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Abstract. The FHEW-like gate bootstrapping framework operates in a 2-bit plain-
text space, where logic gates such as NAND, XOR, and AND are implemented by
adding two ciphertexts and extracting the most significant bit. However, each gate
operation requires bootstrapping with a primary cost of one blind rotation, which is
expensive, when processing circuit operations for applications. We propose a novel
Free-XOR gate bootstrapping framework based on a single-bit plaintext space, in
which the XOR operation is realized by simply adding two ciphertexts, resulting in
an almost free computational cost. To form a minimal complete set for logical oper-
ations, we design an algorithm for the AND gate within this framework. The AND
gate cost of our Free-XOR gate bootstrapping involves two blind rotations. However,
by utilizing a single-bit plaintext space to enhance noise tolerance and swapping some
operations of the bootstrapping process, we can adopt a more compact parameter
setting, which in turn accelerates the speed of blind rotation. We propose an instan-
tiation of the NTRU-based AND gate operation, which requires two blind rotations.
Despite the additional rotation, the overall computational cost is marginally lower
than the state-of-the-art gate bootstrapping scheme LLW+ [TCHES24], which uti-
lizes only a single blind rotation. In addition, our approach achieves a significant
reduction in key size, reducing it to 3.3 times the size of LLW+ [TCHES24].
We ultimately apply our framework to the homomorphic evaluation of symmetric
ciphers, in which require a substantial number of XOR operations: 74% for AES
and 62.6% for ASCON. The Free-XOR gate bootstrapping framework demonstrates
significant advantages in this context. Specifically, the homomorphic computation
of AES requires 31 seconds, while ASCON requires 28 seconds, representing an im-
provement of 1.5× over the Thunderbird implementation [TCHES24] and 4.7× over
the work of BPR [TCHES24].
Keywords: Gate Bootstrapping · Free-XOR · Single-bit Plaintext Space · NTRU.

1 Introduction
Fully homomorphic encryption (FHE) schemes enable computing on encrypted data di-
rectly, thereby achieving a state where the data remain available but invisible. The first
FHE scheme was proposed by Gentry in 2009 [Gen09]. FHE schemes are predominantly
based on lattice-based hard problems and ensure their security by incorporating noise
into the encryption process. Currently, the most popular FHE schemes are primarily
constructed upon the Learning With Errors (LWE), Ring Learning With Errors (RLWE),
and NTRU problems [Reg09, LPR10, KF17]. FHE schemes are typically classified into
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three main categories: (1) BFV/BGV [BV11, FV12, BGV14a], which are designed to per-
form exact arithmetic operations on finite fields; (2) CKKS [CKKS17, CHK+18], which
enables approximate arithmetic computations and supports the handling of real and com-
plex numbers; and (3) FHEW/TFHE/NTRU-based schemes [DM15a, CGGI16, CGGI17,
CGGI20, BIP+22a], which are friendly for Bit-Wise boolean evaluation.

In FHE, once noise accumulates to a certain threshold, it is necessary to perform a
bootstrapping operation to ensure the validity and accuracy of the calculations. Boot-
strapping, i.e. computing the decryption circuit homomorphically, is the only way to
achieve full homomorphism. Gate bootstrapping is computing a gate operation while
bootstrapping [DM15a, CGGI16, CGGI17]. The gate bootstrapping (GBS) method is
considered the most effective currently.

The plaintext space of existing gate bootstrapping methods consists of 2 bits [DM15a,
CGGI16, CGGI17, CGGI20]. For AND (∧) gate bootstrapping , the first step is to add
two ciphertexts, with the most significant bit representing the result of (x ∧ y). The
most significant bit of the LWE ciphertext is then derived through blind rotation and
sample extraction. Subsequently, the modulus and dimension are reduced using modulus
switching and key switching, respectively. For the current XOR gate bootstrapping, two
addition operations are required to put the result of (x ∨ y) in the most significant bit,
and then blind rotation and sample extraction are used to obtain the most significant bit.
Currently, the parameters used for gate bootstrapping are mainly designed for AND and
NAND gates. However, when these parameters are applied to XOR gate bootstrapping,
the decryption failure rate will increases. In addition, we observe that for ciphertexts in the
single-bit plaintext space, addition directly corresponds to performing an XOR operation,
which comes almost no additional cost. This property can be described as Free-XOR.
Therefore, our goal is to design an efficient Free-XOR gate bootstrapping framework.

Finally, we apply our Free-XOR gate bootstrapping framework to homomorphic eval-
uation of symmetric ciphers, which can solve the size expansion problem of homomorphic
ciphertexts in encryption frameworks. The central premise involves employing symmet-
ric encryption for data transmission, while the server pre-computes the FHE ciphertext
before evaluation. In symmetric cryptographic algorithms, the XOR operation serves as
a fundamental component, extensively employed in key scheduling and data encryption
processes. However, current gate bootstrapping techniques necessitate the refreshing of
noise in the corresponding ciphertext for each computation of the gate operation. This
requirement substantially elevates computational overhead, particularly when addressing
intricate symmetric encryption schemes. A significant advantage of homomorphic compu-
tation lies in its capacity to perform operations directly on encrypted data without neces-
sitating decryption. This feature facilitates the integration of homomorphic computation
within symmetric cryptography. By executing XOR operations on ciphertexts, one can
effectively enable the parallel processing of encrypted data while maintaining its security.
Therefore, establishing a Free-XOR gate bootstrapping framework is critically important
for the efficient homomorphic evaluation of symmetric cryptographic algorithms.

1.1 Contribution
Our primary contribution is the proposal of a novel Free-XOR gate bootstrapping frame-
work, which leverages the near-zero cost of adding LWE ciphertexts to achieve XOR oper-
ations in the single-bit plaintext. Additionally, we present the construction of AND gate,
along with the instantiation and implementation based on NTRU in single-bit plaintex
space. Furthermore, our scheme is applied to the homomorphic evaluation of symmetric
ciphers, including AES and ASCON. Specifically, our contributions are as follows.

• A Novel Free-XOR Gate Bootstrapping Framework. We propose a novel
Free-XOR gate bootstrapping framework that efficiently leverages ciphertext in the
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single-bit plaintext space for nearly cost-free XOR evaluation. We present the work-
flow for constructing AND gates of our framework. Furthermore, the Free-XOR gate
bootstrapping framework is categorized into two types-GGBS and IGBS-requiring
2 and 1 blind rotations, respectively, as shown in Figure 1. The Free-XOR gate
bootstrapping framework is the first efficient method based on single-bit plaintext
space, featuring specific efficiency parameters and practical implementation.

Figure 1: Classification of Free-XOR Gate Bootstrapping Framework.

• More Compact and Faster NTRU-Based Instantiation of AND Gate. We
propose an NTRU-based instantiation of a single-bit plaintext-space AND gate and
implement GGBS for AND gates with improved noise management and more com-
pact parameters. This results in GGBS, which requires two blind rotations, being
slightly faster than the state-of-the-art gate bootstrapping scheme that requires only
one blind rotation [LLW+24]. Furthermoreour implementation demonstrates that
our GGBS performance is 1.3× better than TFHE-rs and 1.7× faster than TFHE-
pp, further validating the effectiveness of our optimization strategy in advancing
homomorphic encryption. Additionally, our bootstrapped key reduces the key size
by 3.3 times compared to the state-of-the-art scheme of LLW [LLW+24].

• Efficient Homomorphic Evaluation in Symmetric Ciphers. By adjusting
parameters, our design enables an XOR-free computation with a depth of 7 using
our Free-XOR gate bootstrapping. we apply our gate bootstrapping framework in
single-bit plaintext space to homomorphic evaluation of symmetric ciphers, specif-
ically AES and ASCON. Moreover, our algorithm has greater advantages when
applied to lightweight symmetric ciphers. The homomorphic evaluation of AES
takes 31 seconds, with a performance improvement of 1.5×, and the homomor-
phic evaluation of ASCON takes 28 seconds, with a performance improvement of
4.7×. Our Free-XOR gate bootstrapping framework provides a lightweight, symmet-
ric cryptography-friendly solution for homomorphic computations. For symmetric
cryptographic systems with constrained S-box computation depth, this framework
significantly enhances performance.

Table 1: Comparison of running time between our NTRU-Based instantiation and the
latest NTRU-Based scheme. BR, Size, Opt, Class Refer to Blind Rotation, Key Size,
Optimization and Classification, respectively.

