, where B× is the noise budget needed for one
multiplication. Thus, after every bootstrapping, the output ciphertext can perform at least one multiplication
(which implies one addition for BFV) before the next bootstrapping. This gives us the ability to evaluate a
circuit with arbitrary depth. However, for generality, we simply require Bout > Bin, the minimum requirement
for a non-trivial bootstrapping scheme, and leave the value of Bout − Bin to be tuned based on applications
during setup.

Also, interestingly, even Bout ≤ Bin, as long as F is not purely the identity function, the construction
may not be trivial. For example, if Bout = Bin and F = {f(x) = x2}, essentially this construction allows free
squaring. However, we do not capture this case in our definition as it introduces extra complexity. However,
this may be of its own interest and worth exploring.

Remark 3.3. Again, we believe that ℓ-closeness may not be necessary for some applications. A construction
that only satisfies correctness while outputting an arbitrary value for invalid inputs can also be interesting
and applicable in many senarios (Section 7).

Furthermore, even if a construction does not satisfy ℓ-closeness, the output for the invalid inputs can still
be “structured”. For example, if input is not in X , the scheme always outputs 0, while 0 ̸∈ Y. This is still
“predictable” but not captured by the closeness property. How to define such a more general property is left
for future works with constructions having such properties.

4 Our General Framework for Bootstrapping

In this section, we propose a (relaxed) BFV bootstrapping framework. In Section 4.1, we start with a simple
function (the identity function over a subset of the plaintext space) to show how the general framework
works. Then in Section 4.2, we use a generalized type of function to show how the framework can be used
for more versatile functions. These two types of functions work as stepping stones to fully introduce our
framework. We later show in Section 5 how the framework works for more general types of function families.

4.1 Bootstrap for Identity Function f1 over [0, t− 1− r, r]

As a stepping stone, let us first consider the identity function. Different from prior works that focus on
identity mapping on all values in Zt, we define f1 with input consisting of a set of points X ⊂ Zt. This
allows us to construct a more efficient bootstrapping scheme.

Let X := [0, t − 1 − r, r], for some 1 ≤ r < t (r to-be-fixed later). Denote m⃗ ∈ ZN
t ← Dec(sk, ctin),

where ctin is the input ciphertext, sk is the corresponding secret key, t is the plaintext space, and N is the

9Let f−1
x (y) denote a point z where f(z) = y and z − x = minz′∈X ,f(z′)=y(z

′ − x). In other words, f−1
x (y) outputs a point

that is (1) a valid input in X ; and (2) is the close to x among all possible points z′ satisfying f(z′) = y.
10If |f−1

x (yx,i)− x| = |f−1
x (yx,j)− x| for i ̸= j, then any order is accepted.

11The randomness is taken over the input ciphertext and the generated keys.

10

ring dimension. Our goal is to compute ctout ← Boot(·, ·, ctin, f1) such that for all i ∈ [N], if m⃗[i] ∈ X ,
m⃗′[i] = m⃗[i], where m⃗′ ← Dec(sk, ctout).

Decoding the input ciphertext. Recall that as introduced in Section 2, to encrypt a message m⃗ ∈ ZN
t ,

BFV constructs a ciphertext ct that encrypts a polynomial y(X) encoding m⃗. Formally speaking, let ct =
(a, b) ∈ R2

Q, it holds that b− a · sk ≈ ⌊Q/t⌋ · y, where y(X) =
∑

i∈[N] y[i]X
i−1 ∈ Rt, satisfying m⃗[i] = y(ζi)

(where ζi := ζ3
i

) for all i ∈ [N] (ζ is the 2N -th primitive root of unity of t). Thus, the very first step
for bootstrapping (i.e., homomorphic decryption) is to perform a decoding, homomorphically changing the
encrypted y(X) into m(X) :=

∑
i∈[N] m⃗[i]Xi−1 by computing ct1 ← ct · U⊺ homomorphically with:

U :=

1 ζ0 ζ2
0 ... ζN−1

0

1 ζ1 ζ2
1 ... ζN−1

1

...
...

...
. . .

...

1 ζN
2

−1
ζ2
N
2

−1
... ζN−1

N
2

−1

1 ζ̄0 ζ̄2
0 ... ζ̄N−1

0

1 ζ̄1 ζ̄2
1 ... ζ̄N−1

1

...
...

...
. . .

...

1 ζ̄N
2

−1
ζ̄2
N
2

−1
... ζ̄N−1

N
2

−1

∈ ZN×N

t

as the SlotToCoeff step in [54].

Switching modulus. Now we have a ciphertext ct1 = (a1, b1) ∈ R2
Q, encrypting m(X) ∈ Rt defined above.

Recall that the plaintext space of the underlying BFV scheme is Zt. Therefore, to homomorphically decrypt
ct1, we need to first match the modulus by performing a modulus switching: ct2 ← ⌈t · (a1, b1)/Q⌋ ∈ R2

t .
Notice that with ct1 = (a1, b1) satisfying b1 − a1 · sk = α ·m + e (where α = ⌊Q/t⌋), for some small noise
term e ∈ RQ. After modulus switching, we have ct2 = (a2, b2) satisfying b2 − a2 · sk = m + e′, where
e′(X) :=

∑
i∈[N] e

′[i]Xi−1 ∈ Rt is some noise term dominated by the error introduced through modulus
switching, which might “contaminate” the correct message m.

Fortunately, we do not need to correctly decrypt all possible values in Zt, but instead, only consider
the correct decryption of m[i] ∈ [0, t − 1 − r, r]; for invalid values in Zt \ [0, t − 1 − r, r], we do not need to
guarantee the correctness per Definition 3.1. Therefore, we fix r to be the smallest positive integer such that
Pr[∥e′[i]∥ < r/2] ≥ 1− negl(λ) for all i ∈ [N].12

This means that for m[i] ∈ [0, t− 1− r, r], m[i] + e′[i] ∈ (m[i]− r/2,m[i] + r/2), Rounding m[i] + e′[i] to
the nearest value in [0, t−1−r, r] then gives us exactly m[i], which provides the correct decryption. Formally

speaking, with ct2 = (a2, b2), let m
′(X) :=

∑
m′[i]Xi−1 ← b2−a2 · sk, it holds that r

⌈
m′[i]
r

⌋
= m⃗[i] ∈ Zt, for

all i ∈ [N], except with negligible probability. With these, we proceed to introduce how the homomorphic
decryption is done.

Analysis of t and r. One may wonder whether this t is always possible to achieve given that we need t > r.
Luckily, this is easy: since the modulus switching error, as mentioned in [21, Lemma 5], is O(

√
h) where h

is the hamming weight of the secret key.13 Thus, we simply need to set t = ω(
√
h). To utilize the full SIMD

power of the BFV scheme, one needs to set t > N such that t ≡ 1 mod 2N (as discussed in Section 2),
and thus t = Ω(N) = ω

√
h (for ternary or binary secret keys). Note that prior works [33, 14, 26, 25, 59]

similarly require the keys to be ternary or binary (or more commonly a sparse key with some fixed hamming
weight), as they need to bound the wrap-around over Zt as well to perform the digit extraction method.
Furthermore, most existing implementations of BFV [61, 4, 1] use a ternary secret key. Thus, we believe our
parameter setting is easily achievable.

Homomorphic decryption. The final step is to homomorphically decrypt ct2. Note that now ct2 ∈ R2
t ,

and the plaintext modulus is t. Therefore, we can simply homomorphically compute b2 − a2 · sk over Zt by

12For simplicity, we assume r divides t− 1. This is w.l.o.g because we can make the range [0, t− t′ − r, r] where t− t′ is the
largest multiple of r with t′ > 0. This change does not affect the main point or technique of this paper.

13Note that this is the modulus switching error of the LWE ciphertexts, which we can achieve by simply transforming one
RLWE ciphertext to N LWE ciphertexts using the SampleExtract procedure as discussed incite [18]. One may also simply bound
the modulus switching error of RLWE as discussed in [40], which is O(

√
N) for binary/ternary secrets.

11

utilizing the free mod operation. Compared to prior works [33, 14, 26], which need to perform plaintext
space switching, our construction is much simpler. In more detail, our homomorphic decryption is carried
out in two steps:

• First, given ct2 = (a2, b2) ∈ R2
t , we evaluate a partial decryption process PartialDec(sk, ct2), which com-

putes b2−ctsk×A2, where ctsk is the encrypted sk under BFV,A2 :=

a2[1] a2[2] a2[3] ... a2[N]

−a2[N] a2[1] a2[2] ... a2[N−1]
−a2[N−1] −a2[N] a2[1] ... a2[N−2]

...
...

...
. . .

...

−a2[2] −a2[3] −a2[4] ... a2[1]

 ∈
ZN×N
t , and ctsk × A2 is homomorphically computed as a vector-matrix multiplication. The resulting

ciphertext is denoted as ct3.

• With ciphertext ct3 encrypting (m′[1], . . . ,m′[N]) ∈ ZN
t (recall that m′ = m+ e′ for some small error

e′), we then simply need to compute r
⌈
m′

i

r

⌋
over Zt for all i ∈ [N]. This can be done by interpolating

a function fpost(x) : Zt → Zt, s.t., for all x ∈ Zt, fpost(x) = r
⌈
x
r

⌋
via Lagrange interpolation. The

resulting ciphertext, denoted as ctout, encrypts the same message as ctin as desired.

Bootstrapping key and noise setup. Lastly, we discuss what the bootstrapping key contains. Since
we need to homomorphically decrypt the ciphertext ct2, we need to include ctsk which is the encrypted sk
under BFV. Moreover, BFV public keys pk and BFV evaluation keys evk, the keys needed to evaluate the
circuits in the construction (e.g., the relinearization key and the rotation keys14), are all included in the
bootstrapping key.

We also need to specify the input noise budget and output noise budget. Bin is set to be enough for
evaluating the SlotToCoeff step, and Q to be large enough to evaluate fpost such that afterwards there are
still at least Bout > Bin noise budget left.

To finalize the algorithm of BFV bootstrapping for our identity function f1, we need to do some prepa-
ration work in the Setup phase, including choosing all public parameters such as the ring dimension N
and the plaintext space t. The bootstrapping keys are generated as discussed above. Finally, we define
fpost(x) := r

⌈
x
r

⌋
. The procedure is formalized in Algorithm 1.

Theorem 4.1. Algorithm 1 is a correct BFV functional bootstrapping (Definition 3.1) procedure with
function family F := {f(x) = x,∀x ∈ [0, t − 1 − r, r]} where t, r are from pp generated by Setup, assuming
the correctness of BFV. Furthermore, it is 2-close (Definition 3.2).

Proof. Given that the underlying BFV is correct (i.e., all the homomorphic evaluations are completed
as expected given enough noise budget), let m⃗ ← Dec(sk, ctin) ∈ ZN

t , ct1 = (a1, b1) ∈ R2
Q, m1 ←

⌈(t/Q)(b1 − a1 · sk)⌋ (i.e., BFV decryption without the decoding process), it holds thatm1 =
∑

i∈[N] m⃗[i]Xi−1 ∈
Rt, by condition (2) (that there is enough noise budget for SlotToCoeff). Let ct2 = (a2, b2) ∈ R2

t , m2 :=∑
i∈[N] m2[i]X

i−1 ← b2 − a2 · sk ∈ Rt, Then, it holds that Pr [m2[i] ∈ (m⃗[i]− r/2, m⃗[i] + r/2)] ≥ 1− negl(λ)

for all i ∈ [N], by condition (3) (that the error range r is large enough). Thus, let m⃗3 ← Dec(sk, ct3) ∈ ZN
t ,

for all i ∈ [N], m⃗3[i] = m2[i]. Lastly, let m⃗4 ← Dec(sk, ctout) ∈ ZN
t , we have m⃗4[i] = r ·

⌈
m⃗3[i]

r

⌋
= r ·

⌈
m2[i]

r

⌋
for all i ∈ [N] by fpost and condition (3) (that there is enough noise budget to evaluate PartialDec and fpost).
Since we have m2[i] ∈ (m⃗[i] − r/2, m⃗[i] + r/2), then if m⃗[i] ∈ [0, t − 1 − r, r], we have m⃗4[i] = m⃗[i] for all
i ∈ [N].

