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Abstract. The Doubly-Efficient Private Information Retrieval (DEPIR) protocol of Lin, Mook, and
Wichs (STOC’23) relies on a Homomorphic Encryption (HE) scheme that is algebraic, i.e., whose
ciphertext space has a ring structure that matches the homomorphic operations. While early HE schemes
had this property, modern schemes introduced techniques to manage noise growth. This made the
resulting schemes much more efficient, but also destroyed the algebraic property.

In this work, we study algebraic HE with the goal of improving its performance and thereby also the
performance of DEPIR. We first prove a lower bound of 29" for the ciphertext ring size of algebraic HE
schemes that can evaluate a circuit of multiplicative depth d, thus demonstrating a gap between optimal
algebraic HE and the existing schemes, which have a ciphertext ring size of 20*M)  Ag we are unable
to bridge this gap directly, we instead slightly relax the notion of being algebraic. This allows us to
construct a practically more efficient relazed-algebraic HE scheme. We then show that this also leads to
a more efficient instantiation and implementation of DEPIR.

We experimentally demonstrate run-time improvements of more than 4x and reduce memory queries by
more than 8x compared to prior work. Notably, our relaxed-algebraic HE scheme relies on a new variant
of the Ring Learning with Errors (RLWE) problem that we call {0,1}-CRT RLWE. We give a formal
security reduction to standard RLWE, and estimate its concrete security. Both the {0,1}-CRT RLWE
problem and the techniques used for the reduction may be of independent interest.

1 Introduction

Homomorphic Encryption refers to private or public key encryption schemes that additionally allow an
untrusted entity to perform computations on the encrypted data — without gaining information about
it. Depending on which computations can be performed, we distinguish (among other variants) Additive
Homomorphic Encryption (AHE), Somewhat Homomorphic Encryption (SHE), and Fully Homomorphic
Encryption (FHE).

In AHE, it is only possible to compute the sum and scaling by integers of encrypted messages. AHE
schemes have been known for a long time. In fact, even textbook RSA or ElGamal encryption have additive
homomorphic properties (with the caveat that they are not IND-CPA secure).

On the other end of the spectrum, FHE schemes allow arbitrary computations on encrypted data. The
first FHE scheme was proposed by Gentry [Gen09], who introduced the bootstrapping technique and applied
it to a novel lattice-based encryption scheme that directly allows the homomorphic evaluation of a limited
number of additions and multiplications.

Even without bootstrapping, which can be very expensive, being able to perform a limited number of
arithmetic operations is already very useful, and schemes that support this are referred to as SHE schemes.
For most schemes, including Gentry’s initial scheme [Gen09] as well as newer LWE-based schemes like [Bral2;
BV11; BGV12; FV12; GSW13], the limit of the number of arithmetic operations stems from the fact that an
error or noise term is included during encryption. Operations increase the size of this noise term, and once
it exceeds a threshold, decryption will no longer give correct results. It turns out that the noise increase is
much larger for multiplications than for additions, although modern schemes usually do much better than
earlier ones.



Since it lies close to the core of our work, we want to stress that the arithmetic approach to SHE (namely,
implementing “arbitrary computations” using additions and multiplications) is more or less ubiquitous in the
literature. While there are important exceptions, in particular the FHEW /TFHE family of schemes [DM15;
CGGI20] that (in their most basic form) expose only logic gates, even they internally rely on the GSW
scheme [GSW13], which follows an arithmetic approach.

A ring structure on ciphertexts. It turns out that all of the schemes mentioned above originated from schemes
that do not only have a ring structure on the plaintext space, but also a matching ring structure on the
ciphertext space. “Matching” here means that the encryption and decryption behave somewhat like ring
homomorphisms, i.e., except in cases of noise overflow, adding resp. multiplying ciphertexts results in a new
ciphertext that encrypts the sum resp. product of the encrypted input plaintexts. Following [LMW23], we
call such schemes Algebraic Somewhat Homomorphic Encryption (ASHE).

Such an algebraic structure is present in the first scheme by Gentry [Gen09], and also in other early
schemes like [vGHV10; BV11]. However, all modern SHE schemes use additional techniques to reduce noise
growth, which, as a side effect, destroy this direct arithmetic relationship between plain-and ciphertexts.
For example, BGV/BFV-family of schemes [Bral2; BGV12; FV12] all build on [BV11], but add modulus
switching (resp. rescaling) and relinearization to achieve better performance and noise growth. The GSW
scheme [GSW13] can also be considered to be implicitly based on a scheme whose ciphertext space is a ring
of square matrices, i.e., the scheme is algebraic, but only over a non-commutative ring.

Up to recently, ASHE has only been considered an intuitive way to start building SHE, without any
intrinsic value. However, it was shown in [LMW23] that a ring structure on ciphertexts enables the use of
further, very powerful mathematical techniques, which in turn lead to the first proposal of Doubly-Efficient
Private Information Retrieval (DEPIR). This enabled solving a problem that was posed by [BIM00] and
remained unsolved until then.

ASHE and Doubly-Efficient PIR. Private Information Retrieval (PIR) refers to protocols that allow clients
to query a database held by a server without revealing to the server which entries they are interested in. In
order to exclude trivial solutions (like asking the server to send the entire database), one usually requires PIR
protocols to have server-client communication sublinear in the size of the database IN.

Because of its practical importance, a huge range of PIR schemes exists in the literature, many of them
being very practical (see, e.g., [MW22; ZPSZ23]). However, the asymptotic computational cost on the server
side has remained a sore point. In fact, in a setting without preprocessing, it must be at least O(NN) as shown
by [BIMOO]. This is very undesirable, and so the literature has explored preprocessing variants of PIR. Great
progress has been made in the client-dependent preprocessing setting, where the server performs a separate
preprocessing phase for each client (see, e.g., [CK20; CHK22; ZLTS23]).

However, what we really would like to have is a client-independent preprocessing phase, which is only run
once by the server and its output is then used for all clients. Schemes that achieve sublinear computational
online cost in such a setting are called Doubly-Efficient PIR, (DEPIR), and their existence was only shown
recently [LMW23]. The construction of [LMW23] relies on using ASHE in combination with a special
datastructure for polynomial evaluation that was discovered earlier by [KU11]. Unfortunately, the scheme
of [LMW23], while having perfect asymptotic performance, is completely unpractical due to huge logarithmic
factors in server storage and runtime requirements [OPPW24].

Closing the loop, the impractical performance of the DEPIR scheme by [LMW23] is, to a large extent,
caused by the fact that no well-performing ASHE scheme is known, and so the authors had to use the somewhat
outdated BV scheme [BV11]. It was concluded in [OPPW24] that finding a good ASHE scheme “could
immediately lead to practical instantiations of DEPIR”.

1.1 Our contributions

Motivated by the significance of ASHE for building DEPIR, and also by its historical role in the development
of FHE, we try to find more efficient ASHE schemes and understand their performance limitations better.
This lead us to the following five main contributions:



— We propose a framework of “Somewhat Homomorphic Functions” that generalizes ASHE as well as some
other tools that are used in cryptography [CL22; CCXY18; EHL+23]. Using this framework, we show
a fundamental lower bound on the performance of post-quantum ASHE schemes. The bound implies
that they must be significantly slower than modern, non-algebraic SHE schemes. We also show that
there remains an asymptotic performance gap between our proven lower bounds and the performance of
previously known ASHE schemes.

— Since we are not able to find an ASHE scheme that matches our theoretical bounds, we instead consider
relaxing the notion of ASHE. This enables us to construct a new scheme that, at least for practical
purposes, comes very close to our theoretical lower bounds for ASHE. Moreover, we show that this new
scheme enables us to build a more performant DEPIR. We believe that this indicates that the notion
of ASHE is too strict, and it might be worth investigating whether other relaxations of ASHE are still
sufficient to construct DEPIR.

— In order to construct this scheme, we rely on a new variant of the Ring-LWE problem [LPR10; SSTX09)
that we call “{0,1}-CRT RLWE”. More concretely, we take the value b of RLWE samples (a,b) from
a nonstandard distribution over the set of elements whose image under the double-CRT-isomorphism
has coefficients in {0, 1}. To gain confidence in the security of this new assumption, and hence of our
new scheme, we provide a reduction from standard RLWE. We believe that this reduction and the novel
underlying techniques may be of independent interest. Furthermore, we discuss the concrete security
of {0,1}-CRT RLWE by exploring how known geometric, combinatorial, and algebraic attacks can be
applied and improved for our setting. This leads us to believe that {0, 1}-CRT RLWE is not significantly
easier than RLWE and helps to derive concrete parameter recommendations.

— As an additional contribution, we show how the polynomial evaluation datastructure used in [LMW23;
OPPW24] can be improved using a similar idea as in our modified ASHE scheme. This improves the
amount of required storage by a factor of 2, where m is the number of variables and in practice
€ {4,5,6}.

— Finally, to demonstrate that our techniques indeed lead to a more performant DEPIR, we provide an
implementation that improves upon [OPPW24] by a factor of up to 13x in terms of runtime, while also
slightly reducing memory requirements®.

We now summarize our main technical ideas.

Somewhat Homomorphic Functions We want to capture the notion of a function between rings R — S
that behaves like a ring homomorphism, but only up to a certain number of additions and multiplications. In
particular, our definition should be satisfied for the decryption function of an ASHE scheme (when fixing a
secret key).

Here we are guided by the notion of a reverse multiplication-friendly embedding, which refers to a pair of
linear maps

f:S—=R, g: R— S such that g(f(x)f(y)) = zy

This was already generalized to a larger number of multiplications by both [CL22] and [EHL4-23] in different
ways. Our definition is similar, but we drop the requirement that the involved functions must be linear. In
more detail, we say a function ¢ : R — S is (d4, d.)-somewhat homomorphic, if there exists ¢A7 :S — R such
that . .
¢(F(¢(31)7 CER ] ¢(Sm))) = F(sh AR Sm)

for all arithmetic circuits® I'(X1, ..., X,,) of additive depth < d, and multiplicative depth < d,. Using
elementary additive combinatorics, we can then prove a lower bound on #R depending on (d4,d.). The
formal theorem is given in Thm. 3.2.

We can apply these results on SHFs to ASHE by choosing ¢ = Dec(-,sk) and S, R to be the ciphertext and
plaintext ring, respectively. We remark that it is shown in [AGKP14] that a post-quantum ASHE scheme will

4 Our code is available at https://github.com/FeanorTheElf/ashe-depir
5 An arithmetic circuit is a computational circuit built from (binary) addition, multiplication and (unary) negation
gates. We do not allow constant-value gates, since that allows us to evaluate the circuit on inputs from any ring.
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never give an actual ring homomorphism. Excluding “trivial SHFs”, i.e., SHFs that are ring homomorphisms,
we then get our lower bound (formally stated in Corollary 3.3).

Theorem 1.1 (ASHE lower bound (informal)). Consider a post-quantum ASHE scheme that can
evaluate all arithmetic circuits of additive depth 2d and multiplicative depth d. Then its ciphertext ring is of
size 22027,

We believe that the size of the ciphertext ring is a very good metric for performance. In particular, it
directly relates to the size of a ciphertext, and also to the runtime of DEPIR when instantiated with the ASHE
scheme in question.

The BV scheme [BV11], which was used by [LMW23; OPPW24], has a ciphertext ring with 20(4*) elements,
so is considerably larger than the lower bound of Corollary 3.3. Considering that evaluating a polynomial f
requires a circuit of multiplicative depth log deg(f), this means that the size of a ciphertext is O(deg(f)?),
while our bound is only linear §2(deg(f)). This leads to the following question:

Open Question 1.2. Does there exist an ASHE scheme that can evaluate circuits of multiplicative depth d
and has ciphertext ring size 202 7

Generalizing ASHE It seems possible that Question 1.2 has an affirmative answer, but we are unfortunately
unable to construct a suitable scheme. Instead, we give a scheme that (for practical purposes at least) comes
close to the lower bound, but is not strictly algebraic since now evaluating a polynomial/circuit on plaintexts
corresponds to evaluating a different polynomial/circuit on ciphertexts. However, we will show that this
relaxation is sufficient to construct DEPIR.

Assume we want to evaluate a polynomial f(X7,...,X,,) on encrypted plaintexts. Instead of directly

evaluating f on the ciphertexts, the idea is to derive (in some way) new polynomials ggf )(X Tyeeoy Xm)yenos
()

g,(vf) (X1,...,Xm), and then combine the evaluations of each g,
ciphertext. This is sketched in Figure 1.

This comes in useful when we want to exploit a non-algebraic structure of input ciphertexts. For example, in
the BV scheme, ciphertexts are polynomials R,[Y] over some ring R,. To make R,[Y] a finite ring, we usually
have to restrict it to polynomials of degree < d, say, by switching to R[Y]/(Y? — 1). Now R,[Y]/(Y? - 1)
is huge, but the output of Enc(-) is always a polynomial of degree 1 — the degree only increases through
multiplications. Instead of ignoring this fact and evaluating f on elements of R,[Y]/(Y¢ — 1) as done

in [LMW23; OPPW24], our first idea is to “decompose” the polynomial f as

on parts of the ciphertexts into the result

fby+Yay,... by +Yay) :ZYifi(al,...,am,bl,...,bm)

Now every evaluation of f; only happens in R, instead of in R,[Y]/(Y'?—1). Despite decreasing the size of the
ring, on its own, this technique harms the performance of the DEPIR, construction. The reason is that now we
have to evaluate polynomials f; with 2m indeterminates instead of m, which has a huge impact on the amount
preprocessed data that must be stored. One might notice that after this decomposition, f; is homogeneous as
polynomial in ay, ..., a.,, so we can decrease the number of variables to 2m — 1 by normalization.
However, we can modify the underlying scheme to reduce the number of indeterminates. As already
proposed in [OPPW24], we can choose the parameters so that we get the double-CRT isomorphism

R, DT, 1)

J=lp|q

Hence, we only need to perform the evaluation f;(ai,...,am,b1,...,by) for a;,b; € F,. Our main technical
idea is to further modify the BV scheme to end up with b; € {0,1}, which we will prove can be done securely.
With this modification, it is enough to do the DEPIR precomputation once for each (by,...,b,;,) € {0,1}™ on
the polynomial f;p, .. b, (a1,...,an) with the b; already “plugged in”. The number of variables is now m (or
even m — 1, using homogeneity), while still having ciphertext ring R,.
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Fig. 1. The idea underlying the evaluation operation of our generalized ASHE scheme. Instead of evaluating f on the
ciphertexts, we evaluate polynomials ggf ) that are derived from f on parts of the ciphertexts.