Gate NTRU-based [LLW+24] Our Free-XOR GBS
BR Time(ms) Size(MB) Opt(ms) Class BR Time(ms) Size(MB) Opt(ms)

AND 1 40 7.1 3.8 GGBS 2 35 3.2(3.3×) 3.7

XOR 1 40 7.1 3.8 IGBS 1 17 3.2(3.3×) 1.8(2.1×)
Addition 0 0 0 0
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1.2 Technique Overview

Table 2: Truth Table for (x ∧ y)
x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

(a) Framework (b) Optimization Framework

Figure 2: Framework for Free-XOR gate bootstrapping, where KS, MS, BR and SE stands
for key switching, modulus switching, blind rotation, sample extraction, respectively.

• Construction of AND Gate. In our Free-XOR gate bootstrapping, the XOR
operation is almost free. For completeness, we show the construction of the AND
gate. The construction of AND gates is inspired by the tree lookup table. Initially,
we take the output of the truth table (x∧ y) in Table 2 as a new input to construct
a two-layer structure, as illustrated in Figure 2. In the first layer, x serves as the
control bit for blind rotation. When x = 0, the output is LWE(0) and LWE(0); when
x = 1, the output is LWE(0) and LWE(1). Because the output of the first layer
is always LWE(0) and LWE(x), we can simplify Figure 2a to two blind rotation in
Figure 2b.
Specifically, our AND algorithm first refreshes the noise of LWEN

s,Q( Q
2 x) by bootstrap-

ping, while converting the LWE ciphertext encoding from Q
2 to Q

4 . Then, LWEN
s,Q(0)

and LWEN
s,Q( Q

2 x) are packed into an RLWE or NTRU ciphertext, serving as the test
polynomial for bootstrapping LWEN

s,Q( Q
2 y) and setting the accumulator. After com-

pleting the blind rotation, the result in the accumulator is added to LWEN
s,Q( Q

4 x),
yielding the final computation of LWEN

s,Q( Q
2 xy), as illustrated in the Figure 3.

• Efficient NTRU-based instantiation of the AND gate. Existing NTRU-based
gate bootstrapping suffers from low efficiency, primarily due to inadequate noise
control. We implement an efficient NTRU-based instantiation of the AND gate
operation, primarily enabled by effective noise management. (1) Original gate boot-
strapping framework are typically based on 2-bit adders. In our work, we utilize a
1-bit plaintext space, which provides enhanced flexibility for noise accommodation,
allowing for more compact parameter configurations. (2) we improve noise control
by adjusting some operations of gate bootstrpping process. Instead of directly boot-
strapping under the modulus q and dimension n, we first operate under the larger
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Figure 3: AND gate construction workflow for Free-XOR gate bootstrapping, where KS,
MS, BR and SE stands for key switching, modulus switching, blind rotation, sample
extraction, respectively.

modulus Q and dimension N , switching to the smaller modulus q and dimension n
only when bootstrapping is needed. (3) With the same security level, we increase
the noise in the NTRU key and then increase the NTRU modulus to achieve more
effective noise control. (4) Better noise management is employed in our Packing
algorithm.

• Packing. Before the second blind rotation, the test polynomial needs to be set.
Since both LWE(0) and LWE(x) are ciphertexts, they must be packed and set as the
test polynomial TestP(x), and then the initial accumulator is set. For the AND gate,
due to the special properties of LWE(0), only LWE(x) needs to be packed. Since we
use NTRU-based bootstrapping, we need to convert the LWE ciphertext to NTRU
ciphertext. When we perform key switching, we encrypt s[i] · (1 + X + · · ·+ XN−1)
as the key instead of encrypting s[i], and we encrypt f · (1 + · · ·+ XN−1) as another
KSK to achieve packing into an NTRU ciphertext.

• Efficient Implementation Utilizing Key Unrolling and AVX512 Acceler-
ation. We employ key unrolling techniques to enhance the performance of blind
rotation within the FGBS algorithm. Additionally, we optimize the core components
of blind rotation, including approximate decomposition, NTT, and Hadamard mul-
tiplication, leveraging AVX instructions to enable parallel computation. Notably,
using AVX-512 instructions allows the NTT to achieve 16 parallel operations within
a 32-bit word length.

1.3 Related Work
• NTRU-based Gate Bootstrapping. Bonte et al. introduced a bootstrapping

scheme [BIP+22b] where the NTRU ciphertext is structured as g/f + m. Although
this ciphertext design facilitates outer product operations with GSN ciphertexts, it
does not support efficient key-switching or ring automorphism operations, which
presents a significant limitation. Addressing this inefficiency, Xiang et al. [XZD+23]
proposed a novel bootstrapping algorithm in 2023 that is grounded in automor-
phism techniques. They restructured the NTRU ciphertext to (g + m)/f , allowing
the conversion of the NTRU ciphertext into an LWE ciphertext by sample extraction.
This refinement effectively bypasses the complex and resource-intensive key switch-
ing method proposed by Bonte et al. Moreover, Xiang et al.’s ciphertext supports
key operations such as NTRU key switching and automorphism, further improving
computational efficiency.
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• FHEW-like Algorithms with Single-bit Plaintext Space. Homomorphic com-
putation based on single-bit plaintext space currently employs two primary meth-
ods. The first method is the LWE multiplication proposed by [CLOT21], which
utilizes the LWE tensor of the BGV/ BFV/ CKKS to facilitate the multiplication
of two ciphertexts. However, the noise resulting from this multiplication is O(N3),
which is substantial. In addition, the paper does not provide specific parameter
settings. Our exploration revealed that this method requires large parameters and
exhibits low efficiency. The second method involves multiplying single-bit RLWE
and RGSW ciphertexts; however, after a single computation, RGSW must be con-
verted back into RLWE form to continue operations, which requires circuit boot-
strapping [CGGI17, CGGI20, WWL+24a]. Circuit bootstrapping is a hierarchical
fully homomorphic encryption (FHE) approach that organizes the operations to be
performed into a table, calculating them via table lookups. This method also re-
quires large parameters and demonstrates low efficiency. In Eurocrypt2024, Wang et
al. [WWL+24b] proposed a more compact and faster circuit bootstrapping scheme,
yet its efficiency remains significantly lower than that of gate bootstrapping.

1.4 Paper Organization
The rest of the paper is organized as follows. We provide the necessary background
knowledge and some general tools in FHE schemes in Section 2. In Section 3, we introduce
the Free-XOR gate bootstrapping framework, the GGBS construction process of AND,
give examples based on NTRU, and propose a new packing method. In Section 4, we
present our noise analysis and achieved performance. In Section 5, we demonstrate some
optimization techniques for improving blind rotation efficiency. Finally, we present the
application of our framework in the transciphering scenario in Section 6. Finally, in section
7, we summarize our work

2 Preliminaries
2.1 Notation
We denote as Zq the set of integers modulo q. The 2N -th cyclotomic ring, denoted as
R = Z[X]/(XN +1), where N is a power of 2. The quotient ring is Rq = Zq[X]/(XN +1),
which represents R/qR. Elements in Zq or Rq are denoted by regular letters, such as
a ∈ Zq or Rq. Vectors in Zq or Rq are represented by bold letters, such as a, with a[i]
indicating the i-th component. For a ∈ Rq, ai denotes the coefficient of the i-th term in a.
The floor, ceiling, and rounding functions are denoted by ⌊·⌋, ⌈·⌉ and ⌊·⌉ respectively. The
l2 and l∞ norms are represented by ∥ · ∥2 and ∥ · ∥∞, respectively. Sampling a from the
discrete Gaussian distribution Dµ,σ with mean µ and standard deviation σ is indicated
by a← Dµ,σ. Inner products and outer products are denoted by ⟨·, ·⟩ and ⊡, respectively.
Additionally, ⊙ can signify gadget product. We denote the error of a ciphertext ct by
Err(ct), and the variance of the error by Var(Err(ct)).

2.2 Hard Problems
In this subsection, we revisit the foundational hard problems upon which FHE schemes
are constructed: Learning with Errors (LWE) problem [Reg09], Ring Learning with Er-
rors (RLWE) problem [LPR10], and the N -th Degree Truncated Polynomial Ring Units
(NTRU) problem [KF17].

Decisional LWE Problem [Reg09]. For security parameter λ, let n = n(λ) be the
integer dimension, q = q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distribution over
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Z (usually a discrete Gaussian distribution). The LWE(n,q,χ) problem is to distinguish
between the following two distributions:

• Sample (a, b) uniformly from Zn+1
q .