The 2-closeness property is straightforward. The intuition is that the invalid input points are “rounded”
to the two nearest valid input points (with some biased probability per the ModSwitch error introduced in
line 16). In more detail, let x = m⃗[i], and let zx,i ← f−1

x (yx,i) for i ∈ [1, 2] and yx,i in Definition 3.2; let
d1 ← x − zx,1, d2 ← x − zx,2, (where zx,j are per closeness definition). Note that we have d2 = r − d1 and
d2 ≥ r/2 ≥ d1. For 2-closeness to not hold, err(sk, ct3) > r/2 + d1, which happens with negl(λ) by condition
(3).

14For simplicity, we assume all possible rotation keys are generated. Later, we discuss how to only generate the necessary
ones.

12

Algorithm 1 BFV Bootstrapping for f1 : [0, t− 1− r, r]→ [0, t− 1− r, r]

1: procedure Setup(1λ)
2: Select (N,Q,D, σ,Bin,Bout, t) satisfying the following while minimizing the overall computation cost

of Boot below:
3: (1) RLWEN,Q,D,χσ holds.
4: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N , plaintext space t,

and noise budget Bin, is enough to evaluate SlotToCoeff.
5: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension N , plaintext space

t, and ciphertext space Q, after evaluating PartialDec followed by fpost, still has Bout = Bin + 1 noise
budget remaining. ▷ Bout can be replaced by any number dependent on applications.

6: Let r be the error bound such that Pr[|err(sk, ct3)| < r/2] ≥ 1−negl(λ), where ct3 is in line 16 below.
7: Let ppbfv := (N,Q,D, σ, t).
8: sk, btk← KeyGen(1λ, ppbfv)
9: F1 := {f1(x) := x iff x ∈ [0, t− 1− r, r]}

10: return pp = (N, t,Bin,Bout,F1, ppaux = r), sk, btk).

11: procedure Boot(pp = (N, t,Bin,Bout,F , ppaux = r), btk, ctin, f1)
12: If f1 ̸∈ F1, abort.
13: fpost(x) := r

⌈
x
r

⌋
14: ct1 ← ctin × U⊺ (evaluated homomorphically)
15: ▷ Recall that U is defined in Section 4.1 and this step is SlotToCoeff
16: ct2 ← ModSwitch(ct1, t)
17: Parse ct2 = (a2 =

∑
i∈[N] a2,iX

i−1, b2 =
∑

i∈[N] b2,iX
i−1) ∈ R2

t

18: Let A2 :=

a2,1 a2,2 a2,3 ... a2,N

−a2,N a2,1 a2,2 ... a2,N−1

−a2,N−1 −a2,N a2,1 ... a2,N−2

...
...

...
. . .

...
−a2,2 −a2,3 −a2,4 ... a2,1

 ∈ ZN×N
t , and b⃗2 ← (b2,i)i∈[N] ∈ ZN

t

19: ct3 ← b⃗2 − ctsk ×A2 (evaluated homomorphically) ▷ i.e., PartialDec(ct2, sk)
20: ctout ← BFV.Eval(evk, ct3, fpost)
21: return ctout.

Biased rounding for invalid inputs. In addition to 2-closeness, there is another property of our con-
struction with respect to invalid inputs. At a high level, an invalid input rounds to the nearest valid input
with high probability p and rounds to the second nearest valid input with 1−p, where p≫ 1−p as long as the
invalid input is obviously closer to one input than the other (i.e., d1 ≪ d2 using the notations in the proof).
In more details, recall that Pr[m⃗4[i] = f(zx,1)] ≤ Pr[m⃗4[i] = f(zx,2)] for all x = m⃗[i] ̸∈ X . W.l.o.g, assume
zx,1 = zx,2 + r. Then, if the error introduced in line 16 is ≥ d1 − r/2 ∈ Z, m⃗2[i] ∈ [zx,1 − r/2, zx,1 + r/2);
otherwise, m⃗2[i] ∈ [zx,2 − r/2, zx,2 + r/2). Therefore, Pr[m⃗4[i] = f(zx,1)] < Pr[m⃗4[i] = f(zx,2)] (the same
argument works when zx,1 = zx,2 − r). Note that since the error is Gaussian, if d1 << d2, Pr[m⃗4[i] =
f(zx,1)]≪ Pr[m⃗4[i] = f(zx,2)]. If d1 ≈ d2, the probability becomes close.

4.2 Bootstrapping for f2 : [u, v, r
′]→ Y

We now extend the above identity function into a more general function family: F2 = {f2 : [u, v, r′] → Y},
where u, v, r′ ∈ Zt, and Y being any subset of Zt with |Y| ≤ |[u, v, r′]| = t−1

r ([0, t− 1− r, r] has t−1
r points).

15 It is easy to see that f1 is the special form with u = 0, v = t− 1− r, r′ = r and Y = [u, v, r′].

Preprocess the input ciphertext with fpre. The very first challenge is that if we have r′ < r (call that
r is set to be the error bound of modulus switching), after multiplying the ciphertext with t/Q during the

15Note that if |[u, v, r′]| < t−1
r

, we can either pad dummy elements to follow the same bootstrapping procedure or apply a
more efficient way, introduced in Section 5.1.2.

13

modulus switching step, the encrypted messages will be contaminated by the error incurred and thus the
decryption process fails.

To resolve this issue, we first “preprocess” the input ciphertexts by stretching the small intervals r′ to
be r the error bound: in this case the encrypted messages would survive the modulus switching procedure.
In more detail, we construct a bijective mapping fpre(x) : [u, v, r′] → [0, t − 1 − r, r], defined as fpre(x) :=
(x− u) · r · (r′)−1. Before we perform the original SlotToCoeff process as the first step discussed above, we
first homomorphically evaluate fpre over the input ciphertext ctin (which means by the SIMD property we
evaluate fpre(m⃗[i]) for all i ∈ [N] and m⃗ being the message vector encrypted under ctin).

A new fpost function. As before, after preprocessing, we perform SlotToCoeff and modulus switching.
The resulting ciphertext encrypts m⃗′ ∈ ZN

t such that r · ⌈m⃗′[i]/r⌋ = fpre(m⃗[i]) for all i ∈ [N]. Here comes the
second challenge: instead of simple identity mapping, which requires nothing else other than output m⃗′ in
our previous construction 16, Y as the output set of f2 can be any arbitrary subset of Zt with size ≤ | t−1

r′ |.
Thus, we need a new function fpost(x) : Zt → Zt to map m⃗′ onto the corresponding values in Y, i.e.,

fpost(x) = f2(f
−1
pre (r · ⌈x/r⌋)). Note that since fpre is bijective, f−1

pre always exists. The correctness is as
follows:

fpost(m⃗
′[i]) = f2(f

−1
pre (r · ⌈m⃗′[i]/r⌋)) = f2(f

−1
pre (fpre(m⃗[i]))) = f2(m⃗[i])17

In summary, most of the bootstrapping process for this new function family remains the same as for the
identity function, and the only parts that differ are the new function fpre and a revised fpost function.

Regarding the Setup phase, we set Bin to be large enough to evaluate any degree one function (to
accommodate the noise growth in the worst case), since fpre is at most a degree-1 polynomial. Similarly,
for fpost to be at most degree-(t − 1), we set Q large enough to accommodate an arbitrary degree-(t − 1)
function. We formalize our construction in Algorithm 2.

Theorem 4.2. Algorithm 2 is a correct BFV functional bootstrapping (Definition 3.1) procedure for function
family F2 := {f2 := [u, v, r′] → Y | (u, v, r′ ∈ Zt) ∧ (Y ⊂ Zt) ∧ (|Y| ≤ |[u, v, r′]| = t−1

r)}, assuming the
correctness of BFV. Furthermore, if it |Y|-closeness (Definition 3.2).

Proof. We prove this the same way as in Theorem 4.1. Given that the underlying BFV is correct (i.e., all
the homomorphic evaluations are completed as expected given enough noise budget), let m⃗← Dec(sk, ctin) ∈
ZN
t and m⃗1 ← Dec(sk, ct1) ∈ ZN

t , we have m⃗1 = fpre(m⃗). Then, let ct2 = (a2, b2) ∈ R2
Q, m2 ←

⌈(t/Q)(b− a2 · sk)⌋, we have m2 =
∑

i∈[N] m⃗1[i]X
i−1 ∈ Rt, by condition (2) (that there is enough noise

budget for fpre and SlotToCoeff). Let ct3 = (a3, b3) ∈ R2
t , m3 :=

∑
i∈[N] m3[i]X

i−1 ← b3 − a3 · sk ∈ Rt,

Then, it holds that Pr [m3[i] ∈ (m⃗1[i]− r/2, m⃗1[i] + r/2)] ≥ 1 − negl(λ) for all i ∈ [N], by condition (3)
(that the error range r is large enough). Thus, let m⃗4 ← Dec(sk, ct4) ∈ ZN

t , for all i ∈ [N], m⃗4[i] = m3[i].

Lastly, let m⃗5 ← Dec(sk, ctout) ∈ ZN
t , we have m⃗5[i] = f2(f

−1
pre (r ·

⌈
m⃗4[i]

r

⌋
)) = f2(f

−1
pre (r ·

⌈
m3[i]

r

⌋
)) for

all i ∈ [N] by fpost and condition (5) (that there is enough noise budget to evaluate PartialDec and

fpost). Since m3[i] ∈ (m⃗1[i] − r/2, m⃗1[i] + r/2), we have r ·
⌈
m3[i]

r

⌋
= m⃗1[i] for all i ∈ [N], and thus

f−1
pre (r ·

⌈
m3[i]

r

⌋
) = f−1

pre (m⃗1[i]) = m⃗[i]. Therefore, m⃗5[i] = f2(m⃗[i]) as required.

|Y|-closeness is straightforward: not that for any m⃗[i] ̸∈ X , m⃗4[i] ∈ Zt. Furthermore, fpost takes all
possible values of Zt and maps it to Y. Therefore, m⃗5[i] ∈ Y and |Y|-closeness holds.

2-closeness. When extending f1 to f2, the 2-closeness property cannot be satisfied easily. The reason is
that now fpre maps a point ̸∈ X into an arbitrary point. This point is then “rounded” to one of the two
closest points in [0, t − 1, r] as for f1, when evaluating fpost. The only exception is that when r′ = r, fpre
simply shifts the inputs. In this case, |Y|-closeness is improved to 2-closeness.

16Note that even if we do have an identity mapping (i.e., Y = [u, v, r′]), the fpost in the previous section is not enough as we
need to revert the influence of fpre.

17To briefly explain, the input m⃗[i] ∈ [u, v, r′], and thus fpre(m⃗[i] ∈ [0, (v − u) · r/r′, r]), and we have (v − u) · r/r′ = t − 1.
Therefore, we have ⌈fpre(m⃗[i])/r⌋ · r = fpre(m⃗[i]), and thus fpre(m⃗[i]) = m⃗′[i].

14

Algorithm 2 BFV Bootstrapping for f2 : [u, v, r′]→ Y
1: procedure Setup(1λ)
2: Select (N,Q,D, σ,Bin,Bout, t) satisfying the following while minimizing the overall computation cost

of Boot below:
3: (1) RLWEN,Q,D,χσ

holds.
4: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N , plaintext space t,

and noise budget Bin, is enough to evaluate SlotToCoeff followed by any degree-1 polynomial function.
5: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension N , plaintext space t,

and ciphertext space Q, after evaluating PartialDec followed by an arbitrary degree-t polynomial function,
still has Bout = Bin + 1 noise budget remaining. ▷ Bout can be replaced by any number dependent on
applications.

6: Let r is the error bound such that Pr[|err(sk, ct3)| < r/2] ≥ 1− negl(λ), where ct3 is in line 19 below.
7: Let ppbfv := (N,Q,D, σ, t).
8: sk, btk← KeyGen(1λ, ppbfv)
9: F2 := {f2(x) : [u, v, r′]→ Y | (u, v, r′ ∈ Zt) ∧ (Y ⊂ Zt) ∧ (|Y| ≤ |[u, v, r′]| = t−1

r)}
10: return pp = (N, t,Bin,Bout,F2, ppaux = r), sk, btk).