We remark that we can additionally apply a very similar decomposition during the algorithm underly-
ing [LMW23; OPPW24], which yields an additional improvement in terms of storage requirements of a factor
of roughly 2™.

{0,1}-CRT RLWE We have just seen that we are able to switch from a polynomial evaluation in R,[Y]/(Y?—
1) to one in R,, assuming that the BV scheme [BV11] does not lose security when we choose the constant
coeficients b of ciphertexts such that in the decomposition Eq. (1), ¢(b) has only components in {0,1}. These
constant coeflicient in BV ciphertexts relate directly to the bs in the underlying RLWE samples. Thus, we are
interested in the security of RLWE when restricting RLWE samples (a,b) to ones with b € S for

f—— ({0’ 1}n><divisors(q))
={beR,|bmod (p,X—¢’)€{0,1} forallp|q,je (Z/2nZ)*}

where n is a power of two, and R = Z[X]/(X™ + 1) is a power-of-two cyclotomic number ring. We call this
problem “{0,1}-CRT RLWE”. We want to mention that this problem can be thought of as lying between
standard RLWE and NTRU, as described in Remark 2.7. As such, it may be of independent interest in the
study of the hardness of NTRU.

We first observe it is easy to sample from the {0, 1}-CRT RLWE distribution. Restricting the distribution
of b may not appear intuitive at first glance, since usually in RLWE, b is chosen as b = as + e for a randomly
chosen a and some noise/error e. However, there is no reason why we cannot start by sampling b (and
perhaps doing so from a “weird” distribution) and then set a = s~1(b — ¢). In other words, we can easily
create {0,1}-CRT RLWE samples, but we still need to convince ourselves that the resulting problem remains
hard, and as a consequence, that the scheme we build is secure. To do so, we show (in Thm. 7.1) that this
problem can be reduced to standard RLWE (with preprocessing).

Theorem 1.3 (Hardness of {0,1}-CRT RLWE (informal)). Let q be a large LWE modulus, subject to
some technical constraints. Assume that RLWE on R, = Z4[X]/(X™ 4+ 1) with error of size q/poly(n) is hard,



even when the adversary is allowed to compute (and later use) a polynomially sized hint during a (possibly
exponential-time) preprocessing phase that only receives R and q as input. Then {0,1}-CRT RLWE on R,
with error increased by a constant factor is also hard.

To prove Thm. 7.1, we introduce various new techniques. At the core of our argument is the notion of
an arbitrary (finite) subset of R™/qZ™ to be “evenly distributed”. A suitable formalization is given by the
smoothing parameter [MRO04], which was previously only defined for lattices, and which we thus have to
generalize to arbitrary sets.

Using this formalization, we can split the proof into two parts. Firstly, we show the generic hardness
of RLWE restricted to b’s from a set S with small smoothing parameter (Thm. 6.3). Intuitively, this can be
achieved just by “rounding” an input b to the closest element of S, but we need to find a way to move the
computation of the closest element of S to the preprocessing phase (depending on the structure of S, this
might take exponential time). This is similar to the problem of CVP with preprocessing, which is well-studied,
both from an algorithmic perspective [LLM06; DRS14] and in terms of NP-hardness [Mic01]. However, the
sets in our case are not restricted to be lattices.

The second part of the proof is then to show that the {0, 1}-CRT set indeed has small smoothing parame-
ter (Lemma 7.6 and Corollary 7.8). Using Fourier-analytic techniques similar to the proof of Banaszczyk’s
transference theorem [Ban93|, we can reduce this to a number-theoretic condition on the primes dividing g¢.
We then proceed to show that this condition is fulfilled with very high probability for a suitable, random
choice of prime divisors of g. While our bounds are quite loose and can be proven without using much of the
available number-theoretic structure, they are enough to complete the reduction. However, getting a better
understanding of this number-theoretic setting and its connection to the geometric structure of S remains an
interesting open problem.

1.2 Related work

In the following, we discuss related work on RLWE variants other than our {0,1}-CRT RLWE, and prior/-
concurrent work on constructing/optimizing/implementing DEPIR.

Other RLWE Variants Ring-LWE has become a fundamental tool in modern cryptography, and has given
rise to a panoply of variants and hardness reductions between them. The standard definition of an LWE
or RLWE instance consists of samples (a,b = as + e) that are built from uniformly randomly chosen values a
and s with an error e chosen from a Gaussian distribution. It is a natural question what impact a change of
the underlying distributions of a, s, or e has.

Much work has been done on analysing LWE with non-uniform distributions of the secret key s, for
example, [ACPS09; GKPV10; BLP+13; Micl8; BD20a; BJRW23; BBPS19]. In the RLWE setting, similar
results also exist [LPR10; BD20b; LWW20]. Non-standard error distributions were considered for example
in [MP13; AG11; BGPW16; May21]. Related problems such as Learning with Rounding [BPR12] can also be
seen as LWE with a non-standard error distribution. To the best of our knowledge, only one other work [JLS24]
analyses (R)LWE with a non-standard distribution of a (or, equivalently, b).

Work on DEPIR Before the breakthrough of [LMW23], there were already some attempts [CHR17;
BIPW17] for constructing DEPIR. Instead of taking an approach based on homomorphic encryption, they
approached the problem from the direction of locally-decodable codes. However, the security of these attempts
remains heuristic.

Since then, the only papers that focus on building single-server DEPIR are the already mentioned
ones [LMW23; OPPW24]. Additionally, single-server DEPIR is used by [DHMW24] to construct sublinear-
time laconic function evaluation. There is also some work on multi-server DEPIR schemes [LLFP24; GLM+-24].
Such PIR schemes rely on the client interacting with multiple servers who must not communicate with each
other (i.e., require a non-collusion assumption). In such a setting, one can use secret-sharing methods and
achieve information-theoretic security.



For this, both schemes [LLFP24; GLM+24] add a polynomial evaluation datastructure on top of the
multi-server PIR protocol of [WY05], which is again based on polynomials. Although these schemes do not
use ASHE or SHFs, they share the very general idea of evaluating a polynomial at a point by using evaluations
of it and its derivatives at different points. We also want to remark that, while these schemes significantly
improve on previous work, PIR protocols with client-independent preprocessing and sublinear online time
have been known for a long time in the multi-server setting [BIMO0O].

Finally, the recent work of [FMS24] proposes a black-box compiler to provide malicious security for
any PIR scheme, including DEPIR schemes.

2 Preliminaries

Notation. We extend functions f : R™ — R to sets in the usual way as

F(A) =) fla)

ac€A

We will only do so when this is well-defined. We write Bga(r) for the n-dimensional ball of radius r centred
around the origin. Moreover, for a set A (finite or measurable), we write $A for the uniform probability
distribution on A. In some places we sum or scale probability distributions, which should be understood as
the distribution we get when performing the same operations on independent random variables distributed
according to the corresponding distributions. When n, m are integers, we write n L. m for “n and m are
coprime”.

All rings appearing in this work are assumed to be commutative and unital, except when it is explicitly
mentioned that they are not. The most important ring is the ring of integers R = Z[X]/(X™ + 1) in a
power-of-two cyclotomic number field, i.e., n is a power of two. By using the coefficient embedding

" ;> R, (al)z — ZQZXZ

we can identify R with Z™, and thus also get the ¢3-norm on R. Note that it is more natural to consider the
canonical norm of a number ring, but in this case (power-of-two cyclotomics), both norms turn out to be
equivalent up to scaling.

We use calligraphic letters A, B,C to denote probability distributions (or algorithms), upper case let-
ters A, B, C, S for matrices and sets, and lower case letters to denote both scalars and vectors. The letter p is
used only for prime numbers, and any occurrence should be understood to refer to a prime number, even
when it is not explicitly mentioned.

2.1 Distributions and statistical distance

For s > 0, we consider the Gaussian function
ps R = Rog,  x— exp(—mlz]?/s?)

It defines the continuous Gaussian distribution Dgn 4, of width s and center u € R" over R", which has
density function ps(z — u)/s™. We often consider also the continuous Gaussian distribution over R"/L for a
full-rank lattice L C R™ (usually L = Z™). We use lift(-) as the shortest-lift map, which assigns for every
element of the torus x € T := R/Z (or quotients of other metric spaces) the shortest element ' € R
with 2/ = x mod Z. The distribution Dgn /L,s,u is then the distribution with density function

x> s Z ps(lift(z) +t — u)
teL

Note that this is exactly the distribution we get from sampling = <- Dg~ s, and reducing it modulo L.



For a discrete, non-empty set A C R", we also need the discrete Gaussian distribution D4 s, which is
the discrete probability distribution on A with probability weight function

ool — u)
PS(A - u)

As for the continuous version, we also define it on a quotient space. Let L C R™ be a lattice such that for
allt € L we have t + A C A. Then Dy, 5, is the probability distribution over A/L with weight function

A—>R20, T —

ift(z) + t — lift(u))
ps(A —Tift(u))

J(1
A/L-)RZO, .I’—)Zp(
teL

An important property of ps is that it is concentrated around the origin, and it approaches 0 very fast as
its argument moves away from the origin. The following folklore theorems formalize this property.

Lemma 2.1 (Gaussian tail bound, discrete version). Let L CR"™ be any lattice, u € R"™, and v > 1.
Then

ps((L +u) \ Bre(vsv/n)) < 277" ps(L)
Proof. See [Ban93, Lemma 1.5 (ii)]. O

Lemma 2.2 (Gaussian tail bound, continuous version). Let~y > 1. Then

ps(x)dx < 2*”"/ ps(x)dr = 277"s"

n

/R”\an (ysv/n)
Proof. Take the limit over L = %Z", n — oo in the previous statement. L]

At one point in this work, we require the Chernoff bound for a sum of independent random variables. It is
similar to the more well-known Hoeffding inequality, but relies on the expectation of e* instead of bounds
on X’i-

Lemma 2.3 (Chernoff bound). Let Xi,...,X,, be independent random variables. Then, for any a, we
have
> < i —ta tX;
Pr{;X,_a}_gge IZ[E[e ]

A very important tool for reduction in lattice-based cryptography is the statistical distance.

Definition 2.4. For two discrete probability distributions A, A" we define the £;-statistical distance (or just
statistical distance) as

Prja=z]— Pr [a=1x]
a—A a+ A’

A4, A) = S

z€supp(A)Usupp(A’)

For two continuous distributions C,C’ on R™ with density functions f, f', we define the {1-statistical distance
as
Ae.c)= [ 1@ - F@)ds

The statistical distance has the property that applying a (possibly randomized) function will never
decrease the statistical distance, i.e., when writing B for the distribution of f(X) where X + A, we
have A(B,B') < A(A, A’). Therefore, if an algorithm outputs the answer with probability p for a certain
input distribution A, then replacing the input distribution by A" will result in the algorithm giving the answer
with probability at least p — A(A, A").

Later in this work, we will need a bound on the statistical distance between two Gaussians whose centres
are not too far away from each other.



Lemma 2.5. Lets >0, > 0 andu € R™ with ||lu|| < e. If s > n’¢, then the statistical distance between Drn
and Dyn g, 15 at most nt/2=9 for sufficiently large n.

Proof. First, we note that it suffices to show the bound for A(Dgn s, Drn s ), since applying the reduction
modulo Z" will not increase the statistical distance.
Now A(Dgn s, Drn s.4) is given by

s [ Iputa) = pula = wlda
R
szn/ Ps(x)‘exp (—’/T572 (HIC + u”? _ ||1,||2)) . 1‘d£L’
We have
[z + ull® = (|21 = [2(z, w) + [[ull®] < € (e+2]lz]))
By assumption €/s < n=9 so for 2]l < /s, we have
572 |lz 4+ ul)? = ||2]]?] < 07 4 2nt/270 < 3pl/270

and thus
Jexp (=752 (o + ul® = []o]2)) = 1| < 60128

for sufficiently large n (except when ¢ < 1/2, but then claim is trivial anyway). It follows that
[ petafexp (=572 (o + ul? = 2]P)) - 1]do

< 2/ ps(x)dx + 6n1/2_5/ ps(x)dz
R\ Bgn (v/ns) Bgn (v/ns)

Now we can bound the first integral by using Lemma 2.2, while for the second integral, the trivial bound <
Jin ps(x)dz is sufficient. In total, we find

n

A(Dgn 5, D, SS*”(2-2*"+6n1/2*5) / ps(w)dz
— 21—n +6n1/2—6 S 7n1/2—5

as claimed. O]

2.2 (Ring-) Learning with Errors

The security of many major homomorphic encryption schemes, including those being considered for stan-
dardization, relies on the Ring Learning with Errors (RLWE) problem [LPR10; SSTX09], which introduces
additional structure to the standard Learning with Errors (LWE) problem proposed by [Reg05]. In this
work, we will consider a slight generalization of the standard version of RLWE, where the distributions of
all involved elements might be non-uniform. Unfortunately, this introduces some necessary technical details.
However, on an intuitive level, the core of the problem remains unchanged.

Definition 2.6 ((Primal) RLWE). Let R be a number ring, q, m be positive integers, B,E distributions
over Ry, and S a distribution over the unit group R;. We say an algorithm solves the Ring Learning with
Errors problem RLWE(R, ¢, B,£,S, m) if it has non-negligible advantage in distinguishing the following two
scenarios:

— In Scenario 1, the algorithm is given access to an oracle that can be called at most m times and, on
input M, returns a sample (a,b) where b< B, e <+ € and a = s~ 1(b— M —e).



— In Scenario 2, the oracle again can be called at most m times and answers each time with a new sample
from the distribution $R, x B.