• Sample a uniformly from Zn
q , s← Zn

q , and sample e from χ. Set b = ⟨a, s⟩+ e.

Decisional RLWE Problem [LPR10]. Given security parameter λ, N = N(λ) and
q = q(λ) are positive integers. Let R = Z[X]/(XN + 1), Rq = R/qR, and χ = χ(λ)
be a nosie distribution over R. The RLWE(N,q,χ) problem is to distinguish between the
following two distributions:

• Sample (a, b) uniformly from R2
q.

• Sample a uniformly from Rq, s←Rq, and sample e from χ. Set b = a · s + e.

Decisional NTRU Problem [KF17]. Given security parameter λ, N = N(λ) and
q = q(λ) are positive integers. Let R = Z[X]/(XN + 1), Rq = R/qR, and χ = χ(λ)
be a noise distribution over R. The NTRU(d,q,χ) problem is to distinguish between the
following two distributions:

• Sample polynomial c uniformly from Rq.

• Sample f ∈ Rq satisfying f has an inverse in Rq, g ← χ is a noise polynomial. Set
a = g/f ∈ Rq.

2.3 Message Encoding
In this paper, we utilize most significant bit (MSB) encoding, with the corresponding
encoding and decoding functions defined as follows:

Encode : γ =
⌊q

t

⌋
·m + e, Decode : m =

⌊
t

q
· γ
⌉

mod t.

In this context, t represents the plaintext modulus, and q denotes the ciphertext modulus.

Remark 1. We use superscripts and subscripts to define the parameters of the ciphertext,
such as LWEn

s,q( q
t m), RLWEn

s,q( q
t m). In some cases, we may omit encoding for brevity like

LWEn
s,q(m).

2.4 Approximate Gadget Decomposition
Gadget decomposition is a key technique to control noise growth in FHE. Approximate
Gadget Decomposition can improve computational efficiency. Given a gadget vector
g = (g0, g1, · · · , gℓ−1), the Gadget decomposition for a ring element t ∈ Rt is to find
a set of small elements (t0, t1, · · · , tℓ−1) such that

∑ℓ−1
i=0 ti · g[i] = t. The approxi-

mate Gadget vector for the approximate Gadget decomposition is g = (
⌈
q/Bℓ

⌉
,
⌈
q/Bℓ

⌉
·

B, · · · ,
⌈
q/Bℓ

⌉
· Bℓ−1), where Bℓ < q. For polynomial h, its approximate decomposition

is a set of polynomials h0, h1, · · · , hℓ−1, where the coefficients are less than B. Define
ϵ =

∥∥∥∑ℓ−1
i=0 hig[i]− h

∥∥∥
∞

, satisfying ϵ ≤ 1
2
⌈

q
Bℓ

⌉
.
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2.5 NTRU-based GSW-like Encryption
This section provides a brief overview of the NTRU encryption scheme and introduces
several fundamental homomorphic building blocks.

Definition 1 (NTRU Ciphertext). An NTRU ciphertext is expressed as

NTRUf,Q(µ) = g + µ

f
∈ RQ,

where g, f are the error ring polynomial sampled from a sub-Gaussian distribution and f
has a standard deviation of σ(f) = 3.5.

The NTRU ciphertext structure inherently supports both homomorphic addition and
homomorphic scalar multiplication. For two ciphertexts, ctx and cty, encrypted with the
same private key f , their homomorphic addition is given by:

ctx + cty = gx + gy + (µx + µy)
f

∈ RQ.

Furthermore, scalar multiplication of a ciphertext by a scalar z can be directly per-
formed through polynomial multiplication. For a ciphertext ctx and a scalar z, the result-
ing scalar multiplication is given by:

z · ctx = z · (gx + µx)
f

∈ RQ.

Definition 2 (NGS Ciphertext). For the gadget vector g, we define NTRU
′

f and NGSf

as follows:

NTRU′
f (m) := (NTRUf (g[0] ·m) , NTRUf (g[1] ·m) , · · · , NTRUf (g[ℓ− 1] ·m)) ∈ Rℓ

Q.

NGSf (m) :=
(
NTRU′

f (f ·m)
)
∈ Rℓ

Q.

Definition 3 (External Product). For a polynomial t ∈ RQ, the gadget multiplication
of RLWE′(m) is given by:

⊙ : RQ × NTRU′ → NTRU

t⊙ NTRU′
f (m) = ⟨(t0, · · · , tℓ−1) , (NTRUf (g[0] ·m) , · · ·NTRUf (g[ℓ− 1] ·m))⟩

=
ℓ−1∑
i=0

ti · NTRUf (g[i] ·m) = NTRUf

(
ℓ−1∑
i=0

g[i] · ti ·m

)
= NTRUf (t ·m) ∈ RQ

The multiplication of the ciphertexts NTRU(m1) and NGS(m2) is given by:

⊡ : NTRU× NGS→ NTRU,

NTRUf (m1) ⊡ NGSf (m2) = ((g + m1) /f)⊙
(
NTRU′

f (f ·m2)
)

= NTRUf (((g + m1) /f) · fm2)
= NTRUf (m1 ·m2 + g ·m2) ∈ RQ

Remark 2. Here, we use the approximate gadget decomposition to instantiate the ex-
ternal product as shown in scheme [LLW+24]. The approximate gadget vector g =(
B0, . . . , Bℓ−1

g

)
. The error introduced by ⊙ is 1

12 NℓB2
gσ2, where σ2 is error variance.

The error variance of t⊙ NTRU′
f (m) is 1

12 NℓB2
gσ2 + 1

6 Nϵ2,where ϵ = 1
2
⌈

q
Bℓ

⌉
.
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2.6 Gate Bootstrapping
Gate bootstrapping (GBS) reduces noise while homomorphically evaluating binary gate
operations such as AND, NAND, OR and XOR. The current basic architecture of gate
bootstrapping is proposed by Ducas and Mcciancio [DM15a], As shown in Figure 4. In
the method described by [DM15a], the plaintext space consists of 2 bits, meaning t = 4.
By performing homomorphic addition on ctx and cty (that is, ct = ctx + cty), we can
add the plaintexts x and y. The resulting values after addition are in the set {0, 1, 2}.
The MSB of the ciphertext ct is then extracted through blind rotation, resulting in the
ciphertext for (x ∧ y).

Figure 4: FHEW-like Gate Bootstrapping Procedure for AND gate [DM15a].

Figure 5: AND Gate Bootstrapping procedure of FHEW scheme, starting from LWEQ,z

and switch to LWEq,s before blind rotation[LMK+23].

Lee et al. [LMK+23] achieved a reduction in both noise and number of key switch-
ing by rearranging the sequence of operations within the gate bootstrapping procedure.
Specifically, they begin with a ciphertext encrypted under a bigger modulus Q instead
of the smaller modulus q, and perform modulus switching to q immediately before blind
rotation (see Figure 5).

2.6.1 Sample Extraction

We show that the sample extraction technique [XZD+23] can extract the LWE ciphertext
from NTRU ciphertext. They treat the NTRU ciphertext ct = (g + m)/f as an RLWE
ciphertext (−ct, 0), and the decryption process with the secret key f is

0 + ct · f = (g + m)/f · f = g + m.

Then the sample extraction is defined as

SampleExtraction(ct) = (−ct0, ctN−1, ctN−2, ..., ct1, 0) ∈ LWEN
Coefs(f),Q(m0).

2.6.2 LWE-to-LWE Key Switching

The LWE-to-LWE key-switching process [DM15a] can adjust the LWE dimension without
altering the underlying message. The process is described in detail below. Let ct =
LWEN

z,QKS
(m) ∈ ZN

QKS
be an LWE ciphertext under z. LWE-to-LWE key-switching is to

switch the secret from z ∈ ZN to s ∈ Zn. BKS is the base. The key-switching key consists
of LtLKSKi,j,v ∈ LWEn

s,QKS
(vz[i]Bj

KS), where v ∈ {0, . . . , BKS − 1}, for all 0 ≤ i ≤ N − 1,
0 ≤ j ≤ ℓKS−1 and ℓKS = ⌈logBKS

QKS⌉. For a ciphertext ct = (a, b) ∈ LWEN
z,QKS

(m), the
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key switching procedure first decomposes each element under BKS, i.e. a[i] =
∑

j ai,jBj
KS,

and outputs
ct′ = LtLKeySwitch(ct)

= (0, b) +
∑
i,j

LtLKSKi,j,ai,j
mod QKS

= (a′, b′) ∈ LWEn
s,QKS

(m).