11: procedure Boot(pp = (N, t,Bin,Bout,F2, ppaux = r), btk, ctin, f2) ▷ For the sake of space, we call the
GeneralFramework function defined in Algorithm 3.

12: If f2 ̸∈ F2, abort.
13: Let the input domain of f2 be [u, v, r].
14: fpre(x) := (x− u) · r · (r′)−1

15: fpost(x) = f2(f
−1
pre (r · ⌈x/r⌋))

16: ct1 ← BFV.Eval(evk, ctin, fpre)
17: ct2 ← ct1 × U⊺ (evaluated homomorphically)
18: ▷ Recall that U is defined in Section 4.1 and this step is SlotToCoeff
19: ct3 ← ModSwitch(ct2, t)
20: Parse ct3 = (a3 =

∑
i∈[N] a3[i]X

i−1, b2 =
∑

i∈[N] b3[i]X
i−1) ∈ R2

t

21: Let A3 :=

a3[1] a3[2] a3[3] ... a3[N]

−a3[N] a3[1] a3[2] ... a3[N−1]
−a3[N−1] −a3[N] a3[1] ... a3[N−2]

...
...

...
. . .

...
−a3[2] −a3[3] −a3[4] ... a3[1]

 ∈ ZN×N
t , and b⃗3 ← (b3[i])i∈[N] ∈ ZN

t

22: ct4 ← b⃗3 − ctsk ×A3 (evaluated homomorphically) ▷ i.e., PartialDec(ct3, sk)
23: ctout ← BFV.Eval(evk, ct4, fpost)
24: return ctout.

4.3 General Framework

We now introduce the general framework abstracted from the constructions we described above for the two
function families. Looking ahead, the rest of the work highly relies on this framework, and only small local
changes are made for different function families.

The general framework is straightforward, a visualization is provided in Fig. 1. It is formalized in
Algorithm 3, where KeyGen is used to generate bootstrapping keys given fpre and fpost; and GeneralFramework
is used to formalize our general Boot procedure. Note that setting up the noise budgets is not included,
since it is more function-family-dependent and we leave it to the setup algorithm for each function family.
It is clear that both Algorithm 1 and Algorithm 2 can be modified to invoke the interfaces in Algorithm 3.
In Section 5, all the constructions directly call the procedures in Algorithm 3.

15

Figure 1: The high-level illustration of our generalized framework

4.4 Optimizations

In this section, we specify some techniques that can be applied to our framework during implementation,
which are orthogonal to our main procedure and do not affect correctness. We separate those techniques
from our main framework for better readability.

More efficient linear transformation. In Algorithm 3, both line 11 and line 16 need to homomorphically
evaluate a linear transformation for a vector-matrix multiplication. Doing this in a naive way requires N
homomorphic multiplications and rotations. However, we can apply the baby-step-giant-step algorithm,
introduced in [32] and later improved by [37], to reduce the computation to only O(

√
N) rotations (including√

N rotations of ctsk, which can be saved with the technique below).

Key switching. Note that in Algorithm 3 line 16, the linear transformation is a length N vector sk
multiplied by an N × N matrix U . However, by shortening the sk vector from N to n ≪ N via ring
switching [28] (or field switching) technique, we are able to perform the linear transformation with simply n
multiplications. On the other hand, to avoid violating security constraints, we first need to modulus switch
ct2 into a ciphertext ct′2 with smaller modulus Q′ ≪ Q, and choose the smallest power-of-two n such that
RLWEn,Q′,D,σ holds. Then, we generate another secret key sk′ ∈ R where only the first n coefficients of
sk′ are from D and the rest are padded with zeros. Afterwards, we perform a key switching to ct′2 and
generate another ciphertext ct′′2 such that Dec(sk′, ct′′2) = Dec(sk, ct′2) = Dec(sk, ct2). Since sk′ has only n
non-zero coefficients, line 16 can be replaced with a length-n-vector-by-(n × N)-matrix multiplication, for
some n≪ N .

Combining with the technique above, this requires only n multiplications and
√
n rotations [37, Fig. 5].

Generating rotations in advance. Instead of doing those
√
n rotations for ciphertext encrypting sk when

evaluating Boot, since this step is independent of the input ciphertext, we can compute them during KeyGen
in advance and include all the rotated keys in btk. This can save the

√
n rotations during the bootstrapping

phase.

NTT form preprocessing. To evaluate a ciphertext-by-plaintext multiplication homomorphically, one
needs to (1) perform NTT transformations to both the ciphertext and the plaintext, (2) multiply the NTT
results coefficient-wisely, and (3) apply an inverse-NTT (INTT) transformation to the result to finish the
final evaluation. Since U in line 11 and ctsk in line 16 of Algorithm 3 are known in advance, we perform the
step (1) NTT transform to ciphertext ctsk and plaintext U in advance during KeyGen. This, again, saves a
lot of time during the online Boot phase.

Level-specific rotation keys. For line 16, since there have been a deep circuit evaluated prior to this step,
we can first modulus switch the ciphertext down to Q′ ≪ Q before applying rotations (still with enough noise

18Recall that in Section 2, we mentioned that our encryption includes an encoding procedure. Thus, the encrypted secret
key is encoded as well. This means that we do not need an explicit encoding procedure (or homomorphic encoding procedure)
as the counterpart of our decoding procedure SlotToCoeff, since it is accomplished by this line together with line 16 below.

16

Algorithm 3 General Framework

1: procedure KeyGen(1λ, ppbfv)
2: Prase ppbfv = (N,Q,D, σ, t).
3: Generate BFV secret key sk =

∑
i∈[N] siX

i−1 ← D, and let s⃗ := (si)i∈[N] ∈ ZN
t .

4: Generate fresh encryption of BFV secret key sk← D.
5: Generate ctsk ← Enc(sk, s⃗) with ppbfv

18

6: Generate BFV public key pk and evaluation key evk, using sk.
7: Let btk := (pk, evk, ctsk).
8: return sk, btk.

9: procedure GeneralFramework(pp, btk = (pk, evk, ctsk), ctin, fpre, fpost)
10: ct1 ← BFV.Eval(evk, ctin, fpre)
11: ct2 ← ct1 × U⊺ (evaluated homomorphically)
12: ▷ Recall that U is defined in Section 4.1 and this step is SlotToCoeff
13: ct3 ← ModSwitch(ct2, t)
14: Parse ct3 = (a3 =

∑
i∈[N] a3[i]X

i−1, b2 =
∑

i∈[N] b3[i]X
i−1) ∈ R2

t

15: Let A3 :=

a3[1] a3[2] a3[3] ... a3[N]

−a3[N] a3[1] a3[2] ... a3[N−1]
−a3[N−1] −a3[N] a3[1] ... a3[N−2]

...
...

...
. . .

...
−a3[2] −a3[3] −a3[4] ... a3[1]

 ∈ ZN×N
t , and b⃗3 ← (b3[i])i∈[N] ∈ ZN

t

16: ct4 ← b⃗3 − ctsk ×A3 (evaluated homomorphically) ▷ i.e., PartialDec(ct2, sk)
17: ctout ← BFV.Eval(evk, ct4, fpost)
18: return ctout.

budget left to finish the rest of the process with Bout noise budget left). This means that we can generate
the rotation keys with modulus Q′ instead of Q to reduce the size of the btk.

Combining SlotToCoeff and fpre. In Algorithm 2, we have fpre = (x − u) · r · (r′)−1, where x − u is
a ciphertext and r · (r′)−1 can be treated as a scalar. Thus this function involves a ciphertext-by-scalar
multiplication and we combine this part with SlotToCoeff (which is a more complex ciphertext-by-scalar
multiplication) to save one level of multiplication. To be more specific, we multiply the scalar with U
in plaintext: U ′ ← (r · (r′)−1)U . Then, instead of homomorphically evaluating fpre, we simply compute
ct1 ← ct1 − u followed by ct2 ← ct1 × U ′. This achieves exactly the same result as our current procedure
but with one less level of multiplication.

The Paterson-Stockmeyer algorithm. Homomorphically evaluating a degree-d polynomial in a native
way requires d scalar-by-ciphertext multiplications and d ciphertext-by-ciphertext multiplications. However,
we apply Paterson-Stockmeyer [60] algorithm, and reduce the computation cost to d scalar-by-ciphertext
multiplications and O(

√
d) ciphertext-by-ciphertext multiplications.

5 A More Fine-grained Construction

In this section, we make our construction’s efficiency more fine-grained: i.e., dependent on the function
families it needs to support.

Recall that for all the constructions introduced in Section 4, the circuits for evaluating fpost, which is
of degree O(t), have O(t) multiplications. Notice that t needs to be at least 2N + 1 to allow N slots for
the best-amortized efficiency. In some applications, t needs to be even larger to allow a larger finite field
computation. The efficiency is therefore greatly hampered. A natural question is can we make the number
of multiplications and the degree of fpost o(t)?

Unfortunately, if we are mapping O(t) of Zt elements into Zt elements (which is indeed the case for all
the functions introduced above), we need a polynomial function of degree Ω(t). This makes it intuitively
impossible to improve the efficiency asymptotically. Thus, in this section, we discuss some other function

17

families with a more limited input domain (e.g., simply mapping z ∈ Zt to y ∈ Zt and z′ ̸= z ∈ Zt to
y′ ̸= y ∈ Zt), and show how to support them by evaluating a polynomial with a much smaller degree and
thus provide better efficiency.

5.1 Point functions

5.1.1 Efficient Bootstrapping for Two-point Functions

We start with the simplest case: a function mapping two points to two points. We formalized this two-point
mapping function as follows:

f2points(x) =

{
y if x = z
y′ if x = z′

where z ̸= z′, y ̸= y′ ∈ Zt.
19

We apply our generalized framework introduced in Section 4 by passing the correct fpre, fpost accordingly.
Similar to the general issue discussed in Section 4.2, since z ̸= z′ can be arbitrary, fpre needs to be used to
scale the intervals |z − z′| by mapping z to v and z′ to v′ such that |v − v′| ≥ r, where r again is the error
bound. For simplicity, we choose v = 0, v′ = r. Thus, fpre(x) := r(x− z)(z′ − z)−1. If x = z, fpre(x) = 0; if
x = z′, fpre(x) = r.

Then, for fpost, we simply need to (homomorphically) map the ciphertext resulting from the partial
decryption to y or y′. Formally:

fpost(x) =

{
y if x ∈ (−r/2, r/2)
y′ if x ∈ (r/2, 3r/2)

Note that this function only has < 2r ≪ t roots 20, which means that the degree of the function and the
number of multiplications to evaluate this polynomial are both O(r) instead of O(t).

5.1.2 Extending to Multiple Points

Now we discuss how to extend this idea to support more than 2 points.

Revisiting Function Family F2. Let us first take a closer look at the function discussed in Section 4.2:
f2 : [u, v, r′]→ Y ∈ F2, u, v, r

′ ∈ Zt, and Y ⊂ Zt, and let S := |[u, v, r′]|, we have |Y| ≤ S ≤ t−1
r . The reason

why the degree of fpost for f2 needs to be O(t) is that S = t−1
r , and by mapping all the inputs within error

bound r to their corresponding outputs, we are eventually mapping all points ∈ Zt. In other words, if we
make S strictly less than t−1

r , the pre-processing and post-processing can be evaluated by polynomials with
degree < t.

To be more specific, denote f ′
2 to be this variant of f2 with S < t−1

r . To perform functional bootstrapping
for f ′

2, the preprocessing function remains unchanged: fpre(x) := (x − u) · r · (r′)−1, and set fpost(x) =
f ′
2(f

−1
pre (r · ⌈x/r⌋)), for x ∈ [−r/2, (S − 1) · r + r/2].
The difference between the bootstrapping procedure for f2 and f ′

2 is that now fpre has S roots and fpost
has S · r roots, which largely reduces the degree and number of multiplications needed when S is small.