Here, s is sampled once from S and remains the same in each oracle call.

The more common definition of RLWE is to choose a; < $R, uniformly and to define b, = a;s + e;.
The problem is then simply to distinguish these samples (a;,b;) from uniform samples. Note that in this
situation (we continue to assume s € Ry), b; is uniformly distributed on R, and independent of e; or s. This
makes it easy to mask a message M by adding an RLWE sample, as (a,b+ M).

Unfortunately, this simple appraoch does not work anymore in our case. Since we want to choose b
non-uniformly, we cannot mask M via M + b, as depending on the distribution B, this might leak information
about M. For example, for the constant distribution B = 0, the RLWE problem becomes a variant of NTRU,
but we clearly cannot mask m via (a, m + 0). Therefore, it is necessary to use the oracle with input M when
defining the RLWE problem. However, we argue that in the case B = $R,, this new way of stating RLWE is
equivalent to the standard version.

In particular, when given (standard-version) RLWE samples (a;,b;) with b; = a;s + e; and oracle
inputs M;, we can just output (a;,b; + M). Now b; + M; is distributed according to $R, + M; = $R,, and
obviously a; = s~1((b; + M;) — M; — e;). Vice versa, when we are given access to an oracle as in our version
of RLWE for B = $R,, we can trivially generate standard RLWE samples by calling the oracle with M = 0.
This argument now fails when we have a non-translation invariant distribution B, so in general we need the
oracle with parameter M to prove the security of standard encryption schemes.

As a last interesting point, we want to mention that our version of RLWE highlights an interesting
connection to the NTRU problem.

Remark 2.7 (Relationship to NTRU). The NTRU problem asks to distinguish quotients f;/s from uniform,
where both s and f; are small elements of R, (say sampled from Dg,_ ). The standard way of encrypting a
message M using NTRU is to mask it via M + f;/s, but it has also been proposed [XZD+23] to encrypt
the message “in the numerator”, i.e., as (f; + M)/s. The security of this encryption scheme does not
follow from NTRU anymore, but instead corresponds exactly to RLWE(R, ¢,0,&,S,m) with B = 0 the
constant 0 distribution. Unfortunately, our security reduction does not apply in this case, so the hardness
of RLWE(R, q,0,&,S,m) and the security of [XZD+23] remains unproven.

In this sense, we believe that RLWE(R, ¢, B, £, S, m) for a B with less entropy than $R, can be thought
of as an intermediate problem between RLWE and NTRU. As such, it might be of independent interest for
studying the hardness of NTRU, which seems somewhat more complicated than the hardness of RLWE [ABD16;
DW21; KF17; BN24].

The scheme used in our work (as well as the previous work [LMW23; OPPW24]) very closely follows
the [BV11] scheme. We now give a short proof of its security in our new RLWE setting, highlighting the
changes necessary for a non-translation invariant B.

Lemma 2.8. Consider a positive integer t 1 q and assume that the problem RLWE(R, q,t~*B,&,t71S,m(n))
is hard (for all polynomially bounded m(n)). Then the symmetric cipher for messages M € Ry defined as

Gen(1") =s where s < S
Enc(M,s) = (—s *(b—lift(M) —te),b) whereb+ B, e+ &
Dec((a,b), s) = lift(as + b) mod t

is IND-CPA secure.
Note that its correctness depends on the choice of the error distribution £.

Proof. The proof proceeds exactly as for the BGV scheme [BGV12]. Assume we are given an efficient
adversary A that wins the IND-CPA game with non-negligible advantage. First, a hybrid argument shows
that A also distinguishes valid encryptions and uniform encryption oracle outputs with non-negligible
probability.
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To complete the proof, consider now the algorithm A’ that tries to solve RLWE by running A. On
each encryption oracle call with message M, it calls the RLWE oracle with t~1lift(M) to get (a,b) and
returns (—a,t~1b). If the RLWE oracle is uniform, the resulting answer remains uniform. Otherwise, the
answer is a valid encryption of M w.r.t. secret ts. Thus, A’ solves RLWE. O

Definition 2.9 (RLWE with preprocessing). Define R, q, m, B, £, S as in Definition 2.6. RLWE-P(R, q, B,
S,E,m) is a problem to solve RLWE(R, q,B,S,E, m) in polynomial time, where the adversary is allowed to
execute a (possibly superpolynomial time) algorithm before querying RLWE oracle.

2.3 Homomorphic Encryption
In this work, we only consider the private-key version of HE.

Definition 2.10 ((Somewhat) Homomorphic Encryption). A (Somewhat) Homomorphic Encryp-
tion (SHE) scheme for a set of “permissible” arithmetic circuits € is a private key encryption scheme (KeyGen,
Enc, Dec) whose plaintext space P is a ring, together with an additional algorithm Eval, such that for every
arithmetic circuit I' € € with k inputs, we have

Dec(Eval(I, Enc(mq,sk), ..., Enc(my,sk)),sk) = I'(mq, ..., myg)
where sk < KeyGen(1™).

Usually, € will contain all circuits of bounded additive and multiplicative depth. As mentioned in the
introduction, one main goal of this paper is to investigate HE schemes with the additional, very strong property
that homomorphic addition and multiplication are just addition and multiplication of ciphertexts (requiring
that these are defined).

Definition 2.11 (Algebraic Homomorphic Encryption [LMW23]). An SHE scheme (KeyGen, Enc,
Dec, Eval) is called Algebraic (Somewhat) Homomorphic Encryption (ASHE), if its ciphertext space C is a
ring, and for all permissible circuits I' € €, we have

Eval(l,cty,...,ctg) = I'(cty,...,ctg)

We remark that unless explicitly mentioned, all rings are assumed to be commutative, so this framework
of ASHE does not apply to GSW-style encryptions [GSW13] that are based on matrix rings.

The ASHE scheme by Brakerski and Vaikuntanathan. The existing ASHE schemes in the literature [Gen09;
vGHV10; BV11] are fairly old as, prior to this work, there has been no attempt to build an HE scheme with
the goal of making it ASHE. We also did not succeed in proposing a new, more efficient ASHE construction.
Instead, we show how the existing BV scheme [BV11], which was used as the ASHE scheme in prior DEPIR
constructions [LMW23; OPPW24], can be modified to support a more efficient DEPIR construction.

Let R = Z[X]/(X™ + 1) for n a power of two be a cyclotomic number ring, and set R, = R/qR to be its
quotient by the “ciphertext modulus” g. Then, in the BV scheme, a message M € Ry = R/tR for ¢t 1 ¢ is
encrypted by hiding it in the lower bits of a standard RLWE sample (a, ). More precisely, the public-key
encryption scheme underlying BV comprises the following algorithms:

Gen(1") =s where s < $R,
Enc(M,s) = (—as +te +1ift(M),a) where a < SRy, € < Dzn/qzn o
Dec((b,a), s) = lift(as + b) mod ¢

Note in particular the similarity to Lemma 2.8, from which we directly get the security of this scheme. BV
becomes an ASHE scheme over the ciphertext ring R,[Y] by interpreting tuples (b, a) as polynomials b+ aY.
Therefore, the degree of ciphertexts will increase during multiplications, and we have to extend the decryption

- Dec (Z Yia;, s) = lift (Z aisi) mod ¢

This results in a correct homomorphic encryption as long as the error term te remains < gq.
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Theorem 2.12 ([BV11, Thm. 2]). Letn,q,t,o be the parameters of the BV scheme. Let f(X1,...,Xm) €
Z[Xq, ..., Xum] be a multivariate polynomial of total degree D and coefficient-bounded by || f|loo (in absolute
value). If || f|loo (ton)P < q/2, then the scheme can (with probability exponentially close to 1) correctly and
homomorphically evaluate f on fresh ciphertexts.

Note that because the scheme is ASHE, it does not matter which circuit we use to evaluate a polyno-
mial f(X1,...,Xm), the resulting ciphertext is always the same, namely f(cty, ..., Cty,).

2.4 The datastructure of [KU11] and DEPIR

The basic idea of the construction of Doubly-Efficient PIR by [LMW23] is to use the datastructure proposed
by [KU11] that, once built, allows evaluating a multivariate polynomial in time logarithmic in the number of
monomials.

Theorem 2.13 ([LMW23, Thm. 2.1], [KU11, Thm. 5.1]). Let F, G be monic polynomials and R =
L4 X, Y]/ (F(X),G(Y)). Let f € R[Th,...,Tn] be a polynomial of individual degree < d in every variable.
Then there is an algorithm that, given f, computes a datastructure of size

poly(m,d,In#R)(dmInln #R)™
in the same time. Using that datastructure, we can then compute f(x1,...,%m) for any x1,...,2, € R in
time poly(d, m,In #R).
The proof relies on the following idea. Assume for now that R = F,,, for a large prime p. Consider the map
G, - Zg — Fp, x> lift(z) mod p (2)

where QQ = p; - - - p, is product of many small primes. If @ is very large, this map is “somewhat homomorphic”,
i.e., it is homomorphic on small values. Indeed, we will see that it satisfies our definition of a somewhat
homomorphic function. The main point is now that (when p is large) we can find a large enough @ > p such
that every prime p1,...,p, < p. This means, for polynomial f € Z[X3,..., X,,] of bounded degree, we have

Fl@r, . xm) = G (f(Duise (1), - -, Prise (Tm)))

where
élift :Fp = Zg, =~ lift(z) mod Q
By using the CRT isomorphism
L =Fp, x - X Fp,

it is thus enough to evaluate f at points in FF,,,. If the p; are small enough, we can do the latter by reading an
entry from a precomputed table of f(z1,...,xy,) for all (z1,...,2,,) € F}!. Otherwise, we can repeat this
idea, setting p = p;. We call each such repetition a “reduction step”, and usually consider the datastructure
with two reduction steps. The resulting algorithm is displayed in Alg. 1.

This idea can be extended to all finite, reduced rings. However, as shown by [OPPW24], this is not
necessary for DEPIR, as the ciphertext ring of the BV scheme can be decomposed into a product of finite fields.
More concretely, if for every p | ¢, we have p = 1 mod 2Dn, then we have the “double-CRT isomorphism”

Dn
Rq[Y]/(YD - 1) = @ @ Fp (3)
J=lp|gq
and it suffices to apply Thm. 2.13 only for F,,, where p | ¢.
This isomorphism is an extension of the classical double-CRT isomorphism (also sometimes called

double-RNS isomorphism)
n
B, =P DE
J=lplgq
and is very commonly used in the literature, for example to speed up computations in R,. It was introduced

by [GHS12] and since then has been used by all major implementations of FHE, like [GHS12; HS20; BBB+22;
Zam22].
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Algorithm 1: The evaluation datastructure [KU11] with two reduction steps.

Preprocessing

Input: multivariate polynomial f € Z[X1,..., X,] of total degree D and coefficients of size || f|lcc = O(1); the
ambient finite ring Zq
For all primes p of size (14 o(1)) (DIn D + DInlng) compute

[y

Tp = (z, f(x))s forzeZy

Evaluation

Input: point = € Zg"
2 for all primes p1 of size (1 + 0(1))DIng do
3 Compute z,, := lift(z) mod p;
4 for all primes p2 of size (1+ o(1))D1np: do
5 Compute Tp, p, := lift(zp,) mod p2
6 Using 15, , lookup
Ypr.pz = S (Tp1.p2) € Lpy

7 end
8 Set yp, = lift(y;,) mod p1 where y,, is the preimage of (yp, ps)p, under the CRT isomorphism

211 ps = @D Zyp,

9 end
10 Set y = lift(y’) mod g where y’ is the preimage of (yp, )p, under the CRT isomorphism ZH » = Pz,

11 return y

Performance. In [OPPW24], the authors have argued that counting the number of entries that have to be
read from the precomputed datastructure is a very good metric for measuring performance. They also gave a
more precise asymptotic expression for this number of random storage accesses.

Proposition 2.14 ((OPPW24, Prop. 5.1]). Let f € Z[ X1, ..., X,,] be a polynomial of total degree D, with
all coefficients bounded by || f|lee = O(1) in absolute value. Then, using the datastructure Thm. 2.13 with two
reduction steps (i.e., applications of the shortest-lift map Eq. (2)) to evaluate f(z1,...,%m) ONT1, ..., Tm € Zq
results in a datastructure size of O(1)™ D™+, The evaluation itself requires O(D?In q) random storage accesses.
Here, O hides factors In D and Inlng.

Building DEPIR. We now want to briefly sketch how this datastructure can be used to construct DEPIR.
The basic idea is to “interpolate” the database into a polynomial. If we say the database DB is indexed by
some index set I consisting of m-tuples, we can compute a multivariate polynomial f € Z;[X;, ..., X,,] such
that

f(i1y .o yim) =DBl(i1, ..., im)]

for all indices (i1,...,%4,) € I. In this case, the number of monomials of f will be equal to the size of the
database N, but (depending on the choice of I), one can achieve that deg,.,(f) = O(N'/™).

To retrieve the (i1,...,%y,)-th entry of the database, the client can now encrypt each i; under an ASHE
scheme, and the server uses the datastructure replies with an encryption of f(i1,...,%m). If m is chosen large
enough, the server can perform this homomorphic computation in time o(NN) by using the datastructure.
Afterwards, the client just decrypts the reply and ends up with DB[(i1,. . .,4my)] as desired.

Corollary 2.15. Consider the DEPIR scheme for a database of size N, and assume o = O(1) and t = O(1).
Then, using the datastructure Alg. 1 with two reduction steps, we need a datastructure of size O(l)mNHl/m.
Evaluating a PIR query requires O(nN4/m) random storage accesses, each having size O(l) Here, O hides
polynomial factors in Inn and In N.
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Proof. By making use of the decomposition Eq. (3), we have to run the evaluation algorithm Alg. 1 Dn times
for each prime p | n. Since a multivariate polynomial of total degree D in m variables has (m:f) ) = (D™)
monomials, we can choose D = O(N 1/ ™). Primes that split in R are not too rare by the prime number
theorem for primes in arithmetic progressions, thus we can choose all prime divisors of g to be of size poly(n).
In particular, In(p) € O(l) for p | ¢, and using Prop. 2.14, we find that the required datastructure is of size

O(l)mDm+1 — O(l)7n (Nl/m)m—i-l _ O(l)le-i—l/m-

Now we apply Thm. 2.12 and see that we require ¢ = 2(n?), i.e., for the number of prime factors r of ¢, we

can choose
r = O(n(n®)/ n(poly(n))) = O(D).