The error variance of the result of the LWE-to-LWE key switching is bounded by σ2
ct′ ≤

σ2
ct + NℓKSσ2

in, where σ2
in is the error variance of key-switching key.

2.6.3 Modulus Switching

The modulus switching technique adjusts the modulus of a ciphertext [BGV14b, DM15b].
Given a ciphertext ct = (a, b) ∈ LWEn

s,Q(m), the algorithm outputs a new ciphertext as

ct′ = ModSwitch(ct) = (⌊ q

Q
· a⌉, ⌊ q

Q
· b⌉) ∈ LWEn

s,q(m).

The variance of noise satisfies σ2
ct′ ≤ ( q

Q )2 · σ2
ct + ||s||2

2+1
12 .

Algorithm 1 NTRU Blind Rotation BlindRotate(acc, acc ·Xa[i], bsk)
Input:

An LWE sample ct = (a, b) ∈ LWEn+1
s,q (m), where q|2N .

A bootstrapping key bski : {GSNf,Q(s[i])}, for i =∈ [0, n− 1].
acc = X−b· 2N

q · testP(X) ∈ RQ.
Output:

An NTRU ciphertext acc ∈ NTRUf,Q(testP(X) ·X( 2N
q )·(−b+⟨a,s⟩))

1: for i = 0 to n− 1 do
2: acc = acc +

(
acc ·Xa[i] − acc

)
⊡ bski

3: end for
4: return acc.

2.6.4 Blind Rotation

Blind rotation is the core operation in bootstrapping and also the most time-consuming
part. Currently, blind rotation is primarily based on AP [ASP14, Per21, DM15a], GINX
[CGGI16, CGGI17, CGGI20], the automorphisms by Lee et al. [LMK+23], and NTRU
by Xiang et al. [XZD+23]. The blind rotation based on NTRU is detailed in Algorithm
2.

3 Framework of Free-XOR Gate Bootstrapping
We choose a single-bit plaintext space, where the XOR operation is performed by simply
adding two ciphertexts, requiring almost no computational costhence the term Free-XOR.
Building on this concept, we propose a Free-XOR gate bootstrapping framework, which
supports various logical operations, including XOR, XNOR, OR, NAND, AND, and NOR
gates. Since the AND and XOR gates together form the minimal complete set of logical op-
erations, we will introduce the construction of the AND gate in this section. Furthermore,
we present a specific instantiation of the AND gate operation based on the NTRU.
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3.1 Construction of the AND Gate
Our Free-XOR gate bootstrap has two components, as shown in Figure 5: General Gate
Bootstrap (GGBS) and Identity Gate Bootstrap (IGBS), with the main costs being 2 and
1 blind rotations, respectively.

3.1.1 Workflow of GBBS

We divide the GGBS of x∧ y into three steps. In this section, we outline the construction
framework of GGBS as shown in Figure 3.

Bootstrapping of LWE( Q
2 x). This process is an identity bootstrapping, primarily aimed

at refreshing the noise in LWE( Q
2 x) through bootstrapping, while remaining the result

unchanged.

Packing. After refreshing the noise of LWE( Q
2 x), LWE(0) and LWE

(
Q
2 x
)

need to be
packed into a single RLWE ciphertext or an NTRU ciphertext as the test polynomial.
Considering that the test polynomial must satisfy negacyclicity, the encoding needs to be
converted from Q

2 to Q
4 . Then, the initial accumulator is set accordingly.

FHEW-like Bootstrapping the ciphertext of a Single-Bit y. The Bootstrapping
the Ciphertext of a single-bit y is determined by evaluating the test polynomial. Specif-
ically, if y = 1, the output yields LWE( Q

2 x); conversely, if y = 0, the output results in
LWE(0). This result represents the AND of LWE( Q

2 x) and LWE( Q
2 y).

3.2 Instantiation of NTRU-based Free-XOR Gate Bootstrapping
In this section, we present an NTRU-based instantiation of the Free-XOR gate boot-
strapping, specifically demonstrating the GGBS gate bootstrapping, along with the corre-
sponding parameter selections. We divide the NTRU-based Free-XOR gate bootstrapping
process into four distinct steps. In this instantiation, we set q = 2N .

Step1: NTRU-based Bootstrapping of LWEN
s′,Q(x). We first bootstrap a single-bit

x ciphertext ctx = LWEN
s′,Q(x) to reduce its noise. This process starts with modulus

switching and key switching operations to convert the LWE ciphertext from modulus Q
to modulus q, reducing the dimension from N to n.

Figure 6: The Procedure for NTRU-based Identical Bootstrapping (IGBS) of LWEs′,Q(x).

Specifically, the initial value of the accumulator is set to

acc = X−b · testP(X) ∈ RQ, where testP(X) =
N−1∑
i=0

2 ·
⌊q

2
· i
⌉
·Xi ·X N

2 .

It should be noted that the test polynomial must satisfy the negacyclivity property,
which means testP(X + N/2) = −testP(X).

For a binary LWE secret key s ∈ {0, 1}n, the process for generating the bootstrapping
key is described as follows [MP21, LLW+24]:
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bsk =
{

bski = NGSf,Q(0), if (s[i] = 0);
bski = NGSf,Q(1), if (s[i] = 1).

Next, followed by n iterative operations as

acc = acc +
(

acc ·Xa[i] − acc
)
⊡ bski, (0 ≤ i ≤ n− 1). (1)

Upon completion of n iterations, corresponding to the computation of the external
product for n, the accumulator is obtained as follows:

acc = NTRUf,Q

(
testP(X) ·X−b+

∑n−1
i=0

a[i]s[i]
)

= NTRUf,Q

(
testP(X) ·X−(⌊ q

2 ·x⌉+e)
)

.

= NTRUf,Q

(
Q

4
x

)
.

Finally, after sample extraction, we extract the ciphertext LWEQ(x) from acc, thereby
refreshing the noise in the ciphertext x. And the encoding is converted from Q

2 to Q
4 .

Algorithm 2 Constructing Efficient AND Gates Based-on NTRU.
Input:

An LWE sample ctx = (a, b) ∈ LWEN
s,Q(x).

An LWE sample cty = (a′, b′) ∈ LWEN
s,Q(y).

A bootstrapping key bski : {NGSf,Q(s′[i])}, for i ∈ [0, n− 1].
Output:

A refreshed LWE ciphertext LWEN
s,Q(xy)

1: ct← ModSwitchQ→QKS(ctx)
2: ct← LtLKeySwtichs→s′,N→n(ct)
3: (a, b)← ModSwitchQKS→q(ct)

4: testP(X)←
∑N−1

i=0 2 ·
⌊

t
q · i
⌉
·Xi ·X N

2

5: acc← testP(X) ·X−b

6: for i = 0 to n− 1 do
7: acc = acc +

(
acc ·Xa[i] − acc

)
⊡ bski

8: end for
9: ct← SampleExaction(acc)

10: ct←Pack(LWEQ(0), ct)
11: testP′(X)← ct ·XN/2

12: ct′ ← ModSwitchQ→QKS(cty)
13: ct′ ← LtLKeySwtichs→s′,N→n(ct)
14: (a′, b′)← ModSwitchQKS→q(ct)
15: acc′ ← testP′(X) ·X−b′

16: for i = 0 to n− 1 do
17: acc′ = acc′ +

(
acc′ ·Xa′[i] − acc′

)
⊡ bski

18: end for
19: ct′′ ← SampleExactionQ(acc′)
20: ctxy ← ct′′ + ct
21: return ctxy

Step2: Setting testP′(X) by packing. The core challenge in designing an AND gate
for a single-bit plaintext space is configuring the test polynomial for bootstrapping the
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ciphertext y. The primary step in this process involves packing both LWE(0) and LWE(x)
into an NTRU ciphertext to construct the test polynomial as a lookup table. Packing
technique is as follows:

b̃←
N−1∑
i=0

(−a[i])⊙NTRUf (s[i] · (1 + X + · · ·+ XN−1)) + b⊙NTRU′
f (f · (1 + · · ·+ XN−1)).