Multi-point mapping function family. The above high-level idea can be extended to a more general
multi-point mapping function family Fpts = {fpts : X → Y, X ,Y ⊆ Zt, |Y| ≤ |X |}. Denote S = |X |, and let
X = {x1, . . . , xS}. Similarly, to map the input to [0, (S− 1) · r, r]. we define fpre(m) := i · r if m = xi. Then,
the post-processing function remains mostly the same: fpost(x) := fpts(f

−1
pre (r · ⌈x/r⌋)), for x ∈ [−r/2, (S −

1) · r + r/2].
By interpolating fpre, fpost of polynomials with degree S, S · r respectively, we have the construction for

a general multi-point mapping function. We formally present our construction in Algorithm 4.

19Note that if y = y′, the construction is trivial. Simply return Enc(sk, y) suffices, as the correctness definition does not
explicitly define the behavior for f(x) if x ̸∈ {z, z′}.

20Recall that r = O(
√
h) where h is the hamming weight of the secret key.

18

Algorithm 4 BFV Bootstrapping for fpts : X → Y
1: Let S be some publicly known parameter, denoting the size of the input domain.
2: procedure Setup(1λ)
3: Select (N,Q,D, σ,Bin,Bout, t) satisfying the following while minimizing the overall computation cost

of Boot below:
4: (1) RLWEN,Q,D,χσ

holds.
5: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N , plaintext space t, and

noise budget Bin, is enough to evaluate SlotToCoeff followed by any degree-(S − 1) polynomial function.
6: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension N , plaintext space t,

and ciphertext space Q, after evaluating PartialDec followed by an arbitrary degree-(S ·r−1) polynomial
function (r defined below), still has Bout = Bin + 1 noise budget remaining. ▷ Bout can be replaced by
any number dependent on applications.

7: Let r be the error bound such that error of ct3 in line 13 in Algorithm 3 ≤ r with probability
1− negl(λ)

8: Let ppbfv := (N,Q,D, σ, t).
9: sk, btk← KeyGen(1λ, ppbfv, fpre, fpost)

10: Fpts := {X → Y | X ,Y ⊂ Zt, |Y| ≤ |X | = S ≤ t−1
r }

11: return pp = (N, t,Bin,Bout,Fpts, ppaux = r), sk, btk).

12: procedure Boot(pp = (N, t,Bin,Bout,Fpts, ppaux = r), btk, ctin, fpts)
13: If fpts ̸∈ Fpts, abort.
14: Let the input domain of fpts be X = {x1, . . . , xS} (padded by dummy elements if less than S elements).
15: fpre(m) := i · r if m = xi (interpolated as a degree-(S − 1) polynomial)
16: fpost(x) = fpts(f

−1
pre (r · ⌈x/r⌋)), if x ∈ (−r/2, (S − 1) · r + r/2) (interpolated as a degree-(S · r − 1)

polynomial)
17: ctout ← GeneralFramework(pp, btk, ctin, fpre, fpost)
18: return ctout.

Theorem 5.1. Algorithm 4 is a correct BFV functional bootstrapping (Definition 3.1) procedure for function
family Fpts := {fpts : X → Y | X ,Y ⊂ Zt, |Y| ≤ |X | = S < t−1

r }, with t is from pp generated by Setup,
assuming the correctness of BFV.

Proof. Given that fpre has at most S roots and fpost has at most S · r roots, condition (2) on line 5 in
Algorithm 4 allows one to evaluate fpre followed by SlotToCoeff correctly, and condition (3) on line 6 allows
one to evaluate the homomorphic decryption followed by fpost correctly with Bout bits of noise left. The rest
of proof is exactly the same as in Theorem 4.2.

Remark 5.2. Notice that when S ≪ t, i.e., the input set X is very sparse over Zt, a low degree (with
degree ≪ S) function may already be enough to map X to X ′ such that for all i ̸= j ∈ X ′, |i − j| > r.
After obtaining X ′, we simply set fpost(m) := fpts(x) for m ∈ [fpre(x) − r/2, fpre(x) + r/2], x ∈ X (thereby
fpre(x) ∈ X ′). I.e., fpost checks every possible x ∈ X , and if m is within r/2 points for any of the fpre(x),
return fpts(x).

Furthermore, if ∀i ̸= j ∈ X , we have |i − j| > r, then there is no pre-processing needed to scale the
intervals in between. See Section 6 for a concrete example. For simplicity, in the formal construction, we
consider the worst-case scenario and treat the degree of fpre to be S.

ℓ-closeness. For fpts, ℓ-closeness does not hold for any ℓ unless S = t−1
r which goes back to f2. This is

because the fpost domain now only covers a subset of Zt while the invalid input may become any point in Zt

before computing fpost.

19

Figure 2: Depiction of the X of an example franges over Zt.

5.2 Range Functions

Now instead of only allowing points, we focus on function mapping ranges (i.e., [a, b] for a < b ∈ Zt) to
points. Naively, we can treat a range [a, b] simply as b− a points, a, b ∈ Zt, and we reuse the scheme of the
point-to-point functions above for range-to-point functions. However, this naive approach not only limits
the efficiency but suffers from the constraints of having at most t−1

r points across all ranges.
Fortunately, it turns out that if the ranges are well-separated, we could again construct a bootstrapping

scheme with much better performance. Formally, define Franges := {franges : (Xi)i∈[k] → Y},Xi ⊂ Zt,Y =
{y1, . . . , yk} ⊂ Zt, k > 1, and:

franges(m) =

y1 if m ∈ X1

y2 if m ∈ X2

. . .
yk if m ∈ Xk

,

where Xi = [ui, vi],∀i ∈ [k]; furthermore, for all i ̸= j ∈ [k], [ui − r/2, vi + r/2] ∩ [uj − r/2, vj + r/2] = ∅,
where r is the error bound. Fig. 2 depicts a high-level view of an example franges input X .

Notice that for such a type of function, no pre-processing is needed and we safely set fpre to be the
identity function, and then set fpost(m) := yi if m ∈ (ui − r/2, vi + r/2),∀i ∈ [k]. Let X :=

⋃
Xi∈[k]. Since

fpost has |X |+ k · r roots 21, it has degree |X |+ k · r − 1. We formalize our construction in Algorithm 5.

Theorem 5.3. Algorithm 5 is a correct BFV functional bootstrapping (Definition 3.1) procedure for function
family defined on line 10, assuming the correctness of BFV.

Proof. Given that the underlying BFV is correct (i.e., all the homomorphic evaluations are completed as
expected given enough noise budget), we have the following. Let m⃗ ← Dec(sk, ctin) ∈ ZN

t , and m⃗1 ←
Dec(sk, ct1) ∈ ZN

t . Since fpre is an identity function, m⃗1 = m⃗. Then, let ct2 = (a2, b2) ∈ R2
Q, m2 ←

⌈(t/Q)(b− a2 · sk)⌋, we have m2 =
∑

i∈[N] m⃗[i]Xi−1 ∈ Rt, by condition (2) (that there is enough noise

budget for fpre and SlotToCoeff). Let ct3 = (a3, b3) ∈ R2
t , m3 =

∑
i∈[N] m3[i]X

i−1 ← b3 − a3 · sk ∈ Rt,

Then, it holds that Pr [m3[i] ∈ (m⃗[i]− r/2, m⃗[i] + r/2)] ≥ 1− negl(λ) for all i ∈ [N], by condition (4) (that
the error range r is large enough). Thus, let m⃗4 ← Dec(sk, ct4) ∈ ZN

t , for all i ∈ [N], m⃗4[i] = m3[i].
Lastly, let m⃗5 ← Dec(sk, ctout) ∈ ZN

t , we have m⃗5[i] = yj if m⃗4 ∈ (uj − r/2, vj − r/2)∀j ∈ [N] by fpost and
condition (5) (that there is enough noise budget to evaluate homomorphic decryption and fpost). Since we
have m3[i] ∈ (m⃗[i] − r/2, m⃗[i] + r/2) ∈ (uj − r/2, vj − r/2) (given that m⃗[i] ∈ [uj , vj] for some j ∈ [k]), we
have m⃗5[i] = yj for all i ∈ [N] as expected.

Remark 5.4 (ℓ-closeness for franges). While our construction does not naturally support 2-closeness for
franges, it can be achieved with some overhead. We modify fpost to be:

fpost(m) =

{
yi if (ui − r/2, vi + r/2),∀i ∈ [k]
fpost(m

′) Otherwise
,

21Technically speaking, since it is (ai − r/2, bi + r/2), it only has |X | + k(r − 1) roots. However, it is distracting to either
make the range check non-symmetric (i.e., change to (ai − r/2, bi + r/2]) or calculate the number of roots more exactly (i.e.,
k(r − 1) instead of kr). Therefore, for here and also the rest of the paper, we estimate the number of roots roughly, the same
way as in the main paper body now, for better readability.

20

Algorithm 5 BFV Bootstrapping for franges

1: Let S, k be two publicly known variables, where S denotes the size of the input domain, and k denotes
the total number of ranges.

2: procedure Setup(1λ)
3: Select (N,Q,D, σ,Bin,Bout, t) satisfying the following while minimizing the overall computation cost

of Boot below:
4: (1) RLWEN,Q,D,χσ

holds.
5: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N , plaintext space t,

and noise budget Bin, is enough to evaluate SlotToCoeff (since fpre is identity function).
6: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension N , plaintext space

t, and ciphertext space Q, after evaluating homomorphic decryption followed by an arbitrary degree-
(S + r · k − 1) polynomial function, still has Bout = Bin + 1 noise budget remaining. ▷ Bout can be
replaced by any number dependent on applications.

7: Let r be the error bound such that error of ct3 in line 13 in Algorithm 3 ≤ r with probability
1− negl(λ)

8: Let ppbfv := (N,Q,D, σ, t).
9: sk, btk← KeyGen(1λ, ppbfv, fpre, fpost)

10: Franges := {franges | (franges with the following format) ∧ (k > 1) ∧ (Xi = [ui, vi] ⊂ Zt, [ui − r/2, vi +
r/2] ∩ [uj − r/2, vj + r/2] = ∅,∀i ̸= j ∈ [k])}

franges(m) =

y1 if m ∈ X1

y2 if m ∈ X2

. . .
yk if m ∈ Xk

11: return pp = (N, t,Bin,Bout,Franges, ppaux = r), sk, btk).

12: procedure Boot(pp = (N, t,Bin,Bout,Franges, ppaux = r), btk, ctin, franges)
13: If franges ̸∈ Franges, abort.
14: fpre(m) := m
15: fpost(m) := yi if m ∈ (ui − r/2, vi + r/2),∀i ∈ [k] (interpolated as a polynomial with degree at most

S + k · r − 1)
16: ctout ← GeneralFramework(pp, btk, ctin, fpre, fpost)
17: return ctout.

where m′ ∈ X satisfying m′ −m ∈ Zt = minj(j −m),∀j ∈ X . In this case, 2-closeness is straightforward
(similar to the proof of Theorem 4.1). The overhead with this new fpost is then essentially t

|X |+kr , which

may be relatively insignificant (depending on the input function). The worst-case overhead is essentially
bounded by t

2r (and recall that evaluating fpost is only one component of the entire process).
Alternatively, Algorithm 7 in Section 5.2.2 provides an alternative way to evaluate franges (with different

efficiency tradeoffs) and provides k-closeness for free.

5.2.1 Two Unbalanced Ranges

If we have X = X1 ∪ X2 with two ranges only, denote S1 = |X1|, S2 = |X2|, the method above would need a
degree-(S1+S2+2r− 1) function with S1+S2+2r multiplications. However, if we assume that the sizes of
these two ranges are extremely unbalanced, w.l.o.g., S2 ≫ S1, we are able to further reduce the computation
work down to S1 + r + log(t) + 1 multiplications, which can be much more efficient. Formally, we define:
Fub := {fub : X1,X2 → y1, y2},Xi∈[2] ⊂ Zt, yi∈[2] ∈ Zt, such that:

fub(m) =

{
y1 if m ∈ X1

y2 if m ∈ X2

21

where Xi = [ui, vi], |X | = Si for i ∈ [2] and S1 ≪ S2.
Regarding the more detailed construction, we again set fpre to be the identity function, but use a new post-

processing function fpost(m) := (
∏

i∈(u1−r/2,v1+r/2)(m− i))t−1 · (y2− y1)+ y1. The correctness analysis is as

follows: recall that after homomorphic decryption, inputm[i] ∈ X1 = [u1, v1] is mapped to (u1−r/2, v1+r/2).
Thus, c←

∏
i∈[u1−r/2,v1+r/2](m− i) = 0, if m[i] ∈ [u1, v1] and c ∈ Zt, c ̸= 0 for m[i] ̸∈ X1. By Fermat’s Little

Theorem, raising a non-zero field element up to t − 1 would result in 1, i.e., ct−1 = 1 for all c ∈ Zt, c ̸= 0.
Therefore, ct−1 = 0 if m[i] ∈ [u1, v1] and 1 otherwise. Lastly, we evaluate ct−1 · (y2 − y1) + y1 so that the
result would be y1 if m[i] ∈ X1 and y2 otherwise.