Therefore, we find (using again Prop. 2.14) the total number of random read accesses to be

Dnr - O(D?) = O(n(NY™*) = O(nN*/™). O

3 Somewhat Homomorphic Functions and ASHE

Given an ASHE scheme with plaintext space P and ciphertext space C, observe that for a fixed secret key sk
and fixed encryption randomness r, the diagram

Enc, (-, sk)

pk ————— C*

(..., I(...y0)
Dec(-, sk)
Pk Ck
commutes for all permissible circuits I'( X7, ..., Xj). Various formalizations of maps that make this (or

similar) diagrams commute have already been studied before, for example, reverse-multiplication friendly
embeddings (RMFE) [CCXY18; EHL+23] or packing methods [CL22]. The basic idea is always to “embed” a
smaller space (e.g., P) into a larger space (e.g., C') in a way that is compatible with a limited number of
arithmetic operations. This motivates our definition of a “somewhat homomorphic function” (SHF). The
main difference to previous notions is that packing methods and RMFEs are required to be linear, while
SHFs only have to be compatible with a limited number of additions.

Definition 3.1 (Somewhat Homomorphic Function). Let R, S be rings. Then for dy,d. > 0, we say a
function ¢ : R — S is (d4, dy)-somewhat homomorphic (or a (ds,ds)-Somewhat Homomorphic Function,
SHF), if it comes with a function ¢ : S — R such that for all arithmetic circuits I'(X1, ..., Xy) of additive
depth at most dy and multiplicative depth at most d., we have

Vi, .., xx €8 (L), ..., 0(xx)) = (@1, .., 2m)

With this definition, a (0o, 1)-somewhat homomorphic function IF,» — F ks is a RMFE. The definition does
not exactly match packing methods as in [CL22], since for a packing method, the “unpacking” function (which
corresponds to ¢) may depend on the amount of multiplications performed by I'. Finally, the shortest-lift
map o¢uig, : Fq — Zy as used for the polynomial evaluation datastructure [KU11] (cf. Section 2.4) together
with

gi;hft 1Ly —TFq, x> lift(x) mod ¢
is also an SHF.

Most importantly, following the diagram at the beginning of this section, we observe that ASHE schemes
are closely related to SHFs, too. Given an ASHE scheme with plaintext ring P and ciphertext ring C, we
immediately get a family of SHFs. In particular, for any secret key sk and encryption randomness r, the maps

¢:C — P, ct+— Dec(ct,sk)
$:P—C, m— Enc,.(m,sk)
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form an SHF with the same additive/multiplicative depth as supported by the ASHE scheme.

Note that any surjective ring homomorphism ¢ : R — S, with b being any left-inverse of ¢, is always
a (00, 00)-somewhat homomorphic map. However, such SHFs that are actually homomorphisms cannot
be the result of post-quantum ASHE schemes. This has been shown by [AGKP14, Thm. 9]. While their
notation differs from ours, the idea is that whenever the decryption map (for a fixed secret key) is Z-linear
(they call such schemes exact additively homomorphic encryption), a quantum adversary can use a Shor’s
algorithm-inspired method to decrypt arbitrary ciphertexts. Back in our setting, if the decryption map is a
ring homomorphism, this clearly means that the ASHE scheme is such an exact additively homomorphic
encryption scheme, thus vulnerable to quantum adversaries. We also note that while no impossibility theorem
exists in the literature, no classically secure, arbitrary-depth ASHE scheme is known®.

Moreover, if the SHF is a ring homomorphism when restricted to the subset of the ring that can actually
be reached by homomorphic operations, then this restricted ring homomorphism “collapses back” to the
original impossibility result. Hence, we also need to exclude such SHFs, which we call “trivial”. Formally, we
say an SHF ¢ : R — S is trivial if it restricts to a non-unital ring homomorphism R’ — S with R C R a
subring and QAS(S) C R’. In particular, this includes cases where S is either a quotient or a subring of R.

Since we are interested in ASHE schemes with small ciphertexts, this leads us to the main question of
this section.

What dependency of #R on d, can we achieve for a nontrivial SHEF?

We also want to mention that [CL22] answered this question for packing methods by giving lower bounds
on #R in terms of both d, and #5. Our bounds look somewhat similar, but the lack of linearity in SHFs
makes the proofs much harder. Because of this, and since it is most relevant for our work, we lower-bound # R
only in terms of d, but ignore the size of S.

The following theorem is the main result of this section and directly addresses our motivating question. It
will be proved in the remainder of this section. We restrict our attention to reduced rings, i.e., rings without
nilpotents.

Theorem 3.2. Let ¢ : R — S be a (d4,ds)-somewhat homomorphic function between reduced rings R, S.
Let A := QZ)(S) C R and Ry be the non-unital subring generated by A.

Ifd, > loglog#R~+5 and d4 > 2loglog #R+6, then ¢|RA : Ra — S is a non-unital ring homomorphism,
i.e., a trivial SHF.

We end up with a lower bound on the ciphertext ring size of ASHE schemes.

Corollary 3.3. Let (Gen, Enc, Dec) be a post-quantum ASHE scheme that can evaluate circuits of additive
depth 2d and multiplicative depth d. Assume that its ciphertext ring C is reduced. Then #C € 22(2%)

To compare, the BV scheme requires a ciphertext ring of size 2 (4d), which leads to the natural question
whether there exists a scheme that matches our lower bound (Question 1.2). On the other hand, the ciphertext
space (not a ring) of modern, non-ASHE schemes like BGV [BGV12] or BFV [FV12] (without bootstrapping)
is of size 2°0(49) and thus provably better than what we can achieve with ASHE. This is also shown in Table 1.

3.1 Proof of Thm. 3.2

Instead of linear algebra as in [CL22], our proof relies on elementary additive combinatorics. At its core
is the following lemma, from which it follows that loglog B subtractions and multiplications are enough
to “produce” any integer of size up to B when starting from {0, 1}. Note that when we apply +, —, or - to
sets, we refer to the set of all elements that are sums/differences/products of elements from the left and right
set. This notation is standard in additive combinatorics.

5 However, exact additively homomorphic encryption schemes under factorization-style assumptions do exist, e.g.,
Paillier [Pai99].
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Table 1. Comparison of asymptotic ciphertext space resp. ciphertext ring sizes that are possible / achieved by known
schemes. Parameters are chosen such that the schemes can evaluate circuits of multiplicative depth d and additive
depth poly(d).

Scheme Type Ciphertext space size
Lower bound for ASHE algebraic 2227
BF [BV11] algebraic 202"
BGV/BFV [BGV12; FV12]  non-algebraic 20(@

Lemma 3.4. Let n be a positive integer. Then
{=n?,...,n*} C{-n,...,n}* = {-n,...,n}?
Proof. By symmetry, it suffices to show
{0,...,m*} € {0,...,n}* = {0,...,n}?
Solet 0 <z <n? and let y = [vx] < n. Now we have either
(y-ly<z<y’

(y—1)2%<az< (y—1)y

In the first case, it follows that # = y? — z with 2 < 4> —y(y — 1) = y < n, and, in the second case, we
scer=y(y—1)—zwithz2<y(y—1)— (y—1)2 =y —1 < n. Both y* and y(y — 1) are in {0,...,n}? and
any z <nisz=1-z€{0,...,n}? The claim follows. O

Corollary 3.5. Let R be a finite ring. Let A C R and § > [loglog #R]. Then for every x = ca with a € A%
and ¢ € Z, there exists an arithmetic circuit I'(X1, ..., X,) of additive and multiplicative depth at most § + 2
such that

x=TI(a1,...,am) withay,...,aym € A

Proof. Write reachy(A) for the set of elements that are reachable with a circuit of additive and multiplicative
depth at most d, i.e.

reachy(A) := {I'(a1,...,an) | I' circuit of add./mult. depth < d, a; € A}

We show inductively that
{—22d, cey 22d}A2d C reachgi2(A)

The case d = 0 is clear, so assume d > 0. We have
{—22d71, ce 226171}142471 C reachgyy1(A)

Since the difference resp. product of two circuits gives a new circuit of additive resp. multiplicative depth
increased by one, we have
reachqy1(A)? — reachy 1(A)? C reachg,o(A)

Thus by Lemma 3.4

(=222 a ({22, L 2 (AQ‘“)2
C reachgy1(A)? — reachy 1 (A)? C reachy;o(A)

This shows the claim, since RNZ C {—#R,...,#R}. O
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Lemma 3.6. Let G be a finite group. Then every chain of subgroups of G has at most log #G elements.
Proof. Assume we have a proper chain of subgroups
A CAC---C A =R

then, for each i < k, it clearly holds #A; # #A;+1 and #A; | #A;11. Thus #A4; < %#Aiﬂ and the claim
follows. O

Lemma 3.7. Let G be a finite abelian group and A C G a generating set. Then each element of G can be
written as a Z-linear combination of at most log #G elements from A.

Proof. As a finite abelian group, G is of the form
G = @ eltd)
P

where #G®) = pF» for some positive integer ky, (in other words, G®) is the localization at the prime
ideal (p) < Z of the Z-module G). Moreover, we have

log #G = Z log #G™)
P

and the set
(#Gp ') )AC @
—_———

€7

generates G(P), while being {0} under any projection G —» G®) for p’ # p. Thus, it suffices to show the claim
separately for each G(®).
So assume that #G = p*. This means that

G=@Pz/p"z forl; with > I; =k
J

Clearly, the case holds when k = 1, and thus by induction, we can assume that it holds for G/pG and pG.
This means for any x € G, there are a; € A and ¢; € Z with

[log #G/pG|
T = Z c;a; mod pG

i=1
By using the assumption for pG, there must also exist pa) € pA and ¢} € Z with

[log #G /pG| [log #pG ]

T — Z Cii = Z c; (pag)

=1 i=1

Thus
[log #G/pG] [log #pG]
T = Z cii + Z (pc})a;
i=1 i=1
and the claim follows, since |log #G/pG| + |log #pG| < log #G. O

Lemma 3.8. Let R be a finite ring and A C R. Let k = [log #R| and R, be the non-unital subring generated
by A. Then for each x € a where
a:= {Z C;Q;

there is a circuit I'(Xq, ..., X)) of additive depth at most 2[log k|43 and multiplicative depth at most [log k] +
3 such that

¢ € Ra,a; € AQk}

x=T(ay,...,am) foray,...,am €A
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Proof. For any B C R, write (B)z for the additive subgroup generated by B. Consider the chain

2k+1 2k+2
(AF), € Y (A C ) (A C ... (4)
=2k 1=2k

By Lemma 3.6, it has at most k£ elements. Furthermore, as soon as

2k4j i+l
dA= Y (A
i=2k =2k
we also have
2ktj+l 2kt kil tit2
> A= (A3 () =(4- 3 (M) = 3 (4%
i=2k i=2k i=2k i=2k

Thus, the chain Eq. (4) becomes stationary after at most k elements. Now observe that the k-th element is
closed under multiplication by R4, and so

3k—1
a= ) (A)g=(A*U-.uAP*)y
i=2k
Now consider some = € a. By Lemma 3.7, we know that z is of the form

k mj
Zc Ha]l for ¢; € Z,m; € {2k,...,3k—1},a;, € A
J=1 =1
Now Corollary 3.5 with § = [log k] shows that we can write each

mj

cJHajl = Ij(aj1, .-, Gjm,;) H aji

[|=2log k11

for I';(X1, ..., Xm;) a circuit of add. /mult. depth at most [log k] +2. Clearly, the product over m; 2flogk] <
2k elements can also be computed within multiplicative depth [log k] 4 2. Thus, after summing the Fj, we are
left with a circuit of multiplicative depth [log k7] + 3 and additive depth [log k] +3+ [logk] = 2[logk]+3. O

Lemma 3.9. Let a be an ideal in a finite, non-unital, reduced ring R. Then for every k > 0, we have a = a®.

Proof. By adding a unit to R (i.e., considering the ring R’ = R + Z), it suffices to show the claim for unital
rings. We show the claim locally at every prime ideal p of R. However, the localization R}, is a field for every
prime p, thus a, € {0, R, } and the claim is trivial in this case. O

Now we can prove the main theorem.

Proof of Thm. 3.2. Let also k = [log #R]. By Lemma 3.9, we see that R4 = Ri’“ is equal to the R 4-ideal
generated by A%*. Thus, Lemma 3.8 shows that we can reach every element of R4 with a bounded-depth
circuit and inputs in A. Using this, we can easily show that (/5‘ R, 1saring homomorphism. Let z,y € R4. By
our argument, there must be circuits I, (X7, ..., X,,) and I, (X1, ..., X,,) of additive depth < 2[logk] +3 <
2loglog #R + 5 and multiplicative depth < [log k| + 3 < loglog #R + 4 such that

Iy(at,....;am) =2 and I,(a1,...,am) =y
for some a; = q@(sl), e Ay = ngS(sm) € A. However, then

(b(x—l—y):¢((F$+Fy)(a1,...,am))= (Fz+Fy)(317--~vSM)
=T5(s1,. .y 8m) + Ly(s1,...,8m)
=o(Iz(ar, ... am)) + O(Iy(as,...,am)) = ¢(x) + ¢(y)

and similar for xy. In other words, ¢‘ Ra is a non-unital ring homomorphism as claimed. O
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4 Generalizing ASHE for Applications in DEPIR

In the previous section, we have seen that there is an asymptotic performance gap between our lower bound
on ASHE and known ASHE schemes, which leads us to the question whether one can construct an ASHE
scheme matching the lower bound (Question 1.2). Unfortunately, we were unable to construct a scheme that
would answer this question affirmatively. However, instead, we construct a scheme that almost matches the
lower bound in Corollary 3.3, but is only algebraic in a generalized sense. While not being an ASHE scheme
anymore, its Eval algorithm is still built from polynomial evaluations, and thus can be executed by using the
polynomial evaluation datastructure introduced in Thm. 2.13. Therefore, we can use it to build DEPIR.