At this time, b̃ is the desired NTRU ciphertext, TestP′(X) = b̃ · XN/2. For packing
details, see Section 3.3.
Step3: Bootstrapping the cty = LWEs,Q( Q

2 y). First, we apply key switching and
modulus switching, as described in lines 1214 of Algorithm 2, to reduce the dimensionality,
modulus, and noise of the LWE ciphertex. We obtain (a′, b′) = LWEn

s′,q( q
2 y).

Setting the bootstrapping key bsk as:

bsk =
{

bski = NGSf,Q(0), if (s[i] = 0);
bski = NGSf,Q(1), if (s[i] = 1).

Initializing the accumulator as: acc = testP′(X) ·X−b

acc = acc +
(

acc ·Xa[i] − acc
)
⊡ bski, (0 ≤ i ≤ n− 1). (2)

Perform the external product n times:

acc = NTRUf,Q

(
testP′(X) ·X−b+

∑n−1
i=0

a[i]s[i]
)

= NTRUf,Q

(
testP′(X) ·X−(⌊ q

t ·y⌉+e)
)

= NTRUf,Q((−1)1−y Q

4
x)

Extract the LWE ciphertext from the NTRU ciphertext to obtain LWEQ

(
(−1)1−y Q

4 x
)

.

Subsequently, add LWEQ

(
Q
4 x
)

to achieve the final result LWEQ( Q
2 xy).

3.3 Packing
Packing is to pack one or more LWE ciphertexts into an RLWE ciphertext or an NTRU
ciphertext. The packing method of [CGGI17] Algorithm 1 is that the number of packed
LWE ciphertexts must be N . If we need to pack is two ciphertexts, then we repeat each
ciphertext N/2 times, and then pack N LWE ciphertexts into one RLWE ciphertext. But
the variance of the noise introduced by ring packing is

σ2 ≤ 1
12

ℓN2B2σ2
LtRKSK + 1

3
nϵ2, ϵ = 1

2
⌈ q

Bℓ
⌉. (3)

Where N denote the dimension of the LWE ciphertexts, B and ℓ denote the base and the
length of the gadget decomposition, respectively. The noise introduced by this method is
significant, as the LWE dimension is N , resulting in greater noise than that introduced
during the blind rotation in the bootstrapping process.

We propose a new method for efficiently packing LWE ciphertexts into an NTRU
ciphertext, facilitating this transformation. Since the AND gate requires setting a test
polynomial before the second blind rotation, the LWE ciphertexts of 0 and LWEs,Q( Q

4 x)
must be packed into an NTRU cipertext. The packing method we propose introduces
minimal noise, ensuring more efficient and secure ciphertext transformations.
Correctness and Error Analysis.
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Algorithm 3 Packing Pack(LWEN
s,Q(0), ct)

Input: Two LWE ciphertext LWEN
s,Q(0) and ct = (a, b = ⟨a, s⟩+ Q

4 x+e) ∈ LWEN
s,Q( Q

4 x).
Input: LTNKSKi = NTRUf (s[i] · (1 + X + ... + XN−1)), for i ∈ [0, N − 1]

KSK = NTRU′
f (f · (1 + · · ·XN−1)).

Output: NTRUf,Q( Q
4 x(1 + X + · · ·+ XN−1))

ct = b⊙ KSK
for i = 0 to N − 1 do

ct← ct + (−a[i])⊙ LTNKSKi

end for
return An NTRU ciphertext ct

Proof. Basing the correctness of the gadget multiplication, we have

N−1∑
i=0

(−a[i])⊙ NTRUf (s[i] · (1 + X + ... + XN−1)) + b⊙ KSK

= NTRUf,Q((
N−1∑
i=0

(−a[i]s[i] + b)(1 + X + · · ·+ XN−1))

= NTRUf,Q((Q

4
x)(1 + X + · · ·+ XN−1)).

Then, the error variance introduced by packing is

σ2 ≤ 1
12

ℓNB2σ2
LtRKSK + 1

3
nϵ2, ϵ = 1

2
⌈ q

Bℓ
⌉. (4)

where N denote the dimension of the LWE ciphertexts, B and ℓ denote the base and the
length of the gadget decomposition, respectively.

4 Error Analysis and Implementation
4.1 Error Analysis and Parameter Selection.
This section mainly analyzes the noise of our NTRU-based instantiation. In this context,
σ2

Packing, σ2
BR, σ2

LtLKS represent the noise levels introduced by the packing, blind rotation
and LWE-to-LWE key switching, respectively.

σ2
Packing ≤

1
12

nℓB2σ2
LtRKSK + 1

3
nϵ2, ℓ = ⌊logB Q⌋ , ϵ = 1

2

⌈
Q

Bℓ

⌉
.

σ2
BR ≤

1
12

nNℓB2σ2
BRKSK + 1

3
nNϵ2, ℓ = ⌊logB Q⌋ , ϵ = 1

2

⌈
Q

Bℓ

⌉
.

σ2
LtLKS ≤ Nℓσ2

LtLKSK, ℓ = ⌊logB Q⌋ .

The formula for evaluating the decryption rate is 1− erf
(

q/t

2
√

2σ

)
, where in our frame-

work, the plaintext modulus t = 2, so the decryption failure rate formula is: 1−erf
(

q/2
2

√
2σ

)
.

σ is the standard deviation of the noise in the entire bootstrap process.

For the GGBS, σ =
√

q2

Q2

(
σ2

Packing + 3σ2
BR

)
+ Q2

KS
Q2 (σ2

KS + σ2
MS1) + σ2

MS2.
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For the IGBS, σ =
√

q2

Q2 (σ2
BR) + QKS

Q2 (σ2
KS + σ2

MS1) + σ2
MS2.

we give the NTRU/NGS and LWE parameters required for the NTRU-based single-bit
plaintext space gate bootstrapping scheme at a 128-bit security level, as shown in Tables
3 and 4. The security level of HE schemes is determined by several factors, including
the secret key distribution, the dimensions and modulus of the (R)LWE sample, and the
standard deviations of the error according to the HE standard [ACC+18]. Then, we use
the LWE estimator [APS15] to estimate the security level.

Table 3: Bootstrapping parameters for NTRU/NGS ciphertext. Among themλ ,N ,σ,BBR

denotes the security level, the degree of the ring polynomial, the standard deviation of
the NTRU key f , the basis of gadget decomposition of blind rotations, respectively. while
ℓBR and ℓ′

BR refer to the lengths of the gadget decomposition and the approximate gadget
decomposition, respectively. .

Parameters Key distrib. λ N σ Q BBR ℓBR ℓ′
BR FR.

STD128B2 Gaussian 128 210 3.5 ≈ 225 28 4 2 2−115

Table 4: Bootstrapping parameters for LWE ciphertext. In this context, λ ,n ,σ is the
security level, the dimension of the LWE ciphertext, the standard deviation of the noise
in the fresh ciphertext, QKS refers to the base used for key switching, and ℓKS specifies
the number of blocks utilized during the key switching process.

Parameters Key distrib. λ n σ q QKS BKS ℓKS

STD128B2 Binary 128 541 3.19 211 213 27 2

Table 5: Gate Bootstrapping parameters for other schemes.
Scheme Key distrib. λ n N σ Q B ℓBR ℓ′

BR

[MP21] Ternary 128 512 1024 3.19 ≈ 225 27 4 –
[LMK+23] Gaussian 128 458 1024 3.19 ≈ 225 27 4 –
[XZD+23] Gaussian 128 465 1024 3.19 ≈ 219.9 24 5 –
[LLW+24] Bianry 128 571 1024 3.19 ≈ 219.9 23 6 5

It is important to note that the LWE estimator has been recently updated, and
our NTRU parameters have been evaluated using the latest version. Our parameters
STD128B2 are highly compact. Not only has the number of blocks in the gadget de-
composition been reduced from 5 to 2, but the LWE dimension has also decreased from
571 to 541, resulting in a significant improvement in efficiency. The techniques for noise
management are as follows.
Enhanced Noise Control. We have revised the parameter settings of the scheme pre-
sented in [LLW+24] and selected more optimal parameters. Specifically, we can reduce n
from 571 to 541 and decrease the decomposition length from 5 to 2. This improvement is
primarily attributed to the following reasons.

• We use single-bit message encoding, whereas the existing scheme uses two-bit mes-
sage encoding. A bit of a gap allows more freedom for noise growth.