It is not hard to see that fpost, though with degree (S1 + r − 1) · t + 1, only needs S1 + r + log(t) + 1
multiplications for evaluation.

We formalize our construction in Algorithm 6.

Algorithm 6 BFV Bootstrapping for function fub
1: Let S1 be a publicly known parameter.
2: procedure Setup(1λ)
3: Select (N,Q,D, σ,Bin,Bout, t) satisfying the following while minimizing the overall computation cost

of Boot below:
4: (1) RLWEN,Q,D,χσ

holds.
5: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N , plaintext space t,

and noise budget Bin, is enough to evaluate SlotToCoeff (since fpre is identity function).
6: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension N , plaintext space

t, and ciphertext space Q, after evaluating homomorphic decryption followed by an arbitrary polynomial
with degree (S1 + r)t, still has Bout = Bin + 1 noise budget remaining. ▷ Bout can be replaced by any
number dependent on applications.

7: Let r be the error bound such that error of ct3 in line 13 in Algorithm 3 ≤ r with probability
1− negl(λ)

8: Let ppbfv := (N,Q,D, σ, t).
9: sk, btk← KeyGen(1λ, ppbfv, fpre, fpost)

10: Fub := {fub | (fub with the following format) ∧ |X1| ≪ |X2| ∧ (Xi∈[2] ∈ Zt) ∧ (Xi = [ui, vi], [u1 −
r/2, v1 + r/2] ∩ [u2 − r/2, v2 + r/2] = ∅)}

fub(m) =

{
y1 if m ∈ X1

y2 if m ∈ X2

11: return pp = (N, t,Bin,Bout,Fub, ppaux = r), sk, btk).

12: procedure Boot(pp = (N, t,Bin,Bout,Fub, ppaux = r), btk, ctin, fub)
13: If fub ̸∈ Fub, abort.
14: fpre(m) := m
15: fpost(m) := (

∏
x∈[u1−r/2,v1+r/2](m− x))t−1 · (y2 − y1) + y1

16: ctout ← GeneralFramework(pp, btk, ctin, fpre, fpost)
17: return ctout.

Theorem 5.5. Algorithm 6 is a correct BFV functional bootstrapping (Definition 3.1) procedure for the
function family defined on line 10, assuming the correctness of BFV. Furthermore, it is 2-close (Definition 3.2).

Proof. Given that the underlying BFV is correct (i.e., all the homomorphic evaluations are completed as
expected given enough noise budget), we have the following. Let m⃗ ← Dec(sk, ctin) ∈ ZN

t , and m⃗1 ←
Dec(sk, ct1) ∈ ZN

t . Since fpre is an identity function, m⃗1 = m⃗. Then, let ct2 = (a2, b2) ∈ R2
Q, m2 ←

⌈(t/Q)(b− a2 · sk)⌋, we have m2 =
∑

i∈[N] m⃗[i]Xi−1 ∈ Rt, by condition (2) (that there is enough noise

budget for fpre and SlotToCoeff). Let ct3 = (a3, b3) ∈ R2
t , m3 =

∑
i∈[N] m3[i]X

i−1 ← b3 − a3 · sk ∈ Rt,

22

Then, it holds that Pr [m3[i] ∈ (m⃗[i]− r/2, m⃗[i] + r/2)] ≥ 1− negl(λ) for all i ∈ [N], by condition (4) (that
the error range r is large enough). Thus, let m⃗4 ← Dec(sk, ct4) ∈ ZN

t , for all i ∈ [N], m⃗4[i] = m3[i]. Lastly,
let m⃗5 ← Dec(sk, ctout) ∈ ZN

t , we have m⃗5[j] = ((
∏

i∈[v1−r/2,u1+r/2](m3[j] − i))t−1 · (y2 − y1)) + y1 by the

correctness of fpost (where [v1, u1] denotes the first range) and condition (5) (that there is enough noise
budget to evaluate homomorphic decryption and fpost, which has degree ≤ (v1 − u1 + r)t). Since we have
m3[i] ∈ (m⃗[i] − r/2, m⃗[i] + r/2) ∈ (aj − r/2, bj − r/2) (for some j ∈ [2]), we have m⃗5[i] = yj for all i ∈ [N]
as expected.

The 2-closeness is easy to show. Since fpost covers all the values in Zt and has only two possible outputs,
if the input m⃗[i] is invalid, it can also only output one of the two. Furthermore, even if m⃗[i] ̸∈ X , m⃗4[i] ∈ Zt

simply because all the calculations are done using BFV. Thus, the output m⃗5[i] ∈ Y, which has only two
options.

Remark 5.6. For this construction, essentially, instead of treating the input domain as X1,X2, we are
treating it as X1 = [u1, v1],X ′

2 := Zt \ [u1 − r, v1 + r]. In other words, the actual function we evaluate is as
follows:

f ′
ub(m) =

{
y1 if m ∈ X1

y2 if m ∈ X ′
2

.

Since there are only two possible results, 2-closeness is satisfied for free.

5.2.2 Generalized Unbalanced Ranges

Moreover, we can extend this two-unbalanced-ranges setting to multiple ranges, when one of them still has
a dominant size. Formally, for k ranges X1, . . .Xk that are well separated, let Xi = [ui, vi], Si = |Xi|,
w.l.o.g., we assume Sk >

∑k−1
i=1 Si. By applying a similar way to evaluate this type of function, we only need

2
(∑k−1

i=1 Si + r(k − 1)
)
+ log(t) multiplications, instead of

∑k
i=1 Si. For Sk much larger than

∑k−1
i=1 Si, this

evaluation might be more efficient. Notice that this generalized unbalanced case evaluates the exact same
function as franges defined in Section 5.2, but we utilize its “unbalanced” property and thus evaluate it with
an alternative method.

The construction is as follows. Let X ′
i := (ui − r/2, vi + r/2) for all i ∈ [k]. Again fpre is the identity

function. To set fpost, we first define:

h(m) :=

y1 − yk if m ∈ X ′

1

y2 − yk if m ∈ X ′
2

. . .
yk−1 − yk if m ∈ X ′

k−1

and h(m) has degree
∑k−1

i=1 (Si + r). Then, we define

g(m) :=
∏

j∈X ′
i ,i∈[k−1]

(x− j)

g(m) also has degree
∑k−1

i=1 (Si + r). Lastly, we define fpost(m) := h(m) · (1− g(m)t−1) + yk.
22

For m ∈ X ′
i for all i ∈ [k − 1], h(m) = yi − yk, and g(m) = 0. Therefore, h(m) · (1 − g(m)t−1) + yk =

(yi − yk) · (1 − 0t−1) + yk = yi as expected. On the other hand, if m ∈ X ′
k, g(m) ̸= 0. Therefore,

h(m) · (1− g(m)t−1) + yk = h(m) · (1− 1) + yk = yk.

With regard to the efficiency, both h, g requires 2
∑k−1

i=1 (Si + r) multiplications, and therefore, in total,

fpost requires 2
∑k−1

i=1 (Si + r) + log(t) + 1 multiplications. On the other hand, the degree of the function is

(
∑k−1

i=1 (Si + r))(t− 1).

22Notice that fub is a special case of this construction, as for fub in Section 5.2.1, h(m) = y1−y2 is simply a constant function
and thus does not require any evaluation. Therefore, the cost is S1 + r + log(t) for fub instead of 2S1 + 2r + log(t).

23

At first glance, this generalized unbalanced function might seem to be too subtle to be widely used.
However, we believe that in some cases, it may still be helpful. For example, suppose we want to approximate
a ReLU function: r(x) = x if x ∈ (0, t/4) and r(x) = 0 otherwise. Then, we can divide (0, t/4) into k − 1
ranges, and use Zt\(0, t/4) as the k-th range, which has the dominant size. The larger k is, the finer divisions
we have for the input sets, and thus the more accurate this approximation is. On the other hand, the k-th
range is absolutely much larger than the other ones even combined, which can be evaluated efficiently using
the construction we introduce above. We formalize our construction in Algorithm 7.

Algorithm 7 An alternative construction of BFV Bootstrapping for franges

1: Let S′, k be two publicly known variables, where S′ denotes the size of the input domain except for the
k-th range, and k denotes the total number of ranges.

2: procedure Setup(1λ)
3: Select (N,Q,D, σ,Bin,Bout, t) satisfying the following while minimizing the overall computation cost

of Boot below:
4: (1) RLWEN,Q,D,χσ holds.
5: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N , plaintext space t,

and noise budget Bin, is enough to evaluate SlotToCoeff (since fpre is identity function).
6: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension N , plaintext space

t, and ciphertext space Q, after evaluating homomorphic decryption followed by an arbitrary degree-
(S′ + r(k − 1))(t− 1) polynomial function, still has Bout = Bin + 1 noise budget remaining. ▷ Bout can
be replaced by any number dependent on applications.

7: Let r be the error bound such that error of ct3 in line 13 in Algorithm 3 ≤ r with probability
1− negl(λ)

8: Let ppbfv := (N,Q,D, σ, t).
9: sk, btk← KeyGen(1λ, ppbfv, fpre, fpost)

10: Franges := {franges | (franges with the following format) ∧ (k > 1) ∧ (Xi = [ui, vi] ⊂ Zt, [ui − r/2, vi +
r/2] ∩ [uj − r/2, vj + r/2] = ∅,∀i ̸= j ∈ [k])}

franges(m) =

y1 if m ∈ X1

y2 if m ∈ X2

. . .
yk if m ∈ Xk

11: return pp = (N, t,Bin,Bout,Franges, ppaux = r), sk, btk).

12: procedure Boot(pp = (N, t,Bin,Bout,Franges, ppaux = r), btk, ctin, franges)
13: If franges ̸∈ Franges, abort.
14: fpre(m) := m
15: Define

h(m) :=

y1 − yk if m ∈ (u1 − r/2, v1 + r/2)
y2 − yk if m ∈ (u2 − r/2, v2 + r/2)
. . .
yk−1 − yk if m ∈ (uk−1 − r/2, vk−1 + r/2)

and
g(m) :=

∏
j∈X ′

i ,i∈[k−1]

(x− j)

16: fpost(m) := h(m) · (1− g(m)t−1) + yk
17: ctout ← GeneralFramework(pp, btk, ctin, fpre, fpost)
18: return ctout.

24

Theorem 5.7. Algorithm 7 is a correct BFV functional bootstrapping (Definition 3.1) procedure for function
family defined on line 10, assuming the correctness of BFV. Furthermore, it is k-close (Definition 3.2).

6 Evaluation

We implemented our algorithms proposed above in a C++ library, based on the SEAL [61] library. We
benchmark these schemes on several parameter settings on a Google Compute Cloud N4-standard-4 with
16GB RAM.

6.1 Performance of Our Construction

Parameter selection. We choose BFV parameters as follows: N = 32768, t = 65537, σ = 3.2. We use
ternary secret keys with a hamming weight of 512.23 The ciphertext modulus Q is chosen according to each
function as specified in Table 2. These parameters guarantee > 128-bit security by LWE estimator [2] for
all the function families we have tested (except for fub, which provides 106-bit of security, but for better
comparison, we remain N, t, σ unchanged but reduce the security). To guarantee that the modulus switching
error is bounded by r except with 2−40 probability,2425 we choose r = 128 (thus r/2 = 64).