Consider the cyclotomic ring Rq[X]/(X™ + 1) and a multivariate polynomial f € Z[Xy,..., X,,] that
represents the database. As sketched in the introduction, we now want to “decompose the ring” R,[Y]
and “transform” the polynomial f in a compatible way. More concretely, we use the fact that input elements
of Ry[Y] only have degree one (since they are derived from freshly encrypted ciphertexts), and look at the
evaluation of f on generic degree-1 polynomials:

(X +YZ,. .., X+ YZ,) = ZYifi(Xl,...,Xm,Zl,...,Zm). (5)
[

Note that, as a polynomial in Z,..., Z,,, each f; is homogeneous of degree i, which will later allow us to
eliminate an additional variable.

Building on this, we present a new variant of BV. We first base its security on “{0,1}-CRT RLWE”, a
novel hardness assumption whose security we will later relate to standard assumptions in Section 6.

Construction 4.1 (“Decomposed” {0,1}-CRT BV). Let ¢ L t be positive integers, n a power of two,
and R =Z[X]/(X™ 4+ 1). Define the SHE scheme given by the following algorithms.

KeyGen(1™) Output s < $R, (alternatively, any other secret distribution that leads to a hard variant of
RLWE is also fine).

Enc(M, s) Output (b,a) where
a=—s1b—-M—te), b« B, e+ Drgn jqzn
and B is the uniform distribution over the set of elements (of R,) with {0,1}-CRT components.
Dec((cg,.--,cp),s) Output lift(co + c15 + -+ - + cps?) mod ¢.
Eval(f, (b1,a1),...(bm,am)) Output
(ci)o<i<p = (am i,b1,...,bm (alv""amfl))oqu
where, using the f; from Eq. (5), we set
fi/7b1,,__,bm - f'i(bh ey b’m)le e 7Xm—17 1) S Z[Xla s 7Xm—1]-

Proposition 4.2. Assume n,q, and o are chosen to satisfy the conditions of Thm. 7.1. Then Construction 4.1
is secure under the standard RLWE assumption, i.e., RLWE(R, q, $RQ’DRn/an,W’ $R,, poly(n)) for

any polynomial 3.

Proof. Using Lemma 2.8, we see that the scheme is secure under the {0,1}-CRT RLWE assumption. Thus,
by Thm. 7.1, it is also secure under the standard RLWE assumption. O

The evaluation algorithm in Construction 4.1 outputs the coeflicients of f(by + a1Y,... by + anY),
exactly like the standard BV scheme. In other words, on a technical level, the only difference is that we
now use {0,1}-CRT RLWE instead of standard RLWE. However, this new approach for implementing Eval
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directly leads to an improved DEPIR. The main point is that the polynomials flf’bh___’bm can be precomputed

for each combination (by,...,by,) € {0,1}™. Moreover, the polynomials
FLbreibms 5 ID b
are all evaluated at the same point (ay,...,a,). At least on an implementation level, this is a significant

advantage, as we can store the precomputed point-value tables in an interleaved manner, and thus lookup
an evaluation using a single (larger) read instead of D (smaller) ones. The resulting DEPIR algorithm is
presented in Alg. 2.

Algorithm 2: Adjusted DEPIR algorithm for our “Decomposed {0,1}-CRT BV” homomorphic
encryption scheme (cf. Construction 4.1).

Preprocessing
1 Compute f(X1,...,Xm) € Z[X1,..., Xmn] interpolating the database
2 for (bi,...,bm) €{0,1}™, i€ {0,...,D} do
3 ‘ Create a polynomial evaluation datastructure T}, ..., for f{’bh_“’bm = fi(b1,. .., bm, X1,..., Xm—1,1)
4 end

Client

1 Receive input index (i1,...,%m)
2 EnCI‘ypt ij as b]' =+ CLJ'Y = Enc(ij)
3 Send (b1 + a1Y,...,bm + amY) to Server
4 Receive 7’ from Server
5 return Dec(r’)

Server

1 Receive (b1 + a1Y,...,bm + anY) from Client
2 Compute the image apjp resp. by;p of ar, by under the isomorphism

R, %é@mj (6)

j=lplq
3 Call Alg. 1 with datastructure Ti v, ;,,... b,,;, t0 compute rip,...,7pjp as the evaluations
! U
Of i, b3 FD by, B
-1 —1
(a’ljpa’mj]n R a(m—l)jpamjp)

4 Compute the preimage r; of the 75, under the isomorphism Eq. (6)
5 Send ' = Zlio al,r; to Client

Next, we argue that the performance in practice of the DEPIR scheme given in Alg. 2 is an improvement
by a factor of N'/™  despite it reading the same amount of data from the datastructure (namely O(nN*/™)).
This is the consequence of replacing D smaller reads by one larger read, as just explained. Since reading
contiguous memory location is much faster than randomly distributed ones, this results in a speedup of
almost O(N'/™). We will further back this claim up in Section 9.

Proposition 4.3. Consider the adjusted DEPIR scheme of Alg. 2 for a database of size N, and assume o =
O(1) as well as t = O(1). Then, using the datastructure from Thm. 2.13 with two repetitions of the main
shortest-lift step (cf. Bq. (2)), we need a datastructure of size O(1)™N'*Y/™  Evaluating a PIR query
requires O(nN3/™) random storage accesses, each having size O(N'/™). Here, O hides factors Inn and In N.

20



Proof. We begin by analysing the size of the datastructure(s). In total, we prepare 2™D = O(l)le/m
datastructures, each for a polynomial in m — 1 variables. Using Prop. 2.14, we see that thus the total size is

ON(].)le/mO(].)mDm71+1 _ O(l)leJrl/m.

Now we come to the number of storage accesses. As explained before, by storing the datastructures
for fiy, b+ fDb,...p, in an interleaved manner, we can evaluate them all with the same number
of storage accesses as we would need for one. Thus (again by Prop. 2.14), we find the total number to be

rn - O(D?) = O(nD?) = O(nN>3/™). O

We remark that, since we need a new datastructure for each {0,1}™, the required storage space increased
by a factor of 27 (although this is hidden by the asymptotic factor O(1)™). In practice, we would choose
very small m, so the impact is not too big. Nevertheless, in Section 5, we introduce another optimization that
can get rid of this factor.

5 Improving the Polynomial Evaluation Datastructure

Algorithm 3: The two-step version of the evaluation datastructure that additionally uses the p-adic
decomposition in the last step.

Preprocessing

Input: multivariate polynomial f € Z[X1, ..., X] of total degree D and coefficients of size || f||cc = O(1); the
ambient finite ring Zq

Decompose f into the f; as in Eq. (7)

For all primes p of size (1 + 0o(1)) (DInD + DlInlng) compute

N =

Tp = (z, f(x))s and Tp;:=(, fj(x))s forxze{0,...,p—1}" CZy

Evaluation

Input: point = € Zg"

3 for all primes p1 of size (1+0(1))D1lnq do

4 Compute zp, := lift(z) mod p1

5 for all primes p2 of size (3 + o(1))D1Inp; do
6 Compute p, p, = lift(2,, ) mod p3

7

8

0)
Decompose (Zp,,p;); = (‘Tél pa)i TP (13571)172)3
Using T}, and the T}, ;, lookup

m
0 1
Yp1i,p2 = 5”1(01)7172 Z 55571)7172 )i fi mpl,pz) € Z, 2

9 end
10 Set yp, = lift(y,,) mod p1 where y,, is the preimage of (yp, p,)p, under
Z = Z
[1»3 Dz
11 end

12 Set y = lift(y’) mod g where y’ is the preimage of (yp, )p, under the CRT isomorphism ZH » = Pz

13 return y
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In this section we present a second improvement that follows the same idea of “decomposing the ring”
and “transforming the polynomial”. Recall that the proof of Thm. 2.13 relies on the fact that the shortest-lift
map is a Somewhat Homomorphic Function. We can thus “move” the evaluation of f from IF,, to F,, for
multiple p; along the maps

Lift (- ~
F, 0 7, & F, x- xF,.
However, in the same way that our modified BV scheme is not ASHE anymore, here we also do not necessarily
require an SHF. Instead, we use the p-adic decomposition map

¢p: Ly —A{0,...,p—1} XZp, a+bp— (a,b).
—_—

CZ,2

To formulate the evaluation of f at a point x in terms of ¢,(z), we consider the evaluation of f at generic,
decomposed points X; + pY;:

PO ADYL, ooy X 4 0Yi) = F(X1ye e, X)) 0 Y Y3 f5(X0, o, Xo). (7)

j=1

The important point here is that all the terms of total degree in the Y; larger than 1 vanish, due to working
in Z,2. Thus, we can evaluate f at points in Z, through m+1 evaluations of f resp. f; at points in {0, ...,p—1}.
While technically we remain in the ring Z,, the reduced number of points directly leads to a smaller lookup
table.

Hence, we now have two ways to reduce the evaluation of f from a larger to a smaller ring:

— The shortest lift map (together with a CRT-decomposition) will reduce an evaluation in Fy to (1 +
0(1))DIng/(In D + Inln g) evaluations at points in Fy,, with p; < (1 + 0o(1))DIng.

— The p-adic decomposition technique will reduce an evaluation in Z,; to m + 1 evaluations at points
in {0,...,/q— 1} (assuming ¢ = p?).

This means that for large p, the shortest-lift map is much better, as it conceptually reduces the space from ¢
to DIng. On the other hand, the p-adic decomposition technique reduces the space from ¢ to /g, and thus is
better for “small” ¢, i.e., ¢ =& D1In D. This leads us to an improved evaluation algorithm given in Alg. 3.

Since the tables used by Alg. 3 use primes half as large as the ones considered in [OPPW24], we expect
each of them to use about a factor of 2™ less space. On the other hand, we require m + 1 of them, so the
total decrease in datastructure size should be about a factor of %2’”. This is hidden by the term O(1)"™, so
the asymptotic datastructure size remains 0(1)"‘Dm+1. However, it does make a difference in practice, by
cancelling out the factor 2™ introduced by our main optimization (Alg. 2).

6 Security of RLWE with Reduced Entropy

Section 4 showed that we are able to improve DEPIR, and come a little closer to answering Question 1.2, by
using a special, reduced-entropy variant of RLWE. For this to work, we have to reduce the entropy in a way
compatible with the algebraic structure, and so we settle for {0,1}-CRT RLWE. To gain trust in the security
of this variant, we want to find a reduction from standard RLWE.

In this section, we lay the groundwork for this reduction, by introducing a wide class of reduced-entropy
variants of RLWE and giving a reduction argument for all of them. To then completely demonstrate the security
of {0,1}-CRT RLWE, we then only have to show that it lies within this class (we defer this to Section 7).
Note that there might also be interest in other reduced-entropy variants of RLWE, for which the first part of
our reduction then applies as well.

More concretely, we want to consider RLWE samples where not both elements are uniformly random.
This leaves us two choices: we might either reduce the entropy in a or in b. For our construction, it turns out
that the second choice, i.e. choosing a nonstandard distribution B, is better. This also has the additional

22



advantage that we can give a security reduction that does not yield a randomized error distribution, which is
a common technical detail that appears whenever an error is multiplied by the secret.

In this section, we consider B to be the distribution ) j $A;, where the A; are “evenly distributed” sets.
The notion of “evenly distributed” is given by the smoothing parameter, as introduced by [MR04]. This is
very well-studied quantity in the case of lattices, but there is no reason why we cannot use it for general sets.

Definition 6.1 (Smoothing parameter). Let A C T™ be a nonempty and finite set. For € > 0, we define
the smoothing parameter n.(A) as the infimum of all s such that

Vu e T : |ps(u+ A) = ps(A)] < eps(A)

Before we come to the main theorem, we show that the correct formalization of “rounding to an evenly
distributed set A” gives us a uniform element of A and a Gaussian error.

Lemma 6.2. Let A CT" be a nonempty and finite set, % >e>0 and let s > n.(A).
Now consider a <— $T™ and b < Da s q. In this case, the tuple (b,a —b) is within statistical distance 8e
to $A X ID’]I‘n7S

Proof. Consider some x € A. The probability of b = x is given by
ps(x —a)
Prjb ==z :/ ———=da
b= A=)
1
= ———ps(x —a)da
| e
1 / 1
= ps(a)da
ps(A) Jrn 1+ €(a) (a)

with |e(a)| < e for all a. Thus

s s s s
1—2¢ < <Prp=2] < —-v-—"---—-< (14 2¢
=29, = Trap@ === g = 9 m
Note that the probabilities must sum to 1, so we find
s s
1—e< #A = <1l-+e
ps(4) wze;‘ ps(A4)
It follows that the statistical distance of b from $A is bounded as
2es 2es €
Prjb = A —_—
ot - ] <3 < a2 )
26(1 +e)+e
<HATT L <4
<# Y < 4e

For the second part, consider now the probability density function of b — a. Up to normalization, it is

given by : .
u _y ey
LD D v (g R Dy v ()

Now we condition on b = x for a fixed x € A. The conditioned density function is now given by
ps(y)
Jo=2\Y) =7
W=a ey

for some normalization constant 7 > 0. Using the smoothing parameter, we now estimate as before that

Y05 (y)

sy) o ps(y)
(1 —e)ps(A)

pa(A) = T+ p.(A)

vps(y)

(1=2) os(A)

< Go=2(y) < < (1+2¢)
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Since « is the normalization constant, we find

n
l_e< 8 :/ WJS(@/)dyglJre

ps(A) ps(A)
Thus
ps(y) / 2ey €
() — dy < ) ps(y)d
[ Josto) =258y < [ (2054 oty
2¢(14+¢€) +¢
</ -—“7
_( - )/Tn ps(y)dy
4e
an Ps(y)dy
S Tn
:ﬁ n— Ye O
Sn

We are now able to give the main result of this section.