• Existing gate bootstrapping methods utilize a 2-bit adder, requiring an addition
operation prior to bootstrapping. In contrast, our Free-XOR gate bootstrapping



16 Free-XOR Gate Bootstrapping

eliminates the need for this addition, thereby saving 0.5 bits of space and allowing
for the accommodation of more noise.

• To maintain the desired security level, we first increased the noise in the NTRU key
and subsequently raised the NTRU modulus to achieve more effective noise control.

• We swapped the gate bootstrapping process in [DM15a] to align with the procedure
used in LMK+ [LMK+23]. The gate bootstrapping begins with the modulus Q.
This approach allows the noise from both XOR and AND operations to accumulate
under modulus Q, thereby enabling more effective noise control.

Smaller Key Size. Using NTRU-based blind rotations and reducing the number of
blocks in gadget decomposition helps minimize the key size. In Table 6, we compare the
key sizes across different schemes. Our approach employs NTRU-based blind rotations,
leading to a reduction in the number of n and gadget decomposition blocks. When the
LWE key is binary, the size of NTRU is given by ℓBRnN log2(Q). Our key size of 2.1MB,
which is 3.3 times smaller than [LLW+24].

4.2 Implementation and Performance

We implemented our algorithm based on our own library. The experiments were conducted
on a machine equipped with an Intel(R) Core(TM) i5-11500 CPU 2.70 GHz and 32 GB
of RAM, running Ubuntu 22.04.2 LTS with a single thread at a single CPU core, and
compiled with Clang version 11.3.0.

We implemented an NTRU-based instantiation of the AND gate in our library. Under
the STD128B2 parameters, our GGBS achieves speeds that are 3 times faster than FHEW-
like gate bootstrapping and 1.15 times faster than [LLW+24], with key sizes reduced by
a factor of 6 and 3.3, respectively. Our IGBS achieves even faster performance, being 6
times faster than FHEW-like gate bootstrapping and twice as fast as Lis method, with
key sizes reduced by a factor of 6 and 2.35, respectively.

Table 6: Comparison of running times with other shcems.
Schemes Assumption Key Size (MB) Times (ms)

FHEW [MP21] RLWE 13.5 102.5
LMK+[LMK+23] RLWE 12.7 113
XZD+ [XZD+23] NTRU 17.9 61.2
LLW+ [LLW+24] NTRU 7.1 40

GGBS STD128B2 NTRU 2.1(3.3×) 35(1.15×)
IGBS STD128B2 NTRU 2.1(3.3×) 17(2.35×)

5 Optimization techniques
In this section, we primarily discuss the optimization techniques employed in our approach,
including key unrolling and AVX512 acceleration instructions.
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5.1 Blind Rotation Using Key Unrolling Technique
Using the technique from [BMMP18], we enhance the efficiency of blind rotation in boot-
strapping by reducing the number of external products. Specifically, instead of computing
ai · si bit by bit, we now group pairs and compute them together. By observing the fol-
lowing formula:

Xas+a′s′
= ss′Xa+a′

+ s (1− s′) Xa + (1− s)s′Xa′
+ (1− s) (1− s′)

To compute this new function, they modify the bootstrapping key to include encryptions
of the values ss′, s(1− s′), (1− s)s′, and (1− s)(1− s′). As a result, this idea reduces the
number of iterations in blind rotation by half, effectively halving the number of external
product computations. At the cost of increasing the size of the bootstrapping key to
four times its original size. Specifically, the accumulation process of the CMux gate blind
rotation changes from Xb+

∑n−1
i=0

a[i]s[i] to:

X
∑n−1

i=0
a[i]s[i] = X

∑(n−1)/2
i=0

a[2i]s[2i]+a[2i+1]s[2i+1].

Specifically, as in Algorithm 4. Table 5 presents a comparative analysis of the computa-
tion time, demonstrating the improvements achieved by employing approximate gadget
decomposition and key unrolling techniques relative to other existing schemes.

Algorithm 4 Blind Rotate Using Key Unrolling.
Input:

An LWE sample ct = (a, b) ∈ LWEn
s,q(m), where q|2N .

For all i in [0, n/2 − 1], bki,0, bki,1, and bki,2 are respectively NGS encryptions of
s[2i]s[2i + 1], s[2i] (1− s[2i + 1]) , and s[2i + 1] (1− s[2i])
A test polinomial testP(X)

Output:
An RLWE ciphertext acc ∈ RLWEs′,Q(X−b+

∑n−1
i=0 a[i]s[i]) .

1: Set acc = X−b · testP(X) ∈ R2
Q

2: for i = 0 to n/2− 1 do
3: acc← (

(
Xa[2i]+a[2i+1] − 1

)
brki,0+

(
Xa[2i] − 1

)
brki,1+

(
Xa[2i+1] − 1

)
brki,2)⊡acc

4: end for
5: return acc.

Performance. Our GGBS is accelerated by key unrolling to 23ms. Compared with the
original algorithm, it is about 1.5 speed up.
Error Analysis and Decryption Failure Rate. Note that the key unrolling can
increase the growth compared to the original blind rotation process as shown in scheme
[LLW+24]. Further, the error variance of blind rotation is 1.5 times larger than the original
σ2

BR. Based on the error analysis shown in Section 4.1, we can get the current decryption
failure rate is now 2−58.

5.2 AVX-512 Instructions
The Intel AVX (Advanced Vector Extensions) instruction set, developed by Intel, is an
extension designed to enhance CPU performance during vectorized operations. First
introduced in 2011, AVX has been progressively expanded and optimized in subsequent
processor generations. By increasing the width of registers (from 128-bit to 256-bit, and
further to 512-bit with AVX-512) and incorporating additional floating-point and integer
arithmetic instructions, the AVX instruction set significantly boosts parallel computing
capabilities.
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In FHE, polynomial operations are among the core computational tasks. The AVX
instruction set, leveraging vectorization techniques, enables parallel processing of poly-
nomial coefficients as vector elements. For instance, within the NTT/FFT algorithms,
AVX can utilize its 256-bit or 512-bit data instructions to handle multiple coefficients si-
multaneously, thereby accelerating the computation of a single polynomial multiplication.
In homomorphic encryption schemes, AVX instructions can be employed to expedite the
encryption and decryption of ciphertexts. By exploiting the vectorization and parallelism
capabilities of the AVX instruction set, the computational complexity of fully homomor-
phic encryption schemes can be significantly reduced, enhancing their practical feasibility.

After applying key unrolling techniques and optimizing with AVX512 instructions, the
runtime of our gate bootstrapping scheme is presented in Table 7.

Table 7: Comparison of bootstrapping runtimes with AVX instructions.
Scheme Instruction FFT/NTT Key Size (MB) Time (ms)

TFHEpp [Mat20] AVX-512 FFT 13.5 9

TFHE-rs [Zam22] AVX-512 FFT 13.5 6.8

LLW+[LLW+24] AVX-512 NTT 10.7 3.8

Our GGBS AVX-512 NTT 3.2(3.3×) 3.7

Our IGBS AVX-512 NTT 3.2(3.3×) 1.8(2.1×)

6 Application
Transciphering. Although current FHE schemes are approaching practical applicability,
the size of homomorphic ciphertexts remains several orders of magnitude larger than that
of plaintexts, primarily due to the security of these schemes relying on hard problems
such as LWE, RLWE, and NTRU. This necessitates the use of larger modulus and higher-
degree polynomials to ensure sufficient security. To address these challenges, Naehrig et
al. [NLV11] proposed a transciphering framework. Specifically, the client encrypts the
data using a symmetric encryption scheme, producing a ciphertext Ek(m). Then, the
client generates a homomorphic encryption of the symmetric key, Enc(k), and transmits
both the encrypted key and the ciphertext to the server. Upon receiving the encrypted
data, the server homomorphically evaluates the decryption circuit of the symmetric en-
cryption. Using Enc(k) and Ek(m), the server computes the homomorphic decryption
of the ciphertext, resulting in the homomorphically encrypted original data: Once the
data is decrypted homomorphically, the server can proceed with further homomorphic
evaluations on the encrypted data.

Given that our single-bit plaintext bootstrapping method is inherently XOR-free, it
provides substantial advantages for the homomorphic evaluation of symmetric ciphers,
particularly those with a high proportion of XOR operations and lightweight symmetric
ciphers. To demonstrate its effectiveness, we present its application in the homomorphic
computation of AES and Ascon.