We benchmark all the functions we described, including f1 (i.e., the identity function over [0, 65408 =
t − 1 − r, 128 = r]) in Algorithm 1; f2 (i.e., mapping each point in [a, b, r′] to an arbitrary point y ∈ Zt)
in Algorithm 2; point functions fpts (i.e., mapping several points to several points) in Algorithm 4; range
functions franges (i.e., mapping several ranges to several points) in Algorithm 5; and unbalanced range
functions fub (i.e., mapping two unbalanced ranges to two points) in Algorithm 6.

As r is fixed, the input of f2 can be at most t−1
r = 512 points. Therefore, we choose f2 : [0, 1022, 2]→ Y

where Y is a random subset of Z65537 with 512 points. For fpts : X → Y where X ⊂ Z65537, we choose two
different functions: the first function maps {0, 32768} to two different random points, i.e., X and Y only
contain two points, and thus achieve the best possible performance; the second one demonstrates a more
general functionality by mapping eight random points to eight random points. For franges, we choose two
well-separated ranges each containing 127 points. For fub, we choose two very unbalanced ranges, one of
which is of size r − 1 and the other being t− 2r + 1.

For all these functions, we choose the smallest Q such that the output noise budget has ∼180 bits
remaining. Thus, for all but fub, we can guarantee 128-bit security with our parameter, and for fub, we have
about 106-bit security.

Performance analysis. As shown in Table 2, our amortized runtime is about 1-2 orders of magnitude
faster than regular BFV bootstrapping: both for the runtime per slot and the runtime per effective bit (i.e.,
the runtime per slot divided by the effective input plaintext space in bits). Our functionality is slightly
different from prior works: we only support correctness over a subset of the plaintext space, but we also
allow a look-up table evaluation.

[59] has the plaintext space to be much smaller than the other regular bootstrapping constructions because
enlarging the plaintext space requires some non-trivial modification to their construction. Therefore, they

23Our construction replies on sparse keys in the same way as prior works. We can extend our key to be uniform, but r needs
to be increased accordingly, since r = O(

√
h) for h being the hamming weight.

24We choose security parameter δ = 40 which is the same as in [54], since the error probability is statistical, and 40 is a
relatively popular and reasonable statistical security parameter. Prior works in BGV/BFV bootstrapping instead choose error
probability via evaluation: based on our private communication with the authors of the prior works, it was chosen such that
no overflow happens during benchmarking tests. To our knowledge, other BFV bootstrapping works do not explicitly discuss
how they choose the concrete error probability in the paper with concrete numbers, and thus we follow the parameter in [54].

Asymptotically, r = O(
√
δ) when fixing other parameters.

25According to [15], 2−40 gives ∼50-bit of security for IND-CPA-D (introduced in [49]). To achieve 128-bit security of IND-
CPA-D, roughly a failure probability of 2−120 is needed. To accommodate this, our error range grows from 128 to ∼216 and
thus the effective plaintext space (for f1, f2) is reduced from 512 points to ∼302 points (and correspondingly other function
families). Thus, our amortized per bit runtime would be just slightly increased. Furthermore, note that adjusting the IND-
CPA-D security level would also affect the runtime in all prior works as well, which will thus maintain our advantage, if not
further increase.

25

Function Family
Input

Domain
of slots

Ciphertext
Modulus

Output
Noise
Budget

Total Runtime
(sec)

Runtime per
slot (ms)

Runtime per
bit (ms)

Identity function f1 over
[0, t− 1− r, r], Algorithm 1

[0, 65536, 128]

32768

830 181
142.5 4.35 0.48

f2 : [u, v, r′]→ Y u, v, r′ ∈ Zt,
Y ⊂ Zt, Algorithm 2

[0, 1022, 2] 142.4 4.34 0.48

fpts1 : X → Y, X ,Y ⊂ Zt,
|X | = |Y| = 2, Algorithm 4

{0, 32768} 590 198 18.7 0.57 0.57

fpts2 : X → Y, X ,Y ⊂ Zt, |X | = |Y| = 8,
Algorithm 4, without pre-scale on X {57004, 46969, 21931,

39030, 59092, 9965,
30013, 58301}

650
194 24.8 0.76 0.25

fpts3 : X → Y, X ,Y ⊂ Zt, |X | = |Y| = 8,
Algorithm 4 with pre-scale on X 181 26.3 0.80 0.27

franges(m) = yi if m ∈ [ui, vi],
ui, vi, yi ∈ Zt, i ∈ [k], k ≥ 2, Algorithm 5

Two ranges: [−63, 63]
& [32704, 32831]

630 205 22.5 0.69 0.09

fub(m) = yi if m ∈ [ui, vi],
ui, vi, yi ∈ Zt, i ∈ [2], Algorithm 6

Two ranges: [−63, 63]
& Z65537 \ [−127, 127]

1070 180 34.3 1.04 0.07

Regular BFV bootstrapping [59]
128-bit security

Z257 128 881 507 22.0 173.0 21.62

Regular BFV bootstrapping [25]
66-bit security

Z1272 2268 1134 330 95.0 42.0 3.00

Regular BFV bootstrapping [14]
126-bit security

Z2572 128 806 245 42.0 328.0 20.50

Table 2: Batched bootstrapping for binary gates using our technique compared to the unoptimized construc-
tion in [54]. Notice that based on the BFV parameter we choose, all our constructions guarantee > 128-bit
security except for fub which is of 106-bit security; all our constructions are evaluated on input with 35-bit
noise budget, except for fpts3 which needs input with 125-bit noise budget. See Section 6 “Parameter selec-
tion” for details. The runtimes of prior works are taken directly from their papers. We use a basic GCP
instance which does not grant us extra advantage over the runtime.

also have a relatively limited input domain (containing only 257 points). Among all of the regular BFV
bootstrapping works, [25] provides the best performance but with a relatively low security guarantee (only
66 bits). To guarantee > 100 bit security, their performance will be further reduced. As mentioned in [59], the
techniques in [59] and [25] might be combined to achieve a better regular BFV bootstrapping construction,
but it is still unlikely to be comparable with our constructions (again, they provide a stronger functionality
by considering all values in the plaintext space as valid inputs). The main reason we outperform the regular
bootstrapping framework by around 1 to 2 orders of magnitude, is that we make full use of 32768 slots per
ciphertext.

f1 and f2 have roughly the same runtime and the same input noise budget requirement, as the evaluation
of fpre is combined with the SlotToCoeff step (recall that for f2, fpre is simply a degree-1 function) They
both evaluate over 512 different points, thus requiring fpost to have degree t− 2 (as 512 · r = t− 1 = 65536).
Therefore, they are both the slowest among all the different types of functions. Also, as discussed, these two
types of functions can be viewed as special cases of fpts.

For fpts, we test a function for two points, for which is the most efficient non-trivial function our protocol
works. Such a function takes only about 1.5ms per slot. To show more generality, we also test functions
with 8 points. All the points are randomly chosen. For the points we randomly chose, no fpre is needed as
they are all separated by at least r = 128. In this case, the runtime is only slightly slower than fpts with
two points. However, to show the worst case, a function of degree 7 is needed as the preprocessing function.
We also benchmark it to show the difference. In this case, fpre is a degree 7 function and therefore requires
the input noise budget to be 90 bits more. The runtime is roughly the same. Note that, however, for such
a small number of points (e.g., 8 points), it is more likely that fpre does not need any preprocessing (or at
least only a lower degree function like degree-one is needed, thus introducing little overhead, if any).

Then, we switch our focus to the range functions. Note that for franges, each range contains 127 points.
Therefore, there are a total of 254 points. However, the runtime is even faster than fpts with only 8 points.
This is because it only requires a degree-254+2r = 510 postprocessing function; in contrast fpts with 8 points
already requires the postprocessing function to have degree 8 · r = 1024. For the unbalanced ranges, we use

26

Figure 3: Bar chart illustration of total runtime and look-up table evaluation time per bit. Note that [25]
provides only 66-bit of security while our construction and [59] both provide about 128-bit security.

[−63, 63] and Zt \ [−127, 127], containing 65409 points. However, it is also easy to see that the runtime is
only slightly slower than the range function with two small ranges. The only drawback is that log(Q) is
required to be very large since fpost is a function of degree ∼2r · t.
Runtime breakdown. As shown in Fig. 3, for some functions like f1, f2, the look-up table evaluation
takes the majority of time, as their fpost has a much higher degree than the other ones. However, for all of
the functions, our runtime is still greatly better than both of the prior works (and their breakdown is taken
from the papers).

6.2 Performance Comparisons with Other Works

Comaprison with [41]. As mentioned in Section 1.2, there is a very recent concurrent and independent
work that uses CKKS to bootstrap BFV with comparable performance (see Section 1.2 for a high-level pros
and cons comparison). Here we compare our concrete performance with them.

Using a machine similar to their setup (GCP instance N4 with CPU Intel Emerald Rapids with 16
GB RAM, similar to the machine with CPU Intel Xeon Gold 6242 and 503 GB RAM in [41]), for some
functions, we have faster runtime (e.g., fpts, franges) while others are worse. Furthermore, we support a
function evaluation for free. For these reasons, we believe our performance is comparable and can be
preferable in some scenarios.

In addition, we have another advantage in terms of scalability with respect to the noise budget after
bootstrapping. In [41], the runtime is essentially ∼(B/128)ms26 per slot where B is the noise budget after
bootstrapping. However, our runtime grows more slowly in most cases. Therefore, for a larger noise budget,
our runtime has more advantages.

Comparison with [56]. Another concurrent and independent work also improves bootstrapping for BFV
(see Section 1.2 for high-level pros and cons comparisons). Concretely, with t = 65537, they achieve their
best-amortized runtime to be 60/2784 ≈ 20ms per slot (with 80-bit security while we support 128-bit
security). In comparison, our slowest function (f1) is roughly 4.35 ms per slot (on GCP instance N4 with
CPU Intel Emerald Rapids with 16 GB RAM, which is comparable to, if not slower than, their workstation
with Intel i9-10980XE). Furthermore, we support functional bootstrapping.

Comparison with [43]. One more concurrent and independent work recently similarly focuses on BFV
functional bootstrapping. In their benchmarks (parameter set I), they choose q = 17 (q serves as a similar
functionality as our Y), which is the output plaintext modulus (about 3-4 bits), and p = 700 (p serves as a
similar functionality as our X) which is the input plaintext modulus. They use such a parameter set as their
concrete efficiency is linear in q (the efficiency also depends on r for some r > 0 such that qr > p). Their

26This number is based on [41, Tab.2&Fig.6] together with the private communication with the authors.

27

runtime for this parameter set is about 46.5 seconds (on Intel(R) Xeon(R) Platinum 8268 @ 2.90GHz CPU
and 192GB RAM) and their number of slots is similar to prior works in Table 2, about hundreds to a few
thousand slots. This means that their amortized runtime is also about 1-2 orders of magnitude slower than
our construction. A similar conclusion can be drawn for their parameter set II.

Comparison with other FHE bootstrapping. Since it is hard to directly compare to other FHE
bootstrapping schemes concretely (as distinct schemes differ a lot in terms of settings), we give a brief high-
level discussion. For CKKS, functional bootstrapping is particularly challenging as during bootstrapping, a
polynomial approximation of the sine function is used. To capture functional bootstrapping, a polynomial
approximation of that function together with sine needs to be done, which is very inefficient. Therefore, to the
best of our knowledge, CKKS cannot easily support (even relaxed) functional bootstrapping. On the other
hand, for FHEW/TFHE, while they natively support functional bootstrapping, they do not naturally support
additions and multiplications before or after bootstrapping. Therefore, our method provides more flexibility
(while the performance can be comparable when |X | = p where p is the plaintext space of FHEW/TFHE,
based on our estimation with the numbers in [54] and Section 8).

7 Applications

In this section, we discuss some applications that can take advantage of our constructions. We first discuss
one application in very recent work in detail and compare the result using our scheme with the results using
prior works. We then introduce some potential applications at a high level.

