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Abstract—This paper considers an information theoretic model
of secure integrated sensing and communication, represented as a
wiretap channel with action dependent states. This model allows
one to secure a part of the transmitted message against a sensed tar-
get that eavesdrops the communication, while allowing transmitter
actions to change the channel statistics. An exact secrecy-distortion
region is given for a physically-degraded channel. Moreover,
a finite-length achievability region is established for the model
using an output statistics of random binning method, giving an
achievable bound for low-latency applications.

Index Terms—integrated sensing and communication, wiretap
channel, finite blocklength analysis

I. INTRODUCTION

The importance of connectivity is increasing, in terms of
both communication and sensing in applications such as self
driving cars, giving natural rise to Integrated Sensing and
Communication (ISAC) [1]. The integration of sensing and com-
munication also allows for more efficient usage of bandwidth
than independent sensing and communication [2]. This increase
in efficiency introduces an inherent secrecy issue. If a target is
sensed using an ISAC waveform, then the target has potentially
observed the waveform, making the target also an eavesdropper.

Standard cryptographic methods are not a practical solution
in all communication scenarios, such as Internet of Things (IoT)
settings where the devices have few computing resources or are
designed for low power consumption. In these cases, physical
layer security is a potential alternative [3]. Recently, information
theoretic models have been proposed to explore the theoretical
limits of physical layer security for ISAC channels. In [4],
an ISAC channel was modeled as a state-dependent broadcast
channel with feedback. Physical layer security was explored for
this model in [5]. A similar model characterizes the secrecy-
distortion region for Rayleigh fading channels [6]. All of these
models assume that the channel output feedback is available to
the transmitter while encoding.

The secure ISAC model in [7] simplifies the model of [5]
by using the feedback for state estimation but not encoding.
The lack of dependence in encoding on feedback allows the
model to meet low-latency requirements. Our model performs
the same simplification on the model in [8], allowing us to find
results relevant in a low-latency setting. Our contributions are

an exact secrecy-distortion region and an inner bound on the
finite blocklength secrecy-distortion region.

First, the specific theoretical model is introduced following
which we establish the exact asymptotic secrecy distortion re-
gion for the physically-degraded ISAC channel with transmitter
actions. We then analyze the finite blocklength performance us-
ing nonasymptotic output statistics of random binning (OSRB)
method [9], [10] to derive an inner bound for the ISAC channel
with transmitter actions.

II. PROBLEM DEFINITION

Consider the channel model depicted in Figure 1, a state de-
pendent broadcast channel with feedback, consisting of a trans-
mitter who wants to communicate reliably with the legitimate
receiver and sense a target while keeping part of the message se-
cret from the target (thus also treating the target as an eavesdrop-
per). The transmitter, observing a uniformly distributed message
M = (M1,M2) ∈ M = M1 × M2 computes the action se-
quence An = EncAct(M) ∈ An and the channel input sequence
Xn = Enc(M,An) ∈ Xn where EncAct(·) and Enc(·, ·) are
(random) encoding functions for the action and channel inputs,
respectively. The states are determined by nature according to
(Sn

1 , S
n
2 )|{An = an} ∼

∏n
i=1 PS1S2|A(s1,i, s2,i|ai). For each

channel use i ∈ [1 : n], (Xi, S1,i, S2,i) are inputs to the discrete
memoryless channel PY1Y2|S1S2X during which the legitimate
receiver observes Y1,i ∈ Y1 and S1,i ∈ S1 and the target
(eavesdropper) observes Y2,i ∈ Y2 and S2,i ∈ S2. After the
nth transmission, the legitimate receiver forms an estimate M̂
of M by M̂ = Dec(Y n

1 , Sn
1 ) where Dec(·, ·) is a decoding

function. We denote the feedback to the transmitter by Zi ∈ Z .
The sensing is abstracted as the estimates (Ŝn

1 , Ŝ
n
2 ) of the states,

which is done with the estimators Ŝj = Estj(A
n, Xn, Zn) ∈ Ŝn

j

for j = 1, 2 where Estj(·, ·, ·) is an estimation function. All sets
A,X ,Y1,Y2,S1,S2, Ŝ1, Ŝ2 and Z are assumed to be finite.

To simplify the analysis, we assume that the transmitter
feedback is noiseless channel feedback, i.e., Zi = (Y1,i, Y2,i)
for all i ∈ [1 : n], which provides an outer bound for the
performance of the noisy feedback scenario.