6.1 Parameter Selection and Implementation
We have chosen the parameters STD128B3 for the LWE and NTRU as detailed in Tables
8 and 9, respectively. To facilitate a higher number of XOR-free operations, we expand
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the basis BBR of the blind rotation decomposition and increase the number of blocks used
in the calculations.

Table 8: Bootstrapping parameters for NTRU/NGS ciphertext.In this context, λ denotes
the security parameter, N is the degree of the ring polynomial, σ represents the standard
deviation of the NTRU key f , BBR indicates the basis used for blind rotations, while ℓBR

and ℓ′
BR refer to the lengths of the gadget decomposition and the approximate gadget

decomposition, respectively.
Parameters Key distrib. λ N σ Q BBR ℓBR ℓ′

BR FR.
STD128B3 Gaussian 128 210 2.45 ≈ 225 26 4 3 2−748

Table 9: Bootstrapping parameters for LWE ciphertext. In this context, λ represents
the security parameter, n denotes the dimension of the LWE ciphertext, σ indicates the
standard deviation of the noise in the fresh ciphertext, BKS refers to the base used for
key switching, and ℓKS specifies the number of blocks utilized during the key switching
process.

Parameters Key distrib. λ n σ q QKS BKS ℓKS

STD128B3 Binary 128 541 3.19 211 213 27 2

The formula we employ to calculate the decryption failure rate is given by: 1 −
erf
(

q/4√
2σ

)
.

We employ our Free-XOR gate bootstrapping framework in the single-bit plaintext
space to homomorphically compute AES and ASCON in two modes.

• GGBS is primarily used for computing the AND gate, and the noise after each AND
gate computation is approximately σ2

3BR.

• IGBS is primarily used to reduce noise following the homomorphic evaluation of
XOR gates and to refresh the ciphertext of each bit after a single round of homo-
morphic AES and ASCON computation.

Table 10 presents the execution times of GGBS and IGBS under the parameters of
STD128B3, which are implemented in C and optimized using AVX512 instructions.

Table 10: Execution Time (in milliseconds) for C and AVX512 Implementations of Gen-
eral Gate Bootstrapping (GGBS) and Identity Gate Bootstrapping Scheme (IGBS). The
reported times represent the average execution duration for each GGBS and IGBS imple-
mentation, based on 100,000 runs.

Implementation STD128B3
C (ms) AVX512 (ms)

GGBS 39.2 5.05
IGBS 18.66 2.51

6.2 Homomorphic evaluation of AES
AES-128 is a variant of the AES (Advanced Encryption Standard) encryption algorithm,
indicating that this version uses a 128-bit key length for encryption and decryption. AES-
128 uses a 128-bit (16-byte) key and a fixed 128-bit (16-byte) block size, processing each
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data block at this length and performing 10 rounds of encryption. Each round primarily
includes SubBytes, ShiftRows, MixColumns and AddRoundKey, with the 10-th round
only performing three steps: ShiftRows, MixColumns and AddRoundKey.

AddRoundKey. The round keys are derived from the original key during the key ex-
pansion process and are provided alongside the message prior to the commencement of
encryption. The first round key is applied at the start of the computation, with the re-
maining round keys introduced at the conclusion of each subsequent round, for a total of
11 applications. Since these round keys are freshly generated, this process is XOR-free.

ShiftRows. The shifting of rows is a simple operation that only requires swapping of
indices trivially handled in the code. This operation has no effect on the noise.

MixColumns. The MixColumns operation involves a 4×4 matrix multiplication with
constant terms {x+1, x, 1} modulo (x8 +x4 +x3 +x+1). In fact, this modular multiplica-
tion can be efficiently computed using simple XOR and shift operations, as demonstrated
in [DHS16, WWL+23].

b0b1b2b3b4b5b6b7
×1−−→ b0b1b2b3b4b5b6b7

b0b1b2b3b4b5b6b7
×x−−→ b7b0b1b2b3b4b5b6 ⊕ 0b70b7b7000

b0b1b2b3b4b5b6b7
×(x+1)−−−−−→ b0b1b2b3b4b5b6b7 ⊕ b7b0b1b2b3b4b5b6 ⊕ 0b70b7b7000

Given the minimal number of XOR operations required, this step can be considered XOR-
free.

SubBytes. Homomorphic evaluation S-Box is the most computationally expensive part
of homomorphic encryption in AES. We adopt S-box3 from [Lab], which consists of 94
XOR gates, 4 NOT gates, and 34 AND gates. The complete S-box logic is given in Ap-
pendix A. We will illustrate our approach to homomorphic computation by using the first
two steps of the S-Box as examples.

Table 11: XOR-1(27)

T1 = X0 + X3 T2 = X0 + X5 T3 = X0 + X6
T4 = X3 + X5 T5 = X4 + X6 T6 = T1 + T5
T7 = X1 + X2 T8 = X7 + T6 T9 = X7 + T7
T10 = T6 + T7 T11 = X1 + X5 T12 = X2 + X5
T13 = T3 + T4 T14 = T6 + T11 T15 = T5 + T11
T16 = T5 + T12 T17 = T9 + T16 T18 = X3 + X7
T19 = T7 + T18 T20 = T1 + T19 T21 = X6 + X7
T22 = T7 + T21 T23 = T2 + T22 T24 = T2 + T10
T25 = T20 + T17 T26 = T3 + T16 T27 = T1 + T12

Table 12: Round 1− 10 XOR-1(27), the unit is σ2
BR.

Cipertext T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14
Noise 2 2 2 2 2 4 2 3 3 6 2 2 4 6

Cipertext T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27
Noise 4 4 7 2 4 6 2 3 5 8 13 6 4

Step1: Evaluate 27 XOR gates homomorphically.
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• The noise in the ciphertexts X1, . . . , X7 is the noise refreshed by IGBS, denoted
as σ2

BR. This value will be used as the unit of noise for further calculations. After
evaluating 27 XOR gates, the noise list from T1 to T27 is shown in Table 12. No
bootstrapping is necessary at this stage.

Step2: Homomorphic evaluation of 9 AND gates.

• For each multiplication, that is, when performing an AND gate, the noise accumu-
lation for each AND gate is approximately σ2

BR.

Table 13: AND-1 (9)

M1 = T13 ∗ T6 M2 = T23 ∗ T8 M4 = T19 ∗X7
M6 = T3 ∗ T16 M7 = T22 ∗ T9 M9 = T20 ∗ T17
M11 = T1 ∗ T15 M12 = T4 ∗ T27 M14 = T2 ∗ T10

Table 14: The ciphertext noise after AND-1(9) of round 1-10, the unit is σ2
BR.

Ciphertext M1 M2 M4 M6 M7 M9 M11 M12 M14
Noise 3 3 3 3 3 3 3 3 3

Table 15: Counts of GGBS and IGBS per Round and Total Counts from Rounds 1 to 10.
Round 1 Round 2 . . . Round 10 Total (1∼10)

GGBS 34 · 16 34 · 16 . . . 34 · 16 5400
IGBS 8 · 16 8 · 16 . . . 8 · 16 1280

In the subsequent homomorphic evaluation, the operations are as follows: XOR-2(16),
AND-2(3), XOR-3(2), AND-3(4), XOR-4(11), AND-4(18), and XOR-5(42). Homomor-
phic calculation of AES requires 5400 GGBS and 1280 IGBS, as shown in 15.

6.3 Homomorphic Evaluation of ASCON
Ascon is a lightweight cryptographic algorithm initially proposed by Graz University of
Technology [DEMS21]. After a series of developments and optimizations, it distinguished
itself in both the NIST and CAESAR competitions, eventually being selected as a NIST
standard algorithm. Ascon is both a lightweight authenticated encryption with associated
data (AEAD) algorithm and a lightweight hash (HASH) function.

The most computationally expensive component of ASCON is the 320-bit permutation,
which consists of Round constan addition, the S-box layer, and the linear diffusion layer.
The 5bit S-box of ASCON is shown in Figure 7. The logical operations corresponding to
the S-box are shown in the Table 16. In hashing mode, ASCON requires 64 S-boxes per
round, with a recommended total of 12 rounds.

Round constant addition. Since these round keys are freshly generated, this process
is XOR-free.

Homomorphic computation of S-box. Each S-box has 5 bits, and the noise after
homomorphically computing an S-box is shown in the table 17.

Linear Diffusion Layer. The linear diffusion layer introduces diffusion within each
64-bit register word xi ,which is shown as:
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Figure 7: S-box of ASCON [DEMS21].