7.1 Oblivious Permutation via BFV

A recent work [23] proposes a way to homomorphically permute a database with N entries. Essentially, it
allows the server to obliviously permute a database using BFV such that the decrypted result is indistin-
guishable from a randomly permuted database. The permutation randomness comes from the client, but
it takes only o(N) communication: the server first uses a BFV-encrypted seed provided by the client and
a BFV-friendly PRG to generate O(N log(N)) random bits homomorphically; then, it homomorphically
evaluates the Thorp shuffle (or equivalently, a butterfly shuffle) using these random bits. The Thorp shuffle
consists of h = O(λ) consecutive rounds, where each round divides the database into N/2 pairs of entries
and then swaps each pair using a random bit. For example, if N = 2, the swap operation homomorphically
computes DB′[1]← DB[1] · r+DB[2] · (r−1) and DB′[2] = DB[2] · r+DB[1] · (r−1). If r = 1, DB′ = DB, and
DB′ = DB[2]∥DB[1] otherwise. After performing h such rounds (over all pairs) for some security parameter
λ, the database looks like a uniformly permuted database (when querying only q = o(N) entries).

One main nice property of the Thorp shuffle is that the whole shuffle process only involves this homo-
morphic swap, which only depends on the database entries DB[i] and the random binary bits. Thus, to
perform a homomorphic Thorp shuffle over a database, we first encode DB[i] into some valid input set X .
For example, if DB[i] has 3 bits (as used in the evaluation section of [23]), we can encode each entry into an
element in X with |X | = 8. In this case, when bootstrapping is needed (between two rounds of swapping),
we only need to bootstrap an identity function over X instead of the entire plaintext space. This application
is thus well suited to our relaxed bootstrapping (even without the closeness property).

With this high-level idea, we estimate the concrete improvement by applying our construction to such
as oblivious permutation process. As shown in [23], for a database of length N = 223 (each entry has 3
bits), the Thorp shuffle requires 416 levels. Using our Algorithm 4, with the function being an identity
function over X of size 8 (e.g., X = {0, 2r, . . . , 14r}, where r is the error bound), and setting the ciphertext
modulus to be 860 bits (providing ≈ 128 bits of security), each bootstrapping of our construction allows
about 13 levels of multiplications (about 400 bits of noise budget left). We can encode the entire database to
3N/32768/3 = 256 BFV ciphertexts. Each ciphertext requires 416/13 = 32 bootstrapping. Thus, in total,
it takes 256× 32× 35 = 286720 seconds 27, which is about 80 hours.

27In Table 2, we use ciphertext modulus of 650 bits instead of 860 bits. Using 860, which is essentially the maximum for
128-bit security, our bootstrapping takes about .5 seconds using GCP n4 standard.

28

On the other hand, in the prior works [59], encoding the entire database requires 3N/128/8 = 24576
ciphertexts. Each bootstrapping gives ≈ 19 levels of multiplications (about 507 bits of noise budget left).
Thus, in total, it takes 24576 × 416/19 × 22 ≈ 11894784 seconds (each of their bootstrapping takes 22
seconds), which is about 3304 hours. Similarly, it takes about 4587 hours when using [14], and about 670
hours when using [25]. Notice that [25] only offers 66-bit security, while the other two prior works and ours
provide ≈128 bit security.

With our work, under a similar security guarantee, the bootstrapping time can be reduced by > 80x.
Furthermore, since our construction supports more slots, there are less ciphertexts needed to pack the entire
database. Therefore, the homomorphic Thorp shuffle can be evaluated more efficiently by having fewer
regular (non-bootstrapping) ciphertext operations28. See [23] for a more detailed discussion and estimation.

7.2 Other Potential Applicaitons

We then discuss some other potential applications that benefit from our construction. We start with appli-
cations that do not require closeness. Such applications have a hard requirement: the input must be within
X .
PIR/PSI with computation. Private information retrieval (PIR) [19] allows one to retrieve a data entry
from the database without revealing which data entry is retrieved. PIR with computation [51] further allows
computing some function over the retrieved data entry (or multiple data entries for batch-PIR). Since the
data entry can be encoded (e.g., as a multiple of r, the error range introduced in Section 4.1), we can use
relaxed functional bootstrapping (e.g., Algorithm 1) to compute this function (or at least a sub-module of
this function). Such a method can also be used for Private Set Intersection with computation [36], whose
construction indeed requires a lot of bootstrapping operations, which can be replaced with our relaxed
functional bootstrapping. Note that since PSI requires two-sided privacy, more careful handling is required
when designing the function to not leak any database information (e.g., use noise flooding), or use other
techniques like Oblivious PRF [11].

Access control. Within an organization, access control is needed to perform some action (e.g., data
retrieval [10]). To realize such access control, BFV can be used in the following way. During a private data
retrieval (i.e., retrieval of some documents without revealing which document it is), the user provides their
identity, which corresponds to some permission level l. Then, the document also has some requirements q.
The server, after obtaining q (without learning what q is) under BFV, can compute some access control
function f(q, l). If the result is 1, the returning ciphertext contains the document. Otherwise, the returning
ciphertext contains only 0. l, q, f can all be easily encoded in a way that our relaxed functional bootstrapping
supports. For example, let |l − q| > r by encoding l, q accordingly, and let f checks whether l > q. This
check can then be realized using our range function in Algorithm 5.

We then discuss some applications that may require the additional flexibility provided by closeness defined
in Definition 3.2.

Secure machine learning. Machine learning (ML) using FHE has been a long-standing popular topic
[44, 38, 45, 39, 20]. One major bottleneck of using FHE for ML is bootstrapping. By the nature of the
fuzziness in ML, some small deviations from the model are tolerable. In this case, a relaxed functional
bootstrapping satisfying 2-closeness can be used to evaluate some parts of the ML model (e.g., evaluating
the activation function): any invalid inputs are simply rounded to the two nearest valid inputs. Furthermore,
since the ML training process is repetitive (every batch or epoch shares the same activation function for
example), our relaxed functional bootstrapping is then a perfect fit to guarantee the error budget is increased
after each activation function evaluation.

Fuzzy PSI. Another natural application is fuzzy PSI [24]. Fuzzy PSI returns the elements that are similar
instead of identical as in PSI. Therefore, if the fuzziness definition (e.g., the correctness definition in [62, 12])
allows the borderline elements to be decided either way, we can use our relaxed functional bootstrapping

28Note that a more recent version of this paper uses a larger database size. However, the analysis and our advantages remain
exactly the same.

29

Figure 4: Comparison between our work on batched functional bootstrapping and [54].

in the following way. We first set a range [u, v] to be the range for the similarity. In other words, if two
elements a, b satisfying |a− b| ∈ [u, v], the functionality should return 1; otherwise, the functionality should
return 0. The issue is that the elements within [u− r, v + r] may return either 0 or 1. However, due to the
fuzziness definition, these are borderline cases and may be decided either way. Furthermore, with some of
our constructions (Algorithm 1), the closer the difference is to [u, v] the larger the probability our algorithm
returns 1, which may be further preferred (discussed in Section 4.1).

There are many other potential examples, like homomorphic comparisons, private branching, fixed-point
arithmetic using BFV/BGV, and so on. We leave a more detailed application-based follow-up to future
works.

8 Extension to Batched FHEW/TFHE Bootstrapping

Of independent interest, our techniques can be applied to improve the batched FHEW/TFHE bootstrapping
algorithm in [54]. Essentially, batched FHEW/TFHE bootstrapping is to take 2N LWE ciphertexts each
encrypting either 0 or 1 and output the NAND result of each pair of them. Another application is that given
N LWE ciphertexts each encrypting a message x ∈ Zp for some p ≥ 2, output an encryption of f(x)’s for
some function f over Zp that serves like a look-up table. This is called the batched functional bootstrapping.

Summary of the construction in [54]. Given 2N LWE ciphertexts(ctin1,1, . . . , ctin1,N), (ctin2,1, . . . , ctin2,N)
[54] constructs an algorithm that outputs N LWE ciphertexts (ctout1, . . . , ctoutN) such that Dec(ctouti) =
NAND(Dec(ctin1,i),Dec(ctin2,i)) (all LWE ciphertexts encrypts {0, 1} with plaintext space Z3).

The main procedure works as follows:

1. cti ← ctin1,i + ctin2,i;

2. partial decrypt cti to obtain a ciphertext encrypting mi = Dec(cti) ∈ Zt, satisfying mi ∈ (2t/3 −
r/2, 2t/3+ r/2) (r being the error bound similar to what we have above) if ct1,i and ct2,i both encrypt
1 ∈ Z3; otherwise mi ∈ (−r/2, r/2) or ∈ (t/3− r/2, t/3 + r/2);

3. for a NAND gate evaluation, mi ∈ (2t/3− r/2, 2t/3+ r/2) is mapped to 0 and t/3 otherwise (which is
the encoding of 1 over plaintext space Zt); after this step, we have a BFV ciphertext encrypting either
0 or t/3 in each of its N slots;

30

4. lastly, transform this BFV ciphertext into N LWE ciphertexts.

Optimizations. In [54], the mapping in step (3) is done via a degree-(t−1) polynomial for the NAND gate.
However, similar to what we have observed in our construction, this mapping has only 3r roots. Therefore,
we replace this mapping with a degree-(3r − 1) polynomial, which can be evaluated much more efficiently.

For batched LWE functional bootstrapping, [54] uses a similar construction and a degree-(t−1) function.
Thus, for a LUT over log(p) bits, we apply our optimization and only a degree-(log(p) · r − 1) function is
needed.

Benchmark and comparison. For the NAND gate, since the degree now is much lower, instead of using
N = 32768 for the underlying BFV as in [54], we use N = 16384 together with log(Q) ≈ 420, which further
reduces the runtime. We use other parameters exactly the same as in [54, Section 10], except that we are
using ternary keys for the LWE secret keys. The total runtime is 24.5 seconds and the amortized runtime
is 1.5 ms per slot. Compared to the total runtime of 155 seconds and the amortized runtime of 4.7ms in
[54][Table 2], our total runtime (i.e., the latency) is about 6x faster than [54], and the amortized runtime
(i.e., the throughput) is about 3x faster.

Furthermore, we show that for p being 3-8 bits for functional bootstrapping, we achieve a speed up as
shown in Fig. 4. We set N = 32768 for better comparison, but note that if p has only 3− 5 bits, N = 16384
can also be used (while still guaranteeing ∼ 120 bit of security or more). It is easy to see that the runtime
is roughly linear to the logarithmic size of the plaintext space. Hence, our optimization provides a better
performance with smaller plaintext space.

9 Conclusion and Discussion

In this paper, we define a relaxed version of BFV bootstrapping and show how we can build a much more effi-
cient construction under this relaxation. We also show that our technique can be applied to improve batched
FHEW/TFHE ciphertexts bootstrapping. While our work shows an efficient (relaxed) BFV bootstrapping
construction, there are some directions that can be further explored.

Relaxed BFV bootstrapping. One interesting direction is to build a more efficient BFV bootstrapping,
e.g., by trying to explore the algebraic structure of the ciphertexts as in prior BFV works. Another interesting
direction is to explore more functions that can be achieved more efficiently by relaxing some functionality of
the regular bootstrapping.

Relaxed bootstrapping for other FHE schemes. One interesting question is whether can this “relaxed”
version of bootstrapping help improve the efficiency of other types of FHE schemes, like CKKS. Since the
main cost of CKKS bootstrapping comes from approximating the mod function using the sine function, it
is not clear to us whether this relaxed correctness requirement can help. However, we believe it is still an
interesting direction to investigate further.

Applications. While we have discussed many applications, we only discuss them at a high-level. It is very
interesting to see an application deploy relaxed functional bootstrapping in detail. On the other hand, it is
also very interesting to see more potential applications that can leverage relaxed functional bootstrapping.

Acknowledgements

We are grateful to Jaehyung Kim for answering questions regarding [41] and the anonymous reviewers for
their feedback and suggestions.

31

References

[1] Lattigo v2.1.1. Online: http://github.com/ldsec/lattigo, Dec. 2020. EPFL-LDS.

[2] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169–203, 2015.

[3] J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In R. Canetti and J. A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 1–20, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[4] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise, S. Halevi, H. Hunt,
A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor, D. Suponit-
sky, M. Triplett, V. Vaikuntanathan, and V. Zucca. Openfhe: Open-source fully homomorphic encryp-
tion library. Cryptology ePrint Archive, Paper 2022/915, 2022. https://eprint.iacr.org/2022/915,
commit: 122f470e0dbf94688051ab852131ccc5d26be934.