Theorem 6.3. Let ¢ > 0 be a constant, and let m = o(n®), q, and v be positive integers. Assume that q > =y
and v = poly(n). Let finally S be a distribution over R, and o > 0 with yo > n°t1.

Assume we have discrete, nonempty and finite sets qA1,...,qA, C Ry with na-n(A;) < 1/v. If there exists
an efficient algorithm (with preprocessing) for

RLWE'P(RaQ7Zq$Ai7qu’W757m)

%

that has advantage 2(1), then this implies also an efficient solver for standard RLWE with preprocessing, i.e.,
RLWE—P(R7 q; $Rqa qDT",U7 S? m)

Intuition Given Lemma 6.2, the simplest approach would be to take an RLWE sample (a,b) and “round” it
to A by outputting (a,b’) for v/ < ¢Da .. In general this is not possible since we do not know anything
about the structure of A, and thus cannot efficiently sample from D4 , . Instead, we prepare a large number
of samples around certain, well-chosen points during the preprocessing phase, and then use some of them to
get a point close to b. This is why we then get a sum distribution ), ¢$A; in the result. We want to choose
the initial points as scalar multiples of unit vectors of the cubic grid %Z" /Z", but we additionally have to
mask them to make each one essentially uniform. This could be done either by multiplication with a random,
invertible matrix, or by translation with a random vector. We choose the second method, as it is simpler.

Proof. We assume there is an algorithm A for RLWE-P with B = )", ¢$A;. We now construct the solver A’
for RLWE-P(R, ¢,$R,, qD,, S S, m) by using A. In the preprocessing phase, we compute for each i €

{1,...,m} the following:

1. For each j € {1,...,n}, sample ry) + $T" (the “mask”).
2. For each j € {1,...,n} and k € {0,...,y — 1} sample
s(-i) «~ D i
i,k Aj,l/'y,r;L)quej/'y
This step might require exponential time.
(@)

3. The outputs of the preprocessing phase are r;’ and s

(i
J J»

)
b
In the main phase, we now run A, and when it calls the oracle the i-th time for some M € R, to get a
new RLWE sample, we do the following:

1. Call the standard RLWE oracle with M to get (a,b).
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. Define r := Zj T§Z1) EIT".
! n
- Sample r’ = §[—5, 5.]".

- Compute = (21, ..., 2n) = |y (b/q + 1" —r)] € Z"]7Z".

. Compute
— (4)
im0, € o,
Jj=1 J

Tk W N

6. Return (a,d).

Now we have to show first that b’ indeed follows the distribution B = Ej g$A;, and second that (a,b)
with a = s71(b— e — M) are mapped to (a,b’) with a = s~1(/ — e’ — M). Note that, clearly, tuples (a,b)
with a uniform a are mapped to (a,b’) with a uniform a (a and b resp. b’ are also independent). From now on,
(2) (2)

we drop the superscript -(?) when referring to T;0 O S, as we analyse the distributions of a single sample.

1. The distribution of b'. First, note that since b/q + r’ and r are both uniformly random on T" and
independent, it follows that b/q + " — r and r are independent. Thus, the random variables z,ry,...,r, are
jointly independent. Furthermore, since again each r; is uniformly random on T", it follows that also r;+xje; /v
is uniformly random on T". Now Lemma 6.2 gives that s; . is distributed within negligible statistical distance
of $A;. Since s1 z,,...,5n,4, are jointly independent, it follows that the distribution of &’ is within negligible
statistical distance to B =3_, ¢$4; as claimed.

2. The error distribution. Assume now that b = as + ge + M with e distributed according to Dr» ,. We now
consider the error 7 7
b —M—as=b —b+qge= (b/—*x> + (—x—b) + qe
Y Y

For the first term, we find

q q
b — ST > s, — 5T 4y (sj0; —wjes/y—r;)+a)
i j

J

——
=:€main =r
Now we again use Lemma 6.2 and see that, up to negligible statistical distance, eyain is independent of o’
and distributed according to Drn /.
For the second term, we find

q
Vﬁb:qemwr (b+qr' —qr—1b) = gema +qr’ —qr

11

Where €rnd S [_%, %]n and q?"/ S [—5, 5]”

Now the term g¢r cancels out, and we see
b — M — as = q(e + emain + €rma +7")

Since e, emain are independent, we see that their sum is distributed according to Dra s where s = \/o? 4+ 1/42.
On the other hand, since v < ¢, we have e;ng + 7' € [—1/7,1/4]™. This implies ||exna + 7’| < v/1/7.

By assumption, we now have s > o > n*¢/y > n!/2*¢|e;nq + r’||. Thus we can apply Lemma 2.5
for 6 = 1/2 + ¢, which shows that for any e;nq + 7/, the distribution Dpn s, 4. is within statistical
distance 7n'/27% = 7Tn=¢ from Dy . Thus, the statistical distance of the distribution of all errors, i.e.,

m
>< qDthsveii)d_,'_ (r")®
i=1
to ¢Df.. , is at most Tmn~¢ = o(1).
To complete the proof, note now that the advantage of A w.r.t. the exact distributions is £2(1), so the

advantage on the distributions produced by our reduction is at least £2(1) —o(1). This is clearly non-negligible,
thus A’ successfully solves RLWE-P(R, ¢, $R,, ¢Drn o, S, m). O
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7 Security of {0,1}-CRT RLWE

We now instantiate Thm. 6.3 with a concrete class of evenly distributed sets that additionally have nice
algebraic properties.

The {0,1}-CRT set. We already mentioned the importance of the double-CRT isomorphism

vt Ry=ZJX)/(X"+1) = & P F (8)

i€ (Z/2nZ)* p | q
ar (amod (p, X — Ci))i,p

which exists whenever p = 1 mod 2n for all p | q.
We consider the set

S={a€Zy|amodpe{0,1}} CZ, (9)

and the matrix

B = ((")iez/nz,je@/mz)y» S Zy™" (10)

where ¢ € Z, is a primitive 2n-th root of unity. With these definitions, we find that the set of elements that
have 0 or 1 in their CRT components is

{a€ R, | amod (p,X — (') €{0,1}} = BS"

:L(a)i,p

where (as before) we identify R with Z™ via the (isometric) coefficient embedding
n—1
RS2 Y aX'— (a)
i=0

Furthermore, we interpret vectors in S™ to be indexed by (Z/2nZ)* so that the product BS™ is well-defined.
The goal of this section is now to investigate the hardness of RLWE with distribution B = $(BS™), the
uniform distribution on all elements with {0, 1}-CRT components. More precisely, we want to prove the
following theorem.

Theorem 7.1. Let v = 2(n?log(n)?) be divisible by 2n, let 3 = poly(n), and let P1y- .-, P2 be fived
primes of size at least 2\/nflog(3) that split in R. Let further P, ..., P, 5 be finite sets of primes of size at
least 24/nBlog(B) that split in R, such that for p <— $P, the random variable p mod p; is distributed as $Fp, .
Define a set S and a matriz B as in Eq. (9) and Eq. (10), respectively. Finally, let m = O(n®) be an integer
with ¢ > 0, 0 > 4n°T /B and S any distribution over R,. With probability exponentially close to 1 over the
choice of pyjay1,-- - 0r from pyjoty < $P, then for ¢ = p1---p,, if there exists an efficient algorithm (with
preprocessing) for

]{LVVE—P(}%7 q, BSn, q'DTn,m, S, m)
that has advantage $2(1), then this implies an efficient solver for standard RLWE with preprocessing, i.e.,
RLWE-P(R, q,$Rq, ¢Drn 5,S,m)

Proof. Up to permutation of the p;, this directly follows from combining Thm. 6.3 with Corollary 7.8
and Lemma 7.6, which will be proven in this section. O
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7.1 Small-CRT RLWE

We now present the main ideas of the proof of Thm. 7.1. In order to simplify the technical details we first
present a simpler argument after which we will end up with a distribution supported on elements with
small (but not binary) CRT components. We then give the corresponding results for {0,1}-CRT-RLWE,
which are proved in exactly the same way.

In order to apply the general reduction Thm. 6.3, we have to show that B.S™ is evenly distributed. Under
a number-theoretic assumption (concretely Eq. (11)) that we show holds later, this is done by the next lemma.
This lemma captures the core intuition of the proof technique.

Lemma 7.2. Let g = p;y -+ p,. Assume that for some § > 0 and all y € Z™ \ {0} with ||y|| < 4v/nBlog(B)
we have

HH‘I + exp (2Wi<BTy,ej>pT/pl)‘ < onr/gn (11)
j=1l1=1

where p} = Hj;él pj_1 €. Then
23— (BS™/q) < 4/f

Intuition The proof proceeds similarly to the proof of Banaszczyk’s transference theorem [Ban93] that
relates the smoothing parameter 7.(L) to the length of the shortest nonzero dual vector A;(L*)7. Its
main ingredient is the Poisson summation formula, which relates a function over a lattice with its Fourier
transform over the dual. Using gaussians (which are eigenvectors of the Fourier transform) and concentration
inequalities (like Lemma 2.1), one can then show the claim.

Since the set BS™ is not a lattice, we cannot show the required bounds on Fourier coefficients in analogue
to [Ban93] by bounding “A;((BS™)*)”, as this is not defined. Instead, for now, we directly assume Eq. (11),
which looks somewhat like a Fourier coefficient. Proving that bound is a task we defer to later.

Proof. Consider an arbitrary u € R™. We set s = 4/ and use the Poisson summation formula over Z™ to
find that

ps(Z"+BS"Jq+u)= D> > pi(z+5+u)

s€BS™ /qxELn

s Y p1ys(y) exp(2mify, w)) Y exp(2mi(B"y, 5))

yEZn 6€S™ /q
since ps = 5" p1/s. The summand for y = 0 simplifies to s"2"", since #S = 2" and (0,u) = (0,5) = 0. Thus,
it suffices to bound the other terms. Observe now that
Z exp(27mi(BTy, 8) H Z exp(27wi(BTy, €;)0)
5esn/q Jj=16€S/q
Furthermore, we can write S as
S = {Zalpfnpk €Z, ‘ a; € {O,l}}
k£l
This means that
Z exp(2mi(BTy, e; H (eXp + exp (2mi(BTy, ej>p;‘/pl))
6€S/q =1
7 Actually, it is usually stated as a bound on the covering radius (L) or on A, (L) instead of n.(L) but, as we will

see later, that is an easy corollary.
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In other words, the assumption Eq. (11) gives that for y € Z™ \ {0} with ||y|| < 4v/nfSlog(8) we have
) Z exp(2mi(BTy, 5))’ <2mm/pn
sesn/q
Thus, we can estimate
| sy exp@rity,w) > exp@ri(BTy,8)) | < puyu(@)2 /5

y€eZ™\{0} 5eS"/q
lyll<4v/nB log(B)

Finally, the y outside of the ball of radius 4y/nf3log(83) do not contribute much anyway, as by Lemma 2.1 we
have

| Y pys) expirity,w) Y exp(mi(BTy,8)
yeL™ 6eS™ /q
llyl>4v/nBlog(B)

<y ’ > pl/s(y)’
sesn /q yez”
lyll>4+v/np log(B)
1
<2"py s (Z" \ Bgn (g\/ﬁlog(ﬂ)))

<onrolosBnp,, (ZM) = 2" B py (27
Together, we bound the “error term” in our expression for ps(BS™/q + u) as
("> prsw) exp@mify,u)) > exp(@mi(BTy,8)| < 227"y, (27)/6"
yeZ"\{0} s€S"/q
This directly implies
ps(Z™ + BS™ +u) > ™2™ (1 —2py/5(Z")/B7") = ™2™ (1—2""7) (12)

and similarly
ps(Z" 4+ BS™ 4+ u) < s"2"" (142177

since py/s(Z") = p1/s(Z)" < (2/s)" = 27" 3". Now we use Eq. (12) with both u and v’ = 0 to find
1o(BS™ +u) — py(BS™)| < 57277227 < 237 (BS™)
The claim follows. O

To continue, we now have to show Eq. (11) for a suitable choice of primes. Unfortunately, providing
tight bounds here seems like a very difficult problem. We were not able to fully exploit the number-theoretic
structure of the CRT isomorphism Eq. (8) and the matrix B. We only make use of the fact that B mod p is
invertible for all p | q. However, we believe that much stronger bounds could be achieved, if one were able to
prove the following statements.

— If y # 0 is not too large, then at least a constant fraction of coefficients of BTy are in Ly.
— If y is random and small, then BTy behaves (in a suitable sense) somewhat like uniformly random on Ly.

We are, however, able to give a bound that is sufficient to apply Thm. 6.3 and holds with high probability for
a random choice of primes.
We start with some technical lemmas.
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Lemma 7.3. Let py,...,p, be distinct primes. Then, if all p; are sufficiently large, we have

2miz/p

et { = (16/3)’”/3} < (2/3)*/3 (13)
PLT <

Proof. Let Y; :=1In |1+ 62”’”1/1’1‘. Then we have to show that

[ZY > D 16/3)} < (2/3)2/3.

$1<—$Fp
To do so, we apply the Chernoff bound (Lemma 2.3) for the Y; and get

Pr [ZYl " 1n(16/3)] <inf (16/3) 7 LB [+ e2inm ]
Ty

PLTI< I<r
<(16/3) " [T B[l1+erin/m].
I<r

Observe that 1
E |:|1 _|_e27rizz/m|} - Z |1 + 627ri9c|
! zEﬁZ/Z

As p; increases, this gets arbitrarily close to

1 1
) 4

/ 11+ 2™ |dx = / V24 2cos(2mx)dx = —
0 0 m

Thus, if all the p; are sufficiently large, we find

E |:‘1 +627ri:vl/pl|:| § %

Now the claim follows, since

(3-43

r/3
16 33) = (/37 -

[ZYI " In( 16/3)} < (16/3)7"/3 (4/3)" <

(1:1<—$Fpl <r

The statement Eq. (13) required the z; to be uniformly random in F,. In the bound Eq. (11) that we
actually want, there are no additional constants, so the idea is to only bound the product for half the primes
—say pi,...,pr/2 — and choose the other primes p,/241,...,p, at random. Since the “CRT unit vectors” &
of Zq are of the form & = pj [[,_,; Pk € Zg, where p} are as defined in Lemma 7.2, we see that &,/q = p; /p
includes the factor p}, which depends on the other primes. Hence, by choosing these other primes randomly,
we can use Lemma 7.3.