Now we define physical degradation for an ISAC channel
with transmitter actions.
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Fig. 1. Secure ISAC model with transmitter action-dependent states under partial secrecy, where we have M = (M1,M2) and only M2 should be kept secret
from Eve, for i = [1 : n]. The channel input Xi is a function of (M,Ai).

Definition 1: An ISAC channel with transmitter actions as
depicted in Fig.1 is physically-degraded if

PAXY1Y2S1S2
= PAXPY1S1Y2S2|AX

= PAXPS1|APY1|S1XPY2S2|S1Y1
. (1)

♢

III. ASYMPTOTIC PERFORMANCE LIMITS UNDER PARTIAL
SECRECY

We first define an achievable tuple and the achievable secrecy
distortion region.

Definition 2: Under partial secrecy, a secrecy-distortion tuple
of the form (R1, R2, D1, D2), with log |Mj | = nRj for j =
1, 2 is achievable if for any δ > 0 there exists a channel encoder,
action encoder, decoder, n ≥ 1, and two state estimators Ŝn

j =
Estj(X

n, An, Zn) such that

Pr
[
(M1,M2) ̸= (M̂1, M̂2)

]
≤ δ (reliability) (2)

I(M2;Y
n
2 , Sn

2 ) ≤ δ (strong secrecy) (3)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤Dj+δ for j=1, 2 (distortion) (4)

and we have per letter distortion metrics dj(ŝ
n
j , s

n
j ) =

1
n

∑n
i=1 dj(ŝj,i, sj,i) for j = 1, 2 that are bounded from above

by some value dmax. The secrecy-distortion region RPS,Act is
the closure of all achievable tuples under partial secrecy. ♢

Now we give the asymptotic secrecy-distortion region for a
physically-degraded ISAC channel.

Theorem 1: (Physically-degraded): For a physically-degraded
ISAC channel, RPS,Act is the union over all joint distributions
PV AX of the rate tuples (R1, R2, D1, D2) satisfying

R1 +R2 ≤ I(V ;Y1, S1) (5)
R2 ≤ I(V ;Y1, S1)− I(V ;Y2, S2) (6)

Dj ≥ E[dj(Sj , Ŝj))] for j = 1, 2 (7)

where we have

PV AXY1Y2S1S2
=PV |AXPAXPS1|APY1|S1XPY2S2|S1Y1

(8)

and one can use the deterministic per-letter estimators
Estj(a, x, y1, y2) = ŝj for j = 1, 2 such that

Estj(a, x, y1, y2)

= argmin
s̃∈Ŝj

∑
sj∈Sj

PSj |AXY1Y2
(sj |a, x, y1, y2) dj(sj , s̃). (9)

One can also bound |V| by

(|X |·|A|+1). (10)

♢
Proof Sketch: The cardinality bound follows from [11,

Lemma 15.4], where |X | · |A|−1, letters are needed to preserve
PXA with two additional letters to preserve I(V ;Y1, S1) and
I(V ;Y2, S2).

Achievability Proof: We use the OSRB method [9] for the
achievability proof. To this end, we consider two problems,
the channel coding problem assisted with shared randomness
and the source coding problem that is operationally dual to
the former. We find conditions for which the source coding
protocol is reliable and secure, then we find conditions for
which the probability distributions induced by the two protocols
are arbitrarily close, providing a reliable, secure solution to
the channel coding problem assisted with shared randomness.
Finally, we remove the shared randomness by showing that the
protocol remains secure and reliable for a specific realization of
the shared randomness.

Fix PV AX(v, a, x) for which there exist per-letter esti-
mators Estj(A,X, Y1, Y2) = Ŝj for j = 1, 2 that satisfy
E
[
dj(Sj , Ŝj)

]
≤ Dj + ϵn for j = 1, 2 and 0 < ϵn → 0 as

n → ∞.
Protocol A: We first generate a tuple of random variables

(V n, An, Xn, Y n
1 , Sn

1 , Y
n
2 , Sn

2 ) according to PV AXY1S1Y2S2
as

defined in (8). The source encoder, observing V n, uniformly and
independently assigns random bin indices BM1(V

n) = M1 ∈
M1[1 : 2nR1 ], BM2

(V n) = M2 ∈ M1 = [1 : 2nR2 ], and
BF (V

n) = F ∈ [1 : 2nR̃]. The decoder employs a Slepian-
Wolf decoder [12] to recover V̂ n from (Y n

1 , Sn
1 , F ), which we

denote PSW
V̂ n|Y n

1 Sn
1 F

.
The random binning induces the following random pmf

PRB=PRB
M1M2FP

RB
V n|M1M2F

PAnXnY n
1 Sn

1 Y n
2 Sn

2 |V nPSW
V̂ n|Y n

1 Sn
1 F

.

