
Dynamic Decentralized Functional Encryptions from Pairings

in the Standard Model

Duy Nguyen[0009−0002−7892−9146]

Telecom Paris, Institut Polytechnique de Paris, France
dinh.nguyen@telecom-paris.fr

Abstract. Dynamic Decentralized Functional Encryption (DDFE), introduced by Chotard et

al. (CRYPTO'20), represents a robust generalization of (Multi-Client) Functional Encryption.
It allows users to dynamically join and contribute private inputs to individually controlled joint
functions without requiring a trusted authority.
Recently, Shi et al. (PKC'23) proposed the �rst Multi-Client Functional Encryption scheme
for function-hiding inner products (FH-IP) without relying on random oracles. Unfortunately,
their construction still requires a trusted key authority, leaving open the question of whether a
full-�edged FH-IP-DDFE can exist in the standard model.
In this work, we answer this question a�rmatively by introducing Updatable Pseudorandom
Zero Sharing, a novel concept that provides both the critical functionality and security proper-
ties needed to construct secure DDFE schemes in the standard model.
Our second contribution is a novel proof strategy, which preserves adaptive security when
transforming any functional encryption scheme for FH-IP into FH-IP-DDFE. Together, these
two techniques enable a modular construction of FH-IP-DDFE that is secure against adaptive
message and key queries in the standard model.
Additionally, our pseudorandom zero-sharing scheme is highly versatile, enabling the �rst DDFE
for attribute-weighted sums in the standard model, complementing the recent ROM-based con-
struction by Agrawal et al. (CRYPTO'23).

Keywords: dynamic decentralized, functional encryption, pairing, standard model

1 Introduction

1.1 Dynamic Decentralized Functional Encryption

Functional Encryption. Functional Encryption (FE) is a robust cryptographic paradigm intro-
duced by Sahai and Waters [SW05,BSW11]. It addresses the all-or-nothing limitations of standard
public-key cryptosystems by o�ering �ne-grained control over access to encrypted data through func-
tional decryption keys. More precisely, each ciphertext ctx encrypts a speci�c value x, and each
decryption key dkf encapsulates a function f . When a receiver uses dkf to decrypt ctx, what it can
learn is only the result f(x), and nothing more about x.

Abdalla et al. [ABDP15] addressed the challenge of constructing FE based on standard assump-
tions for restricted, yet expressive, classes of computational functions. In their work, they presented
FE constructions for inner products (IPFE), where each private input is represented as a vector x,
each function is represented by a vector y, and decryption yields x⊤ · y.

Within the realm of practical FE based on standard assumptions for computation over en-
crypted data, starting from [ABDP15], signi�cant improvements have been made in terms of secu-
rity [BJK15,ALS16,ALMT20], functionality [BCFG17,AGW20,ACGU20], e�ciency [CLT18,TT18,
DP19,MKMS22] and support for multi-user scenarios [ACF+18,CDG+18,CDSG+20,ZLZ+24].

Functional Encryption for Multiple Users. The concepts of Multi-Input Functional Encryption
(MIFE) and Multi-Client Functional Encryption (MCFE) were introduced in [GGG+14,GKL+13].
These concepts generalize FE to enable multiple clients to independently contribute their encrypted
individual inputs to the computation of joint functions. Concretely, with the help of possibly a trusted
authority, each slot owner receives a private encryption key ski and encrypts an input xi under some
label ℓ as ctxi,ℓ. By collecting ciphertexts of all slot owners (ctxi,ℓ)i under a same label and a functional
decryption key dkf generated from the authority's master secret key msk, a receiver can obtain no
more information than f((xi)i).

2

In the multi-client setting, each slot owner is assumed to be an independent client: the security
guarantees that only ciphertexts under a same label can be decrypted together, and the input privacy
of honest clients holds even when a subset of clients is corrupted. In the multi-input setting, all labels
are assumed to be the same, all slot owners are originally assumed to be the same user (yet each input
can be sent independently instead of simultaneously as in single-input FE), and then no corruption
is considered.