[5] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux. Efficient bootstrapping for ap-
proximate homomorphic encryption with non-sparse keys. In A. Canteaut and F.-X. Standaert, editors,
Advances in Cryptology – EUROCRYPT 2021, pages 587–617, Cham, 2021. Springer International
Publishing.

[6] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In
Proceedings of the 32nd Annual Cryptology Conference on Advances in Cryptology — CRYPTO 2012 -
Volume 7417, page 868–886. Springer-Verlag, 2012.

[7] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

[8] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In
R. Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society Press, Oct. 22–25, 2011.

[9] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for
key dependent messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524.
Springer, Heidelberg, Germany, Aug. 14–18, 2011.

[10] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access control. In E. Al-Shaer,
S. Jha, and A. D. Keromytis, editors, ACM CCS 2009, pages 131–140. ACM Press, Nov. 9–13, 2009.

[11] S. Casacuberta, J. Hesse, and A. Lehmann. SoK: Oblivious pseudorandom functions. IEEE EuroS&P
2022, 2022. https://eprint.iacr.org/2022/302.

[12] A. Chakraborti, M. K. Reiter, and G. C. Fanti. This paper is included in the proceedings of the 32nd
usenix security symposium. In Usenix 2023.

[13] H. Chen, I. Chillotti, and Y. Song. Improved bootstrapping for approximate homomorphic encryption.
In Y. Ishai and V. Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 34–54, Cham,
2019. Springer International Publishing.

[14] H. Chen and K. Han. Homomorphic lower digits removal and improved FHE bootstrapping. In J. B.
Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 315–337.
Springer, Heidelberg, Germany, Apr. 29 – May 3, 2018.

[15] J. H. Cheon, H. Choe, A. Passelègue, D. Stehlé, and E. Suvanto. Attacks against the INDCPA-d security
of exact FHE schemes. CCS 2024.

32

http://github.com/ldsec/lattigo
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/302

[16] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for approximate homomorphic
encryption. In Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 360–384. Springer, 2018.

[17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate
numbers. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 409–437. Springer, 2017.

[18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic encryption: Boot-
strapping in less than 0.1 seconds. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[19] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In 36th FOCS,
pages 41–50. IEEE Computer Society Press, Oct. 23–25, 1995.

[20] A. Dalvi, A. Jain, S. Moradiya, R. Nirmal, J. Sanghavi, and I. Siddavatam. Securing neural networks
using homomorphic encryption. In 2021 International Conference on Intelligent Technologies (CONIT),
pages 1–7, 2021.

[21] L. Ducas and D. Micciancio. FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second.
In E. Oswald and M. Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 617–640,
Berlin, Heidelberg, 2015. Springer.

[22] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive, Report 2012/144, 2012. https://ia.cr/2012/144.

[23] B. Fisch, A. Lazzaretti, Z. Liu, and C. Papamanthou. ThorPIR: Single server PIR via homomorphic
thorp shuffles. CCS 2024, 2024.

[24] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In C. Cachin
and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 1–19. Springer, Heidelberg,
Germany, May 2–6, 2004.

[25] R. Geelen, I. Iliashenko, J. Kang, and F. Vercauteren. On polynomial functions modulo pe and faster
bootstrapping for homomorphic encryption. Eurocrypt 2023. https://eprint.iacr.org/2022/1364.

[26] R. Geelen and F. Vercauteren. Bootstrapping for bgv and bfv revisited. J. Cryptol., 36(2), mar 2023.

[27] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, pages 169–178, 2009.

[28] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Ring switching in bgv-style homomorphic encryption.
In I. Visconti and R. De Prisco, editors, Security and Cryptography for Networks, pages 19–37, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[29] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, Germany, Aug. 18–22, 2013.

[30] A. Guimarães, H. V. L. Pereira, and B. van Leeuwen. Amortized bootstrapping revisited: Simpler,
asymptotically-faster, implemented. Asiacrypt 2023, 2023. https://eprint.iacr.org/2023/014.

[31] S. Halevi and V. Shoup. HElib, 2014. https://github.com/homenc/HElib.

[32] S. Halevi and V. Shoup. Design and implementation of HElib: a homomorphic encryption library.
Cryptology ePrint Archive, Report 2020/1481, 2020. https://eprint.iacr.org/2020/1481.

[33] S. Halevi and V. Shoup. Bootstrapping for HElib. Journal of Cryptology, 34(1):7, Jan. 2021.

33

https://ia.cr/2012/144
https://eprint.iacr.org/2022/1364
https://eprint.iacr.org/2023/014
https://github.com/homenc/HElib
https://eprint.iacr.org/2020/1481

[34] K. Han, M. Hhan, and J. H. Cheon. Improved homomorphic discrete fourier transforms and fhe boot-
strapping. IEEE Access, 7:57361–57370, 2019.

[35] K. Han and D. Ki. Better bootstrapping for approximate homomorphic encryption. In Cryptographers’
Track at the RSA Conference, pages 364–390. Springer, 2020.

[36] J. HU, J. Chen, W. Dai, and H. Wang. Fully homomorphic encryption-based protocols for enhanced
private set intersection functionalities. Cryptology ePrint Archive, Paper 2023/1407, 2023. https:

//eprint.iacr.org/2023/1407.

[37] W. jie Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu. Pegasus: Bridging polynomial and non-polynomial
evaluations in homomorphic encryption. SP 2021, 2020. https://eprint.iacr.org/2020/1606.

[38] W. jie Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu. PEGASUS: Bridging polynomial and non-polynomial
evaluations in homomorphic encryption. In 2021 IEEE Symposium on Security and Privacy, pages 1057–
1073. IEEE Computer Society Press, May 24–27, 2021.

[39] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A low latency framework for secure
neural network inference. In W. Enck and A. P. Felt, editors, USENIX Security 2018, pages 1651–1669.
USENIX Association, Aug. 15–17, 2018.

[40] A. Kim, Y. Polyakov, and V. Zucca. Revisiting homomorphic encryption schemes for finite fields. In
ASIACRYPT 2021, page 608–639. Springer, 2021.

[41] J. Kim, J. Seo, and Y. Song. Simpler and faster bfv bootstrapping for arbitrary plaintext modulus from
ckks. Cryptology ePrint Archive, Paper 2024/109, 2024. https://eprint.iacr.org/2024/109.

[42] S. Kim, M. Park, J. Kim, T. Kim, and C. Min. Evalround algorithm in ckks bootstrapping. Asiacrypt
2022, 2022. https://eprint.iacr.org/2022/1256.

[43] D. Lee, S. Min, and Y. Song. Functional bootstrapping for packed ciphertexts via homomorphic LUT
evaluation. Cryptology ePrint Archive, Paper 2024/181, 2024.

[44] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee, D. Yoo, Y.-S. Kim, and J.-S.
No. Privacy-preserving machine learning with fully homomorphic encryption for deep neural network.
IEEE Access, 10:30039–30054, 2022.

[45] J.-W. Lee, E. Lee, Y.-S. Kim, and J.-S. No. Rotation key reduction for client-server systems of deep
neural network on fully homomorphic encryption. In J. Guo and R. Steinfeld, editors, Advances in
Cryptology – ASIACRYPT 2023, pages 36–68, Singapore, 2023. Springer Nature Singapore.

[46] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No. High-Precision Bootstrapping of RNS-CKKS Ho-
momorphic Encryption Using Optimal Minimax Polynomial Approximation and Inverse Sine Function,
pages 618–647. EUROCRYPT 2021, 06 2021.

[47] Y. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No. Near-optimal polynomial for modulus reduction using
l2-norm for approximate homomorphic encryption. IEEE Access, 8:144321–144330, 2020.

[48] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, and D. Yoo. Efficient fhew bootstrapping
with small evaluation keys, and applications to threshold homomorphic encryption. In C. Hazay and
M. Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages 227–256, Cham, 2023. Springer
Nature Switzerland.

[49] B. Li and D. Micciancio. On the security of homomorphic encryption on approximate numbers. Euro-
crypt 2021.

34

https://eprint.iacr.org/2023/1407
https://eprint.iacr.org/2023/1407
https://eprint.iacr.org/2020/1606
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2022/1256

[50] B. Li and D. Micciancio. On the security of homomorphic encryption on approximate numbers. In
A. Canteaut and F.-X. Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages
648–677. Springer, Heidelberg, Germany, Oct. 17–21, 2021.

[51] C. Lin, Z. Liu, and T. Malkin. XSPIR: Efficient symmetrically private information retrieval from ring-
LWE. In V. Atluri, R. Di Pietro, C. D. Jensen, and W. Meng, editors, ESORICS 2022, Part I, volume
13554 of LNCS, pages 217–236. Springer, Heidelberg, Germany, Sept. 26–30, 2022.

[52] F.-H. Liu and H. Wang. Batch bootstrapping i: A new framework for simd bootstrapping in polynomial
modulus. In C. Hazay and M. Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages
321–352, Cham, 2023. Springer Nature Switzerland.

[53] F.-H. Liu and H. Wang. Batch bootstrapping i: Bootstrapping in polynomial modulus only requires
o (1) fhe multiplications in amortization. In C. Hazay and M. Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, pages 321–352, Cham, 2023. Springer Nature Switzerland.

[54] Z. Liu and Y. Wang. Amortized functional bootstrapping in less than 7ms, with Õ(1) polynomial
multiplications. Asiacrypt 2023. https://eprint.iacr.org/2023/910.

[55] Z. Liu and Y. Wang. Relaxed functional bootstrapping: A new perspective on BGV/BFV bootstrapping.
Cryptology ePrint Archive, Paper 2024/172, 2024.

[56] S. Ma, T. Huang, A. Wang, and X. Wang. Accelerating bgv bootstrapping for large p using null
polynomials over Zpe . Cryptology ePrint Archive, Paper 2024/115, 2024. https://eprint.iacr.org/
2024/115.

[57] D. Miccianco and J. Sorrell. Ring Packing and Amortized FHEW Bootstrapping. In 45th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz
International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018.

[58] G. D. Micheli, D. Kim, D. Micciancio, and A. Suhl. Faster amortized fhew bootstrapping using ring
automorphisms. Cryptology ePrint Archive, Paper 2023/112, 2023. https://eprint.iacr.org/2023/
112.

[59] H. Okada, R. Player, and S. Pohmann. Homomorphic polynomial evaluation using galois structure and
applications to bfv bootstrapping. Asiacrypt 2023. https://eprint.iacr.org/2023/1304.

[60] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evaluate
polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

[61] Microsoft SEAL, 2020. https://github.com/Microsoft/SEAL.

[62] E. Uzun, S. P. Chung, V. Kolesnikov, A. Boldyreva, and W. Lee. Fuzzy labeled private set intersec-
tion with applications to private real-time biometric search. In M. Bailey and R. Greenstadt, editors,
USENIX Security 2021, pages 911–928. USENIX Association, Aug. 11–13, 2021.

35

https://eprint.iacr.org/2023/910
https://eprint.iacr.org/2024/115
https://eprint.iacr.org/2024/115
https://eprint.iacr.org/2023/112
https://eprint.iacr.org/2023/112
https://eprint.iacr.org/2023/1304
https://github.com/Microsoft/SEAL

	Abstract
	Contents
	Introduction
	Our Contribution
	Related Work
	BFV Bootstrapping
	Recent concurrent works
	Bootstrapping of other schemes

	Paper organization

	Preliminary
	B/FV Leveled Homomorphic Encryption

	Definition of Generalized BFV Bootstrapping
	Our General Framework for Bootstrapping
	Bootstrap for Identity Function f1 over [0, t - 1 - r, r]
	Bootstrapping for f: [u,v,r'] to Zt
	General Framework
	Optimizations

	A More Fine-grained Construction
	Point functions
	Efficient Bootstrapping for Two-point Functions
	Extending to Multiple Points

	Range Functions
	Two Unbalanced Ranges
	Generalized Unbalanced Ranges

	Evaluation
	Performance of Our Construction
	Performance Comparisons with Other Works

	Applications
	Oblivious Permutation via BFV
	Other Potential Applicaitons

	Extension to Batched FHEW/TFHE Bootstrapping
	Conclusion and Discussion
	Acknowledgements
	References