(11)

Protocol B: We assume F is uniformly and independently
selected from [1 : 2nR̃v ] and is shared with all parties prior
to transmission. The transmitter selects a message M =
(M1,M2) uniformly from (M1×M2) independent of F . Using
PRB
V n|M1M2F

from Protocol A, the transmitter generates V n. The



channel inputs (Ai, Xi) for the ith channel use are produced
by the transmitter according to PXA|V . The legitimate receiver
uses its observations (Y n

1 , Sn
1 ) and the common randomness F

to form an estimate V̂ n via PSW
V̂ n|Y n

1 Sn
1 F

from Protocol A.
The pmf induced by Protocol B is

PRC=PU
M1M2

PU
F PRB

V n|M1M2F
PAnXnY n

1 Sn
1 Y n

2 Sn
2 |V nPSW

V̂ n|Y n
1 Sn

1 F
.

(12)

A sufficient condition for the Slepian-Wolf decoder to cor-
rectly estimate V n in Protocol A [9, Lemma 1] is

R̃ > H(V |Y1, S1). (13)

Partial secrecy requires almost independence of M2 and F with
the eavesdropper’s observation (Y n

1 , Sn
1 ). Privacy amplification

[9, Theorem 1] ensures almost independence of mentioned
random variables for Protocol A if

R̃v +R2 < H(V |Y2, S2). (14)

Finally, using [9, Theorem 1], the induced distributions (11) and
(12) are arbitrarily close in variational distance when

R1 +R2 + R̃v < H(V ) (15)

which gives the desired reliability and security guarantees for
Protocol B. A coding scheme for the original channel coding
problem is obtained by finding a specific realization f of the
common randomness F for which the reliability and security
conditions continue to hold as in [9].

Using Fourier-Motzkin elimination [13] to simplify (13)-(15)
gives (5) and

R2 <
[
H(V |Y2, S2)−H(V |Y1, S1)

]+
=

[
I(V ;Y2, S2)− I(V ;Y1, S1)

]+
(16)

where [a]+ = max(0, a). Application of the Markov chain
V − (A,X)− (Y1, S1)− (Y2, S2), which follows from channel
degradation, and the data processing inequality to (16) recovers
(6). The distortion constraints in (7) and the viability of the
deterministic per-letter estimators in (9) follow as in [5], [8].

Converse Proof: Suppose for some n ≥ 1, δn > 0, there exists
a channel encoder, action encoder, decoder, and state estimators
such that

P{M ̸= M̂ ≤ δn (17)
I(M2;Y

n
2 , Sn

2 ) ≤ δn (18)

E
[
dj(S

n
j , Ŝ

n
j

]
≤ Dj + δn (19)

are satisfied for some tuple (R1, R2, D1, D2).
We have

H(M1,M2|Y n
1 , Sn

1 )
(a)

≤ H(M1,M2|M̂1, M̂2)
(b)

≤ nϵn (20)

where (a) follows by allowing randomized decoding and (b)

follows from Fano’s inequality with ϵn = Hb(δn)
n +δn(R1+R2).

Note that ϵn → 0 as δn → 0.

We also define Vi ≜ (M1,M2, Y
i−1
1 , Si−1

1 , Y i−1
2 , Si−1

2 ) such
that the Markov chain Vi − (Ai, Xi) − (Y1,i, S1,i, Y2,i, S2,i)
holds.
Bound on n(R1 +R2):

n(R1 +R2)
(a)

≤ I(M1,M2;Y
n
1 , Sn

1 ) + nϵn

≤
n∑

i=1

[
H(Y1,iS1,i)

−H(Y1,i, S1,i|M1,M2, Y
i−1
1 , Si−1

1 , Y i−1
2 , Si−1

2 )
]
+ nϵn

(b)
=

n∑
i=1

I(Vi;Y1,i, S1,i) + nϵn (21)

where (a) follows from (20) and (b) follows from the definition
of Vi.
Bound on nR2:

nR2

(a)