Therefore, any MCFE designed for a speci�c functionality automatically implies a MIFE for the
same functionality by using a �xed label for all encryptions. Conversely, an MIFE designed for general
functions directly implies an MCFE for general functions, as the label can be contained in every
plaintext, and the function can verify that every slot uses the same label. However, when considering
MIFE schemes for only restricted classes of functions in the literature, this equivalence does not hold.

Since their introduction, the research line on practical MIFE/MCFE constructions has witnessed a
dynamic array of works seeking developments in the aspects of security [CDG+18,LT19,AGT22,SV23],
functionality [CDSG+20, ACGU20, AGT21a, NPP22, ATY23], and in the relation with single-input
FE [ABG19].

Dynamic Decentralized Functional Encryption. Standard MCFE models often encounter the
key escrow problem, stemming from the reliance on a trusted authority. To address this challenge,
Chotard et al. introduced the concept of decentralized MCFE (DMCFE) [CDG+18] and later Dy-
namic Decentralized Functional Encryption (DDFE) [CDSG+20]. In DMCFE, the need for a trusted
authority is entirely removed, granting each client complete control over their encrypted data and the
generation of functional decryption keys. DDFE is an extended notion of DMCFE by preserving all
decentralized features while enabling the join of new clients at various stages during the lifetime of
the system through a non-interactive setup.

The development of DMCFE/DDFE since the introduction of the �rst scheme for inner prod-
ucts [CDG+18] has seen signi�cant progress on various aspects. These include a variety of function-
alities, as seen in constructions for sums, inner products, and all-or-nothing message encapsulations
in [CDSG+20] and attribute-weighted sums in [ATY23]. E�orts to enhance security have led to DM-
CFE constructions for function-hiding inner products [AGT21b], for lattice-based assumptions in the
standard model [LT19], and for optimal security notions [NPP23b]. The relations between DMCFE
and other FE notions have been established in these works [ABG19,ABKW19,AGT21b]. Practical
features like veri�ability [NPP23a] and robustness [LWG+23] have also been integrated, enhancing
the applicability of DMCFE in various real-world scenarios.

Multi-Party Functional Encryption. In addition to the above notions of functional encryption, there
are other concepts designed for various multi-user settings. These include those supporting distributed
keys [MJ18,Cha07,LW11,BCFG17], as well as those supporting both distributed ciphertexts and keys
[ACF+20]. All these notions fall under the umbrella of Multi-Party Functional Encryption [AGT21b].
However, in this paper, our focus will be exclusively on DDFE, which supports both distributed
ciphertexts and keys and stands out as the most generalized notion within Multi-Party Functional
Encryption.

Open Problems in DDFE. To the best of our knowledge, DDFE constructions based on standard
assumptions remain limited to the classes of function-hiding inner products (FH-IP) and function-
revealing attribute-weighted sums (AWS), which strictly capture the class of function-revealing inner
products. These functionalities can be described more precisely as follows:

� In DDFE for FH-IP: each client, identi�ed by a public key pk ∈ PK, uses its own corresponding se-
cret key skpk to encrypt its private input xpk under a public message label ℓM and for a public user
list UM . Similarly, each client uses skpk to generate a decryption key for its private vector ypk under
a public key label ℓK and for a public user list UK . The labels ℓM and ℓK impose constraints on
which messages and functions can be aggregated, respectively, while the lists UM and UK speci�es
the sets of parties whose ciphertexts and decryption keys can be combined, respectively. The FH-
IP functionality veri�es the conditions [UM = UK], [(ℓM ,UM) is consistent across all ciphertexts]
and [(ℓK ,UK) is consistent across all decryption keys] during decryption,. If these conditions are
met, the FH-IP functionality outputs ∑

pk∈UK

x⊤
pk · ypk;

3

otherwise, it outputs nothing. The function-hiding security ensures that no additional information
on individual xpk and ypk is revealed.