Lemma 7.4. Let r = 2(nlog(n)?) be an even integer, and py, . . . ,Dr/2 be sufficiently large primes that split
in R. Let further 8 = poly(n) and y € Z" with at least one entry in Z;,. Finally, let Py, ..., P, be finite sets of
sufficiently large primes that split in R, and assume that the distribution of p mod p; for p < $P; is uniform
on IFp,. Then, for sufficiently large n, we have

[H H‘l + exp (2m<B Y, €5)D] /pl ‘ > 2’”/5"} < (2/3)7'/3.

P
P1/2+z<—$ i

Proof. Since at least one entry of y is in Z7, we see that y mod p; is nonzero for all [. Note that every B mod p;
is invertible, so for each I, there is some j(I) with (BTy,e;)) # 0 mod p;. For this j(I), we have then
by Lemma 7.3

r/2

[H|1 + exp(2mi (BTy, e;0)pi /m)| = (16/3)7/°] < (2/3)/3

pr/2+l<*$Pl
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since (BTy, e;q))p} is distributed uniformly on F,,,. On the other hand, we can additionally use the trivial
bound
’1 + exp(27i(BTy, ej>p7/pl)‘ <2

for the remaining (j,!). In total, we find

Pr [H H’l + exp (2mi(BTy, ej>p2"/pl)‘ > (16/3)7/6 . onr/2| < (2/3)7/3

” «—$P L
Pr/2+1 1 =11=1

Finally, observe that (16/3)Y/6 < 21/2 so

(16/3)"/°
o
= 2" exp(r1n(16/3)/6 — rIn(2)/2) € 2" exp(—12(r))

(16/3)r/6 . 2nr—r/2 — gnr

and the claim follows, since —£2(r) = —£2(nlog(n)?) is eventually smaller than —§2(nlog(n)) = —2(nlog(B)),
thus exp(—£2(r)) < ™. O

Corollary 7.5. Letr,3,p1,...,pr2, P1,--., P2 be defined as in Lemma 7.4. Assume further that p; and
all elements of Py are larger than 4\/nBlog(B). Then, for sufficiently large n, we have

Pr |3y ez \ {0}, |yl < 4vnBlog(8) :

Pr/2y1< 8P
n T
11 H\l + exp (2mi(BTy, ej>p7/pl)\ > 2”/6”} <27 (14)
j=11=1

Proof. First, note that the lower bound on the p; means that for all y # 0 with |y| < 4\/nfBlog(B), we
immediately have y € Z7. In particular, for y € Z™ \ {0} with [ly[| < 4/nfBlog(f3), at least one entry of y is
in Z;. Hence, we can apply Lemma 7.4 for such a y. Taking now the union bound over all O((4/n3log(53))")
possible y, we find that the probability of Eq. (14) is

0 ((2/3) - (4v/nBlog(8))")

<exp(—2(r —nlog(B) — nlog(n) — nloglog(n)))
= exp(—Q(nlog(n)? — nlog(n))) = exp(—2(n log(n)?))

The claim follows. O

Corollary 7.5 shows that the assumption Eq. (11) of Lemma 7.2 is satisfied for any § = poly(n) and a
random choice of large enough primes with probability exponentially close to 1. Combining this with Lemma 7.2,
we see that our set of {0, 1}-CRT elements BS™ indeed has a small smoothing parameter (for a random choice
of r = 2(nlog(n)?) primes). However, the reduction of Thm. 6.3 only gives a distribution B = > a3A;
where the A; have small smoothing parameter. In other words, we get the hardness of

RLWE-P (R,q, Z $(BS"),qurn,g,S,poly(n)>
j=1
but not, as we really want, of
RLWE-P (R, ¢,$(BS™), ¢Drn 1, S, poly(n)) .
That is, we have established the hardness of RLWE where the b have CRT components chosen from the

binomial distribution B(%,n). In the folllowing subsection we will refine the argument to establish the
hardness of RLWE where the b have CRT components chosen from {0, 1}.
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7.2 {0,1}-CRT RLWE

The main idea to complete the proof is to choose r = £2(n? log(n)?) divisible by 2n, so a factor of n larger
than previously. This means we also have a factor of n more CRT components, which we group into n “groups”
of equal size. Now we consider the sets

Ai—{CLERq

The CRT components from the i-th group of a are in {0,1}
The CRT components from all other groups of a are 0 '

In particular, this means that Y A; = BS™ and, moreover, Y $4; = $(BS™). Hence, it remains to show that
each individual A; has small smoothing parameter. The proofs above hold in exactly the same way for this
situation, but with more complicated formalism, since we need to keep track of an additional index. For this
reason, we will only sketch the proofs in this new setting.

For the rest of this section, consider fixed primes

pla”'vp%r/na pr/n—i—lv"'ap%r/n, ) pr—r/n+1,~~'7pr7%r/n

of sufficient size that split in R. Consider furthermore primes

p%r/n+17"'7pr/n7 p%r/n+17"'7p2r/n7 R pr—%r/n-‘,—l?"'ap’r

chosen from suitable sets P;. Now the CRT components from the “i-th group” are the ones corresponding to
the prime ideals (p;y/n1, X — (") with 1 <1 <r/nand i € (Z/2nZ)*. Now define the sets

Spi={acZ?|Vie{l,...,r/n}:
a mod p;y/nyy € {0,1}, Vk #i: a mod pyp/niy = 0}

and

A; := BS!
= {a € BS™ | CRT components from all groups except i of a are 0}.

The analogue of Lemma 7.2 is then given by Lemma 7.6, and the analogue of Corollary 7.5 is given
by Corollary 7.8, which is a corollary of Lemma 7.7.

Lemma 7.6. Let ¢ =p;1---pr and 0 < i < n. Assume that for some 8> 0 and all y € Z™ \ {0} with |ly|| <
4/nBlog(B) we have

n r/n

11 H‘l + exp (27TZ'<BTy, ej>p;§/n+l/pw/n+z)) <2v/pr

j=11=1

where p; = ][, 4 pj_1 €F,,. Then
ngs-n(BS}'/q) < 4/

Proof. Exactly as for Lemma 7.2. O

Lemma 7.7. Let r = 2(n?log(n)?) be a positive integer divisible by 2n, and define p1,...,p,, P, ... Py
SR S T '7Pr7%r/n as described at the beginning of this section. Let furthermore 0 < i < n, 8 =
poly(n), and y € Z"™ with at least one entry in Z;. Then, for sufficiently large n and pry/nyr/241 < $Prr/nsi;

we have
n r/n

Pr[H H’l +exp (2m<BTy,ej>p;; /nH/piT/nH)‘ > o /ﬁ”] < (2/3)7/6Gm,

j=11=1
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Proof. Like in Lemma 7.4, observe that for every [, we have some j(I) with (BTy, ejay) 7 0 mod piy /-
Again, this means that (BT, ej)pjr/nﬂ is uniformly random on Fp,, ., and so Lemma 7.3 yields

r/n

Pr [H‘l +exp (27TZ<BTy’ ej(l)>p;<r/n+l/pir/n+l> ‘ > (16/3)T/(6n):| < (2/3)7/(3”)
=1

Using the trivial bound
’1 +exp (27Ti<BT:U> €j>Pfr/n+l/pir/n+z)‘ <2
for the remaining j,l, we find

n r/n

Pr |:H H‘l +exp (27TZ<BTy’ €j>p;kr/n+l/pi7“/n+l) ’
j=11=1

> (16/3)r/(6n) . 2nr—r/(2n)} < (2/3)7‘/(377,).
Now observe that (16/3)1/6 < 21/2 5o

r/(6n)  ognr—r/(2n) _gnr L _ L
(16/3) 2 2 exp(6n In(16/3) - 5 1n(2))
€2™" exp(O(—r/n)).
The claim now follows, since O(—r/n) = O(—nlog(n)?) < O(—nlog(n)) = O(log(8™")). O
Corollary 7.8. Letr = 2(n?log(n)?) be a positive integer divisible by 2n, and define p1,...,p., P1,..., P%T/n,

Pty Pty as described at the beginning of this section. Let further 0 <i < n and 8 = poly(n).

Assume furthermore that p; and all elements of P, are larger than 2v/nflog(B). Then, for sufficiently large n,
we have

Pr[3y € 2\ {0}, |lyll < 2v/nBlog(B) :
n r/n

H H’l + exp (27TZ<BTya ej>p;<r/n+l/pir/n+l)‘ > 2nT/BT:| < 27"
j=11=1

Proof. Again, we proceed exactly as in Corollary 7.5. There are O((2+/n8log(3))™) different y € Z" with ||y|| <
2v/nBlog(B). Thus, we can bound the probability by

(2/3)/9") (2y/mB1og(3))" € exp(—- In(3/2) + Onlog($)) + Olnlog(n))

e exp(O(n log(B)) — O(—nlog(n)2)>

and the claim follows. O

8 Concrete Security of {0,1}-CRT RLWE

The results of the previous section (cf. Thm. 7.1) show that asymptotically, {0, 1}-CRT RLWE is indeed a
hard problem, at least for a certain regime of parameters. In this section, we discuss the security of {0, 1}-CRT
RLWE for concrete parameters that are relevant for practical implementations of our protocol. Our concrete
security estimates for {0, 1}-CRT RLWE are summarised in Table 2.

For this, in the remainder of this section, we mainly examine the applicability of algorithms for solving
RLWE to solving {0,1}-CRT RLWE. We present several arguments to support the conjecture that, con-
cretely, {0,1}-CRT RLWE is not significantly easier than RLWE. However, we recognise that this is a new
assumption and strongly encourage further cryptanalytic research to support or disprove this conjecture.
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Geometric attacks Among the most successful attacks against RLWE are geometric attacks based
on lattice reduction. They either solve BDD [LN13] or (u)SVP [ADPS16, Section 6.3] in the “primal”
lattice (a1, ..., an)T R, or they solve SVP in the dual lattice of a projected sublattice thereof (the “dual”
approach [MR09]). In the end, the core of the problem is always to find a short basis of a given lattice, which
is usually done using the BKZ algorithm [SE94]. Note that these (as well as most other attacks) ignore the
additional ring/ideal structure of RLWE, and just treat an RLWE instance as an LWE instance.

We were not able to find any efficient approach to exploit the special structure of the set of {0,1}-CRT
elements BS™ that would enable an improvement in lattice reduction approaches. Additionally, note that
any “norm-preserving” features of the (single)-CRT-isomorphism

ZX])/(X" +1) = ézq

J=1

would directly lead to a serious vulnerability of standard RLWE, since multiplication on the right-hand
side is component-wise, thus a fixed component of a;s depends only on one component of the secret s. In
other words, if there was a non-negligible chance that a short element of Z4[X]/(X™ + 1) has short CRT
components, we could mount a distinguishing attack against RLWE by only considering these “1-dimensional”
CRT component. By a cardinality argument, this means that also the reverse direction does not occur often,
i.e. an element of Z,[X]/(X™ + 1) with small CRT components (like in the case of {0,1}-CRT RLWE) is
unlikely to be small itself. This is further supported by our bound Lemma 7.6, which demonstrates that B.S™
is evenly distributed. In particular, BS™ neither contains unusually many short vectors, or clusters of vectors
that might be useful for performing lattice reduction. Thus, in Table 2, to concretely estimate the security
of {0,1}-CRT RLWE against geometric attacks, we treat it as a corresponding RLWE instance.

Combinatorial attacks The situation is different for combinatorial attacks, as we can potentially exploit
the special structure of the {0, 1}-CRT set to improve known combinatorial attacks. In particular, in this
subsection we will detail a modified version of the BKW algorithm [BKWO03], which is the most famous
combinatorial attack against (R)LWE. However, we find that this BKW variant does not significantly
outperform lattice reduction approaches.

In essence, the BKW algorithm subtracts in stages elements a = > a; X" € R, that agree on a subset of
coefficients, and thus creates new elements with these coefficients set to zero. This results in lower-dimensional
LWE instances with slightly increased noises, such that at the final stage, the remaining LWE instance is easy
to solve. The observation in our setting is that instead of zeroing coefficients, we can equivalently zero CRT
components. When the CRT components are in {0, 1} or otherwise small, we expect it to be much easier to
find collisions, i.e., pairs of elements with the same values on a subset of CRT components.

We cannot translate the idea directly to our case as it is the b part of LWE samples has the {0,1}-
CRT structure, rather than the a part. In other words, even if we find (e.g., using BKW) multiple short

vectors y1), ...,y such that each of them annihilates the aj as Zj y§i)bj = 0, then we have not yet solved
our LWE problem. However, we have reduced it to the NTRU problem, since we find “samples”

D 4 ol 4 0 | |
s Z y](')aj +e =0 o Z y;Z)aj _ _68 where () — Z y]('z)ej
J J .

Taking the quotient of the “samples” associated with two different (), y(i/), we can then cancel out s and find

Y e

1 1
SR

which is the quotient of two short elements, hence an NTRU instance.
For the parameters in question, namely a small o and g >> nc=tieue for some small constant cgagigue > 0,
the NTRU problem is said to be “overstretched” and significantly easier than RLWE [ABD16; DW21; KF17].
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The exact value of cpatigue depends on o and is the topic of ongoing research, but [DW21] estimates it to
be about catigue = 2.484. Therefore, in our concrete estimates for the cost of this BKW variant, we avoid
discussing the hardness of this version of NTRU and treat it as completely broken, i.e., we assume that it can
be solved with no cost. Obviously, this is an underestimate, hence the concrete cost of the BKW approach
will always be more than this.