≤ H(M2|Y n
2 , Sn

2 ) + δn

= I(M2;Y
n
1 , Sn

1 |Y n
2 , Sn

2 ) +H(M2|Y n
1 , Y n

2 , Sn
1 , S

n
2 ) + δn

≤ I(M2;Y
n
1 , Sn

1 |Y n
2 , Sn

2 ) +H(M1,M2|Y n
1 , Sn

1 ) + δn
(b)

≤ I(M2;Y
n
1 , Sn

1 |Y n
2 , Sn

2 ) + nϵn + δn

≤
n∑

i=1

[
H(Y1,i, S1,i|Y2,i, S2,i)

−H(Y1,i, S1,i|Y i−1
1 , Si−1

1 ,M1,M2, Y
n
2 , Sn

2 )
]
+ nϵn + δn

(c)
=

n∑
i=1

[
H(Y1,i, S1,i|Y2,i, S2,i)

−H(Y1,i, S1,i|Y i−1
1 , Si−1

1 ,M1,M2, Y
i
2 , S

i
2)
]
+ nϵn + δn

(d)
=

n∑
i=1

[
I(Vi;Y1,i, S1,i|Y2,i, S2,i)

]
+ nϵn + δn

(e)
=

n∑
i=1

[
I(Vi;Y1,i, S1,i)− I(Vi;Y2,i, S2,i)

]
+nϵn+δn (22)

where (a) follows from (18), (b) follows from (20), (c)
follows by application of the Markov chain (Y1,i, S1,i) −
(Y i−1

1 , Si−1
1 ,M1,M2, Y

i
2 , S

i
2) − (Y n

2,i+1, S
n
2,i+1), (d) follows

from the definition of Vi, and (e) follows because of the channel
degradation (1).

By introducing a time sharing random variable Q uniformly
distributed over [1 : n] and independent of all other random
variables and following the standard time sharing argument
applied to (21) and (22), letting V = (VQ, Q), X = XQ,
A = AQ, Y1 = Y1,Q, S1 = S1,Q, Y2 = Y2,Q, and S2 = S2,Q

such that V − (A,X) − (Y1, S1) − (Y2, S2) forms a Markov
chain, we recover the rate conditions (5) and (6).

IV. INNER BOUND ON NONASYMPTOTIC PERFORMANCE
UNDER PARTIAL SECRECY

We now consider the achievable performance of our model for
a finite block length n. We first adjust Definition 2 to a fixed



blocklength n. Following that we define some quantities that
will be useful in the statement and proof of the nonasymptotic
achievable region.

Definition 3: Under partial secrecy and for fixed δr, δD, δsec >
0 and n ≥ 1, a nonasymptotic secrecy-distortion tuple
(R1, R2, D1, D2), with log |Mj | = nRj for j = 1, 2, is
(δr, δD, δsec, n)-achievable if there exists an action encoder,
channel encoder, decoder, and two per-letter state estimators
Ŝj = Estj(X,A, Y1, Y2) such that we have (4) with per-letter
distortion metrics bounded by a value dmax and

Pr
[
(M1,M2) ̸= (M̂1, M̂2)

]
≤ δr (reliability) (23)

∥ PM2Y n
2 Sn

2
− PU

M2
Pn
S2Y2

∥1≤ δsec (strong secrecy) (24)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤δD for j=1, 2 (distortion). (25)

The nonasymptotic secrecy-distortion region
RAct(δr, δd, δsec, n) is the closure of all (δr, δd, δsec, n)-
achievable tuples under partial secrecy. ♢

We define the information of a probability distribution PA as

hPA
= log

1

PA(a)
(26)

and the information density of a distribution PAB as

ı(A,B) = log
PAB(a, b)

PA(a)PB(b)
. (27)

Next, we define the dispersion of the channels

VY1S1 = min
PV |Y1S1

[
VarPV Y1S1

[ı(V, Y1S1)|V ]
]

(28)

VY2S2
= min

PV |Y2S2

[
VarPV Y2S2

[
ı(V, Y2S2)|V ]

]
(29)

where Var[·] is the variance. Q(·) denotes the standard normal
tail probability. Define

µsŝ = min
(sŝ)∈supp(PSŜ)

PSŜ(s, ŝ). (30)

We next establish an inner bound on the nonasymptotic
secrecy-distortion region for the secure ISAC model considered.