� In DDFE for AWS: each client pk chooses a user list UM , a label ℓ to encrypt its AWS inputs
{zpk,j}j∈[Npk] which are private and {xpk,j}j∈[Npk] which are public. For key generation, each client
pk chooses a set of users UK and a list of arithmetic branching programs (ABPs) f = {fpk}pk∈UK

.
The functionality veri�es the conditions [UM = UK], [(ℓ,UM) is consistent across all ciphertexts]
and [f is consistent across all decryption keys]. If these conditions are met, the AWS functionality
outputs ∑

pk∈UK

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j ;

otherwise, it outputs nothing. The security ensures that no additional information on individual
{zpk,j}j∈[Npk] is revealed.

It is important to highlight that all state-of-the-art DDFE constructions [AGT21b, ATY23] for
the above functionalities are pairing-based and rely on random oracles for their security proofs.

On the other hand, in the development of (Decentralized) MCFE for (function-hiding) inner
products, several works [LT19,ABG19,SV23] have focused on achieving standard-model security for
their respective (Decentralized) MCFE schemes. Our work contributes to this ongoing research by
addressing the �rst question:

Do there exist any DDFE constructions for function-hiding inner products and for attribute-
weighted sums that are secure under standard assumptions in the standard model?

All existing FH-IPFE schemes rely on pairings, while lattice-based constructions have been proven
impossible under common approaches [Üna20], therefore the second question we explore is:

Does the adaptive security of any pairing-based FE for function-hiding inner products imply
the adaptive security1 of DDFE for the same functionality?

This work provides a�rmative answers to both questions, resulting in a modular construction of
adaptively secure FH-IP-DDFE and a modular construction of selectively secure AWS-DDFE, both
within the standard model.

1.2 Our Contributions

The contributions can be listed as follows:

� Novel Pseudorandom Zero Sharing: We introduce a new concept called Updatable Pseu-
dorandom Zero Sharing (UZS). Compared to standard pseudorandom zero sharing, this notion
simultaneously o�ers the following properties:
1. it enables the local update from a zero share into a new one, and this updating algorithm can

support the bilinear update property, which ensures the compatibility of the algorithm with
operations allowed in pairing groups;

2. its security additionally guarantees the pseudorandomness for the updated shares even if their
corresponding non-updated shares are revealed; this security holds against an unbounded
subset of corrupted parties;

We demonstrate the feasibility of this notion by providing a construction in DDH groups, which
is notably secure in the standard model.

� Dynamic Decentralized Functional Encryptions Without RO: Using UZS as a building
block, we provide the �rst DDFE constructions for function-hiding inner products and attribute-
weighted sums that are secure in the standard model. Comparative details with related works are
provided in Figure 1.

� Injection Lemma for Adaptive Security of FH-IP-DDFE: As another independent con-
tribution, in the security proof, we introduce an essential lemma that enables achieving adaptive
security for FH-IP-DDFE from the adaptive security of any FH-IPFE scheme. The novel proof
helps modularize the DDFE construction and establishes a previously unknown security relation
between these two primitives.

1 Here, adaptive security for DDFE refers to security under adaptively chosen messages and functions, similar
to that of single-input FE.

4

Scheme Function
Class

Function
Hiding

(Dynamic)
Decentralized

Without
RO

Adaptive
key/message
queries

Assumption +
(any FE as

Building Block)

Per-client
CT size

[CDG+18] IP ✗ ✓ ✗ ✓ SXDH Oλ(d)

[ABG19] IP ✗ ✓ ✓ ✓ IPFE Oλ(d · n)

[LT19] IP ✗ ✓ ✓ ✓ LWE Oλ(d)

[CDSG+20] IP ✗ ✓ ✗ ✗ DDH + IPFE Oλ(d)

[ABM+20] IP ✗ ✓ ✗ ✓ DCR Oλ(d)

[AGT21b] IP ✓ ✓ ✗ ✗ SXDH +FH-IPFE Oλ(d)

[SV23] IP ✓ ✗ ✓ ✓ DLin Oλ(d)

Our FH-IP
DDFE

IP ✓ ✓ ✓ ✓ SXDH +FH-IPFE Oλ(d+ n)

[ATY23] AWS ✗ ✓ ✗ ✗ MDDH
+AWSw/IP-FE

Oλ(N(kn0+
n1))

Our AWS
DDFE

AWS ✗ ✓ ✓ ✗ SXDH +
AWSw/IP-FE

Oλ(N(kn0+
n1 + n))

Fig. 1. Comparison with prior (Decentralized) MCFE schemes. The notation Oλ(·) indicates that terms
related to the security parameter λ are hidden. We let d be an inner-product dimension, n be a number
of clients whose ciphertexts and decryption keys can be combined, N be a poly(λ)-unbounded number of
AWS inputs, n0 and n1 be the input and output dimensions of ABPs, and k be the parameter of the MDDH
assumption. For DDFE, all constructions are secure in static-corruption setting.