Table 16: S-box of ASCON.
x0 = x0 + x4 x4 = x4 + x3 x2 = x2 + x1

t0 = x0 t1 = x1 t2 = x2 t3 = x3 t4 = x4
t0 = ¬t0 t1 = ¬t1 t2 = ¬t2 t3 = ¬t3 t4 = ¬t4

t0 = t0 ∗ x1 t1 = t1 ∗ x2 t2 = t2 ∗ x3 t3 = t3 ∗ x4 t4 = t4 ∗ x0
x0 = x0 + t1 x1 = x1 + t2 x2 = x2 + t3 x3 = x3 + t4 x4 = x4 + t0
x1 = x1 + x0 x0 = x0 + x4 x3 = x3 + x2 x2 = ¬x2

Table 17: Noise1 refers to the noise after computing the ASOCN S-box, while Noise2
represents the noise after performing a permutation, the unit is σ2

BR.
Ciphertext x0 x1 x2 x3 x4

Noise1 7 9 5 11 4
Noise2 22 21 27 29 20

x0 ← x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
x1 ← x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)
x2 ← x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
x3 ← x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
x4 ← x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

After the Linear Diffusion Layer is processed homomorphically, the accumulation of
noise is presented in Table 17.

Table 18: Round-by-Round Counts and Cumulative Totals of GGBS and IGBS Operations
in ASCON (Rounds 1 to 12).

Round 1 . . . Round 12 Total (1∼12)
GGBS 5 · 64 . . . 5 · 64 3840
IGBS 5 · 64 . . . 5 · 64 3840

6.4 Performances
AES. Based on the execution times of the GGBS and IGBS operations measured in
Table 10, and considering the number of gates required for the homomorphic AES compu-
tation outlined in Table 15, the total computation time can be calculated as follows: 5400
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GGBS gates, each taking 5.05 seconds, and 1600 IGBS gates, each taking 2.51 seconds.
Consequently, the total computation time is 30.5 seconds, while the homomorphic com-
putation of the entire AES takes 31 seconds. In Table 19, we compare the performance of
various AES homomorphic evaluation schemes. Our method completes the AES computa-
tion in only 31 seconds, making it 1.5 times faster than the state-of-the-art Thunderbird
[WLW+24].

ASCON. Based on the previously measured execution times for GGBS and IGBS oper-
ations in Table 10, and considering the number of gates required for homomorphic AES
computation in Table 18. The total computation time can be calculated as follows: 3840
GGBS operations are required, with each GGBS taking 5.05 milliseconds. This results in
a total computation time of 27.5 seconds. For the homomorphic evaluation of the com-
plete ASCON, the total time is 28 seconds. In Table 20, we compare the performance of
various schemes for AES homomorphic evaluation. Our approach is 4.8 times faster than
the state-of-the-art method presented in [BPR23].

Table 19: Comparison of Homomorphic AES Computation, FBS stands for Functional
Bootstrapping, and CBS denotes Circuit Bootstrapping.

Scheme Evaluation mode Latency

BGV
Leveled [GHS12] 4mins

Bootstrapped [GHS12] 18mins
CKKS Bootstrapped [ADE+23] 31mins

FHEW-like
FBS [RSK22] 4.2mins
FBS [BPR23] 212s

CBS [WWL+23] 86s
CBS [WLW+24] 46s

NTRU-Based Free-XOR GBS 31s(1.5x)

Table 20: Comparison of Homomorphic ASCON Computation. FBS, GBS stands for
Functional Bootstrapping resbectively.

Scheme Evaluation mode Latency
CKKS Bootstrapped [ADE+23] 1260s

FHEW-like TFHE GBS [MG21] 200s
FBS [BPR23] 131s

NTRU-Based Free-XOR GBS 28s(4.7x)

7 Conclusion
In this paper, we propose a Free-XOR gate bootstrapping framework based on a single-
bit plaintext space. To ensure completeness, we present a construction workflow for AND
gates along with a specific instantiation based on NTRU. Our improved noise management
allows us to select very compact parameters, resulting in our GGBS algorithm being faster
than existing state-of-the-art schemes, despite requiring two blind rotations. Additionally,
we achieve a reduction in key size by a factor of 3.3. Furthermore, we introduce a novel
method for packing LWE into NTRU, which maintains low noise levels. Finally, we apply
the Free-XOR gate bootstrapping framework to transciphering scenarios, demonstrating
efficient homomorphic computation of AES and ASCON, with improvements of 1.5 times
and 4.7 times, respectively, compared with the state-of-the-art work.
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A The S-box Circuit of AES
The S-box of AES is shown in the Table 21.

Table 21: The S-box of AES

#XOR-1(27) M10 = M9 + M6 M47 = M40 * T8 L25 = L6 + L10
T1 = X0 + X3 M13 = M12 + M11 M48 = M39 * X7 L26 = L7 + L9
T2 = X0 + X5 M15 = M14 + M11 M49 = M43 * T16 L27 = L8 + L10
T3 = X0 + X6 M16 = M3 + M2 M50 = M38 * T9 L28 = L11 + L14
T4 = X3 + X5 M17 = M5 + T24 M51 = M37 * T17 L29 = L11 + L17
T5 = X4 + X6 M18 = M8 + M7 M52 = M42 * T15 Y0 = L6 + L24
T6 = T1 + T5 M19 = M10 + M15 M53 = M45 * T27 Y1 = L16 + L26
T7 = X1 + X2 M20 = M16 + M13 M54 = M41 * T10 Y1 = Y1 + 1
T8 = X7 + T6 M21 = M17 + M15 M55 = M44 * T13 Y2 = L19 + L28
T9 = X7 + T7 M22 = M18 + M13 M56 = M40 * T23 Y2 = Y2 + 1
T10 = T6 + T7 M23 = M19 + T25 M57 = M39 * T19 Y3 = L6 + L21
T11 = X1 + X5 M24 = M22 + M23 M58 = M43 * T3 Y4 = L20 + L22
T12 = X2 + X5 M27 = M20 + M21 M59 = M38 * T22 Y5 = L25 + L29
T13 = T3 + T4 M60 = M37 * T20 Y6 = L13 + L27
T14 = T6 + T11 #AND-2(3) M61 = M42 * T1 Y6 = Y6 + 1
T15 = T5 + T11 M25 = M22 * M20 M62 = M45 * T4 Y7 = L6 + L23
T16 = T5 + T12 M31 = M20 * M23 M63 = M41 * T2 Y7 = Y7 + 1
T17 = T9 + T16 M34 = M21 * M22
T18 = X3 + X7 #XOR-5(42)
T19 = T7 + T18 #XOR-3(2) L0 = M61 + M62
T20 = T1 + T19 M28 = M23 + M25 L1 = M50 + M56
T21 = X6 + X7 M26 = M21 + M25 L2 = M46 + M48
T22 = T7 + T21 L3 = M47 + M55
T23 = T2 + T22 #AND-3(4) L4 = M54 + M58
T24 = T2 + T10 M29 = M28 * M27 L5 = M49 + M61
T25 = T20 + T17 M30 = M26 * M24 L6 = M62 + L5
T26 = T3 + T16 M32 = M27 * M31 L7 = M46 + L3
T27 = T1 + T12 M35 = M24 * M34 L8 = M51 + M59

L9 = M52 + M53
#AND-1(9) #XOR-3(11) L10 = M53 + L4
M1 = T13 * T6 M33 = M27 + M25 L11 = M60 + L2
M2 = T23 * T8 M36 = M24 + M25 L12 = M48 + M51
M4 = T19 * X7 M37 = M21 + M29 L13 = M50 + L0
M6 = T3 * T16 M38 = M32 + M33 L14 = M52 + M61
M7 = T22 * T9 M39 = M23 + M30 L15 = M55 + L1
M9 = T20 * T17 M40 = M35 + M36 L16 = M56 + L0
M11 = T15 * T1 M41 = M38 + M40 L17 = M57 + L1
M12 = T27 * T4 M42 = M37 + M39 L18 = M58 + L8
M14 = T10 * T2 M43 = M37 + M38 L19 = M63 + L4

M44 = M39 + M40 L20 = L0 + L1
#XOR-2(16) M45 = M42 + M41 L21 = L1 + L7
M3 = T14 + M1 L22 = L3 + L12
M5 = M4 + M1 #AND-4(18) L23 = L18 + L2
M8 = T26 + M6 M46 = M44 * T6 L24 = L15 + L9
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