Theorem 2: For an ISAC channel with transmitter actions, a
(R1, R2, D1, D2) tuple is (δr, δD, δsec, n)-achievable if, for any
θ ∈ [0, 1], we have

R1 +R2 ≤
[
I(V ;Y1, S1)−O

(
log n

n

)
−Q−1

(
θ
(
δr +O

( 1√
n

)))√VY1S1

n

]+
(31)

R2 ≤
[
I(V ;Y1, S1)− I(V ;Y2, S2)−O

(
log n

n

)
−Q−1

(
(1− θ)

(
δsec +O

( 1√
n

)))√VY2S2

n

−Q−1

(
θ
(
δr +O

( 1√
n

)))√VY1S1

n

]+
(32)

Dj ≥ E[dj(Sj , Ŝj)]− ϵD for j = 1, 2 (33)

such that

δD = ϵD(1 +Dj + ϵD) + 2|S||Ŝ|e−2nϵ2Dµsj ŝj dmax (34)

where we have

PV AXY1Y2S1S2 =PV |AXPAXPS1S1|APY1Y2|S1S2X (35)

and the per-letter estimators in (9).
Proof Sketch: The proof sketch will proceed as follows:

1) We define Protocols A and B and we establish a bound on
the reliability and security.

2) We combine the bounds on reliability and security to bound
the expected variational distance between the distribution
induced by the channel coding problem and the distribution
that satisfies the reliability and security constraints.

3) We establish rate conditions such that the reliability and
security constraints are satisfied for θδr and (1 − θ)δsec,
for any θ ∈ [0, 1]. The rate conditions come from the
minimization of the measure of atypical sets using the
Berry-Esseen CLT.

Fix a distribution PV AX such that E[dj(Si, Ŝj)] ≤ Dj+ϵD.
Protocol A: We define the random binning as in the proof of

Theorem 1 with the exception that we use (35) and the stochastic
likelihood decoder, as defined in [10], [14], associated with the
probability distribution

T (v̂n|yn1 , sn1 , f) =
t(v̂n|yn1 , sn1 )1{BF (v̂

n) = f}∑
vn∈Vn

t(vn|yn1 , sn1 )1{BF (vn) = f}
(36)

using an arbitrary pmf tV̂ nY n
1 Sn

1
selected by the legitimate

receiver.
Protocol B: We define Protocol B as in the proof of Theorem 1
with the exception of the decoder, for which we choose the
stochastic likelihood decoder associated with TV̂ n|Y n

1 Sn
1 F used

in Protocol A.
We define the following atypical sets. For γ1, γ2, γ3 positive

real numbers, we have

Sγ1 ={vn : hPV n (v
n)−n(R1 +R2 + R̃)>γ1} (37)

Sγ2 ={(vn, yn1 , sn1 ) : nR̃−ht(v
n|yn1 , sn1 )>γ2} (38)

Sγ3 ={(vn, yn2 , sn2 ) : hPn
V |Y n

2 Sn
2
(vn|yn2 , sn2 )−n(R2+R̃)>γ3}.

(39)

We first establish a bound on the probability of error of
Protocol A. The expected variational distance between the
distributions induced by Protocols A and B is bounded by [10,
Theorem1], i.e.,

E
∥∥PRB − PRC

∥∥
1
≤ ϵapx (40)

where ϵapx = PV n(Sγc
1
) + 2−

1
2 (γ1+1). By [10, Theorem 2], the

probability of error for the Protocol A is bounded by ϵdec where
where ϵdec = PV nY n

1 Sn
1
(Sγc

2
) + 2−γ2 . Then for Protocol B, we

have

E
[
PRC{V n ̸= V̂ n}

]
< ϵapx + ϵdec. (41)



The triangle inequality and [14, Theorems 1 and 2] give

E
∥∥PRC

M2FY n
2 Sn

2
−PU

M2
PU
F PY n

2 Sn
2

∥∥
1
≤ ϵapx + ϵsec (42)

where ϵsec = PV nY n
2 Sn

2
(Sγc

3
) + 2−

1
2 (γ3+1). We let θδr =

(1/8)ϵapx + ϵdec and (1− θ)δsec = (1/2)ϵapx + ϵsec.
Now we combine the bounds on reliability and security.