At this point, we remark that more modern variants of BKW like coded-BKW [GJS15; GIMS17; GIMW19;
GMW?21] must be classified as “geometric approaches”; since they significantly improve the performance
of BKW for large ¢ by using geometric structure. Thus, they are unlikely to be able to use the structure
of {0,1}-CRT RLWE, as mentioned above. However, it is possible to combine geometric approaches (e.g.,
coded-BKW or lattice reduction techniques) with the standard-BKW approach outlined above, and get a
hybrid algorithm that outperforms both BKW and standard coded-BKW on {0,1}-CRT RLWE samples. In
particular, note that only the elements b of the first few tables T; for i < logmax, | , p during an execution
of BKW actually have very narrowly distributed CRT components. Concretely, the elements in the "
table T; are the result of adding/subtracting 2? initial elements, thus their CRT components are supported
on {—2¢ ...,2%}. As a result, when i increases, the advantage of using BKW diminishes.

Instead of continuing normal BKW in this case, it thus makes sense to switch to a geometric algorithm. In
detail, we choose prime ideals po, ..., prs—1 of Ry corresponding to the first s = L% ;;3 Bi1] CRT-components
where 3 is the block size of the I'" stage of BKW. Then, after running BKW for ¢ stages, we end up
with RLWE samples (a,b) such that b = 0 mod p;, i.e., the b are part of an (n — s)-dimensional subspace.
This leads to Alg. 4. We estimate its cost in Estimate 8.1. Note that our estimate is very conservative, since
we completely ignore the cost of the NTRU oracle.

Estimate 8.1. Using BKZ as SIS-oracle, we expect Alg. 4 running t stages of BKW with block sizes 5; =
v/ +1) fory >0 and 0 <1 <t—1 to have cost roughly

f O ( ((lnq—%ﬂnQ—lna)z))th27
oo BKZ\EXP 4(n —yInt/r)lng

when solving RLWE(R, q,$BS™, ¢Drn o, S) for ¢ =p1---p,. Here, Ckz(do) refers to the cost of BKZ with a
sufficient block size to achieve a root-Hermite factor &g, and t = log max; p;.

Justification. During Alg. 4, we call the SIS oracle to find a short vector y € Z™ in the lattice
L= {y ez™ ) Zyjbg-t) = 0 mod q}
J

The value m can be chosen freely since we assume unlimited input samples (a;, b;) and hence can construct

unlimited b;t). By construction, the b§t) have the first s CRT components set to 0 and we can assume the rest
have a uniformly random value in Z;. In other words, they are all part of an (n — s)-dimensional subspace
of Zy . Hence, the volume of L is with high probability vol(L) = ¢"~*. Thus, we want to choose m to maximize
the root-Hermite factor

llylI*/™

07 Sol(L)L/m?

This results in m = 21lnvol(L)/In||y||, or

O
RS

adding/subtracting 2¢ input samples, thus their error is heuristically v/2fc. Making a conservative estimate,
it is necessary that at least ||y|| < ¢27*/2 /o, since otherwise the error would overflow ¢ and the result would

Next, we estimate what size of y we need to achieve. Note that the samples (a ) result from
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Algorithm 4: Hybrid BKW for {0, 1}-CRT-RLWE
Input: Input samples (aj,b;) in Z4[X]/(X™ + 1) where b; have {0, 1}-CRT components; block sizes §; for each
stage 0 < I <t —1; SIS solver A that is used once we reach uniform b; NTRU oracle B for the last step
Output: Whether (aj, b;) are uniform or RLWE samples
Initialize all tables T} :=
Let 5 :=0
Take a new input sample (a;,b;) and set bgo) =bj € Zg[X]/(X" + 1)
Set 5:=0
for 1 =0,1,...,t — 1 where t = [log(max, | ,p)] do
if T} contains b with b = xg-l) mod p; V5 <i< B+ 5 then
Set b\ =" — b
Update 8+ B8+ (i
else
Add b to T
Update j <— j + 1 and go to step 3
end

© m N O WA W N R

-
o

=R
N R

end
if T} has enough elements to run A then

Find the vectors y<j) of £1-norm at most 2¢ such that b;t) = Zl yl(j)bz
Call A on the b§t) to find multiple short vectors 2V, ..., 2®) with Zj z](’)bgt) =0

return Output of B on samples

o _ -1
(Z yfj)zj(z)al) (Z yl(J>Z§l>al> forie{2,...k}
gl gl

=
[

[
N o o«

18 else
19 ‘ Update j < j + 1 and go to step 3
20 end

be trivially unsolvable with high probability. This can be made precise by considering the exact distribution,
but this only changes some small constants, as shown, e.g., by [Plal8]. Plugging this in, we get

(Ing — %tan—lno)Q)

% = exp( 4(n —s)lng

Finally, it is left to choose the block sizes 5;, which then define s via
=
5= -
S
1=0
It makes sense to choose them such that every stage of Alg. 4 has the same complexity. Note that the

values by) all have coefficients in {—2!=% ..., 2!=1} for [ > 1, thus the complexity of the I-th stage is bounded
by 20418 This motivates us to choose §; = /(I + 1), in which case

>

=1

vIn(t)

~
~

S =

S| =
~]=

and the total complexity of Alg. 4 is at least ¢27 executions of the loop body at line 5.
To complete the estimate, we now note that v can be chosen freely, thus the cost is

Ing— 1tn2 —1Ino)?
(Ing — 5tln no) ))—i—t?'y .

inf C
»lygo BKZ(eXp( 4(n —~ylnt/r)Ing
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In Table 2 we estimate the cost of Alg. 4 by including this formula in a custom script, built on top of
the lattice estimator [APS15]%. To estimate Cpxz(do), we use the default cost model of the lattice estimator,
which is derived from [MAT22]. Table 2 shows that Alg. 4 does not outperform the standard uSVP attack,
even in our very conservative setting where the NTRU cost is estimated as zero. Overall, we can conclude
that {0, 1}-CRT RLWE is not concretely easier than an equivalent RLWE instance.

Table 2. Estimated concrete security (in bits) of {0, 1}-CRT RLWE for various parameters. The row “Hybrid BKW”
is estimated using a custom formula on top of the lattice estimator [APS15] based on Estimate 8.1. The cost of the
other attacks is directly estimated using the lattice estimator, i.e., ignores the {0, 1}-CRT structure.

" 915 915 916 916
log(q) 721 841 1894 1924
T 24 30 63 64
Log estimated cost (rops)

Hybrid BKW Alg. 4 157 133 118 116
Classical Dual Attack 158 134 119 117
uSVP Attack 156 133 118 116

Algebraic attacks The idea underlying algebraic attacks against LWE is to use LWE samples to create a
polynomial system
I'=(fi(X1,... Xn), o, fi(X1, ... X0n)) CZy[ X1, ..., Xi]

that, which high probability, has the LWE secret as only solution. This system can then be solved, either
using linearization [AG11] or using Groebner basis [ACFP14]. Note that for known methods to construct I,
the degree of the polynomials f; depends strongly on the support of the error distribution. Thus, algebraic
attacks have been most successful against LWE with unusually small errors.

The values of a or b only appear as constants in the above system I. Thus, restricting the values that b
can take (as in our {0,1}-CRT RLWE case) seems to have basically no influence on the difficulty of finding a
solution to I. Even significant progress in algebraic attacks against {0, 1}-CRT RLWE would not invalidate our
concrete security estimates, since the known attacks [AG11; ACFP14] are estimated to have huge complexity
(> 1000 bits) when attacking RWLE with parameters in the regime we consider. Thus, we believe that we
can ignore algebraic attacks when estimating the concrete security of {0,1}-CRT RLWE, and hence their
cost is omitted from Table 2.

9 Implementation and Evaluation

We implement our DEPIR scheme utilizing our “decomposed {0,1}-CRT BV” homomorphic encryption
scheme (cf. Alg. 2 and Alg. 3). Our implementation is written in Rust, includes multithreading support, and
extends the open-source code provided by [OPPW24]°.

We then benchmark our DEPIR implementation and compare it to prior work [OPPW24], the only other
implementation of DEPIR. All experiments use multithreading (utilizing all 24 cores) and are run on a
system with an Intel Core i7-13700K CPU, 32 GB DDR5 RAM (5600 MHz), and a 4 TB Western Digital
Black SN850X NVMe SSD. We limit the amount of RAM used to store parts of the datastructure to 26 GB,
since additional RAM is needed for computation itself. However, the implemented splitting of the evaluation
datastructure into RAM and disk is quite coarse-grained, thus the used amount of RAM is often significantly

8 We have commit e9f6a48b5995a89d17745da21f64fa9das821£5e5 from June 5th 2024.
 Our code is available at https://github.com/FeanorTheElf/ashe-depir
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less than 26 GB. We provide the detailed parameter choices and results in Table 3, and plot the required
number of queries as well as the size of the preprocessing datastructure in Figure 2 and Figure 3, respectively.

2% 7 old, m =4
old, m=5

g 27 new, m = 4
g
O:f, old, m=6
o " new, m =25
5 o2
~
E
Ho 235 |

929 |

Fig. 2. Total number of queries (i.e., read accesses to the datastructure) performed by our implementation (“new”)
and [OPPW24] (“old”, always performing two complete reduction steps) for different database sizes N and parameter
choices for m.

Choice of parameters. We estimate the error (more precisely critical quantity) caused by the homomorphic
computation to be approximately

Coxp = VN (erffl(rl/ <nm>)tﬁg)d (15)

in canonical £o-norm, i.e., ||€]|can,co = max |o(e)| where o : R — C runs through all complex embeddings R —
C. This then determines the size of g via g > ecxp. Together with an estimate of concrete security as described
in Section 8, this gives the parameters as displayed in Table 3 and used also for Figures 2 and 3.

Our concrete estimate of the error Eq. (15) seems quite tight, and is equal to the experimentally chosen
parameters of [OPPW24], up to a few bits. Thus, the parameter settings for N € {46376, 15020334, 185250786}
can be considered to be almost the same as in [OPPW24]. To get reliable timings, we nevertheless run the
code of [OPPW24] again on our system.

Results. Overall, as is evident from Table 3 (and as expected), we achieve a reduction in the number of
queries of x10 or more compared to [OPPW24] for large values of N resp. d. For the parameters for which we
can actually run the protocol, we still achieve a speedup of more than x4. For very small parameters however,
our implementation runs slower than the one of [OPPW24], since we start storing data on disk from a smaller
N on. On the storage side, we do slightly better than [OPPW24], but the difference is not very pronounced.

Note that our algorithm performs read accesses to larger chunks of data, i.e., about 50-100 bytes instead
of only 2 bytes as in [OPPW24]. However, reading adjacent bytes is much faster than randomly distributed
memory locations, so this does not offset our advantage. This is particularly in the case that the target
data is stored on an SSD, since SSDs only support reading blocks of 4 KiB. Thus our larger reads come
at (essentially) the same cost as the previous, single-byte reads.

Interestingly, due to the increased speed of RAM on our system, the storage-speed-tradeoff proposed
by [OPPW24] is no longer optimal in our case. Thus, we also run the implementation from [OPPW24]
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Table 3. Comparison of our implementation with previous work [OPPW24]. We ran the previous implementation on
our system, once with the parameters proposed by [OPPW24] and once with two complete reduction steps, which is

more similar to our implementation. Security levels are estimated as described in Section 8.

N 46376 142506 15020334 185250786

(m, D) (4,30) (5,25) (5,68) (6,68)

n 915 915 916 916

[OPPW24] (proposed parameters)

(|log(g)],t, ) (833,29, 30) (1881, 32,62) (1913, 32,63)

Security (bits) 134 119 117

Total storage 1087 GB 873979 GB 411745167 GB
in RAM 26 GB 20 GB 15 GB
on Disk 1061 GB not given 873959 GB 411745152 GB

i PPW24

Queries total 31.9.9%0 0[O ] 3154.3 - 2% 3174.7 - 2%
to RAM 30.9 - 2%° 815.3 - 2% 467.0 - 2%°
to Disk 1.0-2% 2339.0 - 2% 2707.7 - 2°°

Running time 1479.0s not possible to run

[OPPW24] (when doing two complete reduction steps)

(|log(q)],t,7) (833,29, 30) (707,28, 27)
Security (bits) 134 160
Total storage 18 GB 2040 GB
in RAM 18 GB 25 GB
on Disk 0GB 2015 GB
as above
Queries total 73.2 . 230 44.6 - 23°
to RAM 73.2. 2% 26.8 - 230
to Disk 0 17.8-2%
Running time 453.0s 27532.6s
Our work
(|log(q)],t,7) (841, 30, 28) (721, 30, 24) (1894, 30, 63) (1924, 30, 64)
Security (bits) 132 156 118 116
Total storage 44 GB 2927 GB 750922 GB 394474940 GB
in RAM 25 GB 17 GB 11 GB 9 GB
on Disk 19 GB 2910 GB 750911 GB 394474931 GB
Queries total 7.1-2% 5.1-2% 133.9 - 2%0 335.1 - 2%
to RAM 6.6 - 23° 2.1-2% 19.1-23° 20.4 - 23°
to Disk 0.5-2% 3.0- 2% 114.8 - 230 314.7 - 230
Running time 1102.0s 6267.5s not possible to run
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Fig. 3. Total size of the datastructure used by our implementation (“new” and [OPPW24] (“old”, always performing
two complete reduction steps) for different database sizes N and parameter choices for m. We also marked the 4 TB
boundary, which is the amount of storage available on our system.

without limiting the number of “level 1 primes”, i.e., performing two complete reduction steps as in our
implementation.

Finally, we also count the exact number of read accesses and the datastructure size for N between 20
and 22 and m € {4,5,6} (cf. Figure 2 and Figure 3, respectively). As we expect, the storage size for
each m € {4,5,6} of our improved scheme is about the same as previously, while the read query count
for m € {4,5} very roughly corresponds to the read query count of [OPPW24] for m’ = m + 1. In other
words, we get one variable “for free”. Asymptotically, as indicated by Prop. 4.3 and Alg. 3, our advantage
scales approximately with %N 1/m

We remark that [OPPW24] also used a simple model to estimate the runtime given the number of read
access, based on a RAM access speed of about 7 - 108 IOPS and an SSD access speed of about 107 IOPS.
However, we do not use this model, as due to different system specifications, it does not give accurate results
in our setting.
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