1.3 Technical Overview

Challenges in Removing Trusted Setup. In the (decentralized) multi-client setting, one of the
fundamental security requirements is that only inputs encrypted under a same message label and only
keys generated under a same key label can be decrypted together, otherwise the decryption should
output nothing.

Thus, a common approach in constructing (decentralized) MCFE schemes, including those for
(function-hiding) inner products and attribute-weighted sums, is to rely on a correlated one-time-pad
technique: the one-time pads should be freshly generated by each pair of message and key labels,
as well as by each client, to independently randomize the information corresponding to each client's
private pair of input and key object.

Without obscuring the reliance on random oracles for its security, we can simplify the DDFE
scheme for FH-IP in [AGT21b] as follows: leveraging a private use of function-hiding IPFE, each
client pk ∈ U encrypts a private xpk as

ctpk = IPE.Enc(skpk, [xpk,0, hℓM ,U , 0]1)

where [hℓM ,U]1 = H(ℓM ,U) and H is a hash function onto the group modeled as a random oracle.
The decryption key for a private ypk is generated as

dkpk = IPE.DKGen(skpk, [ypk,0, zpk,ℓK , 0]2)

where zpk,ℓK is generated on label ℓK by a pseudorandom zero-sharing (PZS) scheme between parties
in U so that

∑
pk∈U zpk,ℓK = 0. On one hand, the correctness holds as

∑
pk∈U zpk,ℓK · hℓM ,U = 0 in the

sum of all FH-IPFE decryptions.
On the other hand, via zero slots, and by using hybrids relying on the function-hiding security

of each client's FH-IPFE in the non-corrupted set H and each key label ℓK , one can move the term
[zpk,ℓK]2 from dkpk to the term [zpk,ℓK · hℓM ,U]1 in ctpk. At this step, one will have

[zpk,ℓK · hℓM ,U]1
PZS,SXDH
≈ [RℓM ,ℓK

pk,U]1

where RℓM ,ℓK
pk,U are random subjected to

∑
pk∈H RℓM ,ℓK

pk,U = −
∑

pk∈U\H zpk,ℓK · hℓM ,U . Each RℓM ,ℓK
pk,U

then serves as a correlated one-time pad that randomizes each term xb
pk

⊤ · yb
pk in the same way it

5

randomizes x0
pk

⊤ · y0
pk, where b is the challenge bit of the security game. It is important to note that

for the SXDH assumption to hold, [hℓM ,U]1 must be a uniformly random group element to all clients,
which requires the use of a random oracle.

A more recent construction in [SV23] addresses this problem in the multi-client setting, in which
a trusted key authority is necessitated. Extending this construction to the decentralized setting is
challenging, as the assumption of a trusted key authority is, in fact, stronger than the assumption of
a random oracle.

It is also worth noticing that the generic transformation from single-input FE to decentralized
MCFE for function-revealing inner products in [ABG19] cannot be extended to the function-hiding
setting, as the transformation necessitates each client to know the entire joint inner-product func-
tion. Furthermore, the technique used to avoid the random oracle in LWE-based MCFE in [LT19] is
inapplicable due to the impossibility of lattice-based FE for function-hiding inner products [Üna20].

Overall, as zero-sharing is treated as black-box in all existing FE constructions [ABG19,CDSG+20,
AGT21b, SV23], updating shares into fresh ones may require a common reference string to simulta-
neously maintain both correlation and corruption-resistance. Therefore, to achieve security in the
standard model, we provide a novel framework for zero-sharing construction.