By the triangle inequality and (b) follows from (41) and [14,
Proposition 1] and (42) we have

E
∥∥PRC

M2FY n
2 Sn

2 V̂ n − PU
M2

PU
F PY n

2 Sn
2
1{V̂ n = V n}

∥∥
1

≤ 2ϵapx + ϵsec + 4ϵdec = ϵtot. (43)

We now eliminate the common randomness F by conditioning
on a specific realization f . Specifically, [9, Lemma 3] allows us
to bound (43) by 2ϵtot.

We now establish the rate conditions through minimizing 2ϵtot
as follows

2ϵtot ≤ 8
(
PV n(Sγc

1
) + PV nY n

1 Sn
1
(Sγc

2
) + PV nY n

2 Sn
2
(Sγc

3
)
)

+ 2
(
2−

1
2 (γ1+1) + 4 · 2−γ2 + 2−

1
2 (γ3+1)

)
(a)

≤ 32(PV nY n
1 Sn

1 Y n
2 Sn

2

(
Sc
γ1

∪ Sc
γ2

∪ Sc
γ3

)
+ 2

(
2−

1
2 (γ1+1) + 4 · 2−γ2 + 2−

1
2 (γ3+1)

)
(b)

≤ 32(PV nY n
1 Sn

1 Y n
2 Sn

2

(
(Sγ1 ∩ Sγ2 ∩ Sγ3)

c
)

+ 2
(
2−

1
2 (γ1+1) + 4 · 2−γ2 + 2−

1
2 (γ3+1)

)
(44)

where (a) follows as PV nY n
1 Sn

1 Y n
2 Sn

2
(Sc

γ1
∪ Sc

γ2
∪ Sc

γ3
) >

PV nY n
1 Sn

1 Y n
2 Sn

2
(Sc

γj
∩ Sc

γi
) for i ̸= j and (b) follows from De

Morgan’s laws. What remains is to minimize the measure of the
set (Sγ1

∩ Sγ2
∩ Sγ3

)c and prudent selection of γ1, γ2, and γ3.
Following the steps in [14] and letting t(vnyn1 s

n
1 ) =∏n

i=1 PV |Y1S1
(vi, y1,i, s1,i), we have that bounding the measure

of (Sγ1
∩Sγ2

∩Sγ3
)c is equivalent to bounding the measure of

S1 ∪ S2 where

S1={(vn, yn1, sn1, yn2, sn2 ) :n(R1 +R2)≥ ı(vn, yn1 s
n
1 )−γ1−γ2}

S2={(vn, yn1, sn1, yn2, sn2 ) :
nR2≥ ı(vn, yn1 s

n
1)−ı(vn, yn2 s

n
2)−γ2−γ3}. (45)

We outline the bound on P (S1 ∪ S2). Since the tuple
of random variables (vn, yn1 , s

n
1 , y

n
2 , s

n
2 ) are i.i.d., the terms

Zi = ı(vi, y1,is1,i) are also independent for i = 1, . . . , n.
Defining µn = 1/n

∑n
i=1 E[Zi] and Vn = 1/n

∑n
i=1 Var[Zi],

if we assume that

n(R1 +R2) < nµn −Q−1(θδr)n

√
Vn

n
− γ1 − γ2 (46)

then we can define the set{
(vn, yn1 , s

n
1 , y

n
2 , s

n
2 ) :

n∑
i=1

ı(V ;Y1S1)<n
(
µn−t

√
Vn

n

)}
. (47)

which contains S1. Thus bounding (47) will also bound S1.
Application of the Berry Esseen CLT, see [10], gives that the

measure of (47) is upper bounded by θδr +O
(

1√
n

)
, we obtain

P (S1) ≤ θδr +O
(

1√
n

)
. Since (vi, y1,i, s1,i) are generated i.i.d.

according to PV Y1S1
for all i = 1, . . . , n, we have

µn = I(V ;Y1, S1) (48)
Vn ≥ VV |Y1S1

, (49)

which in combination with prudent selection of (γ1, γ2) results
in (31). The bound on P (S2) follows similarly, resulting in (32).
The distortion constraints follow as in the proof of [7, Theorem
1].

In conclusion, Theorem 1 provides the exact asymptotic result
for the secure ISAC model considered, whereas Theorem 2
provides an achievable region for low-latency secure ISAC with
a fixed blocklength and specific bounds on the reliability, strong
secrecy, and distortion measures. While the results of Theorem
1 assume that the channel is physically degraded, Theorem 2 is
more general and holds for all channels described by Fig. 1.
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