Updatable Pseudorandom Zero-Sharing. In the construction from [KDK11], each zero share
for a user i at a label ℓ is sharei,ℓ =

∑
j∈[n]\i(−1)i<jPRFki,j (ℓ). We parse each term (−1)i<jPRFki,j (ℓ)

that is generated with a pairwise PRF key ki,j = kj,i as a pairwise seed. Then our approach can
be described at a high level as follows: instead of randomizing each share using a random oracle, we
randomize each of its pairwise seeds using another PRF, denoted PRF′, which is computed using the
same key of the corresponding pair.

More formally, we provide a de�nition and security models for the new notion Updatable Pseu-
dorandom Zero-Sharing (UZS) in Section 3. This formalization will emphasize the properties needed
in constructing DDFE schemes.

We provide a brief overview of our DDH-based construction in Figure 2, which eventually leads to
the security in the standard model for pairing-based DDFE constructions. A natural extension to the
MDDH assumption, which could be applied, for example in AWS-DDFE [ATY23] could be achieved
using a similar construction strategy. When compared to the pseudorandom zero-sharing schemes in
earlier works [KDK11,BIK+17,ABG19], it is worth noticing that zero shares in our scheme are group
elements that sum up to the group identity, instead of scalars.

Algorithm Return

SetUp(λ) a group G and pseudorandom functions (PRF,PRF′).
KeyGen() ski = (ki,j = kj,i)j∈[n]\[i] for each party Pi.
SeedGen(ski, ℓs) seedi,ℓs = ([(−1)i<jPRFki,j (ℓs)])j∈[n]\i.
TokGen(ski, ℓu) tokeni,ℓu = (PRF′

ki,j
(ℓu))j∈[n]\i.

SeedUpt(seedi,ℓs , tokeni,ℓu) seedi,ℓs||ℓu = ([(−1)i<jPRFki,j (ℓs) · PRF
′
ki,j

(ℓu)])j∈[n]\i.
ShareEval(seedi,ℓ) sharei,ℓ =

∑
j∈[n]\i[ci,j,ℓ] where seedi,ℓ = ([ci,j,ℓ])j∈[n]\i.

Fig. 2. Construction for UZS in DDH groups between n parties

We show how the scheme achieves correctness and security using matrix representation:

� The matrix [Aℓs] (see Figure 3) serves as a seeding matrix, with each i-th row representing
seedi,ℓs . This seeding matrix adopts an anti-symmetric form: Aℓs,(i,i) = 0 for all i ∈ [n] and
Aℓs,(i,j) = −Aℓs,(j,i) for all (i, j ∈ [n], i ̸= j).

� The matrix Bℓu (see Figure 4) serves as an updating matrix, with each i-th row representing
tokeni,ℓu . This updating matrix adopts a symmetric form: Bℓu,(i,i) = 0 for all i ∈ [n] and Bℓu,(i,j) =
Bℓu,(j,i) for all (i, j ∈ [n], i ̸= j).

� The matrix [Cℓs||ℓu] (see Figure 5) serves as an updated seeding matrix, with each i-th row
representing seedi,ℓs||ℓu . This updated matrix results from a Hadamard product between [Aℓs]
and Bℓu , which preserves the anti-symmetric form from [Aℓs].

6

0 −PRFk1,2(ℓs) · · · −PRFk1,n(ℓs)

PRFk2,1(ℓs) 0 · · · −PRFk2,n(ℓs)

...
...

. . .
...

PRFkn,1(ℓs) PRFkn,2(ℓs) · · · 0





seed1,ℓs = ([Aℓs,(1,j)])j∈[n]\{1}

seed2,ℓs = ([Aℓs,(2,j)])j∈[n]\{2}

seedn,ℓs = ([Aℓs,(n,j)])j∈[n]\{n}

[Aℓs] =

Fig. 3. Seeding matrix [Aℓs] ∈ Gn×n.

0 PRF′
k1,2

(ℓu) · · · PRF′
k1,n

(ℓu)

PRF′
k2,1

(ℓu) 0 · · · PRF′
k2,n

(ℓu)

...
...

. . .
...

PRF′
kn,1

(ℓu) PRF′
kn,2

(ℓu) · · · 0





token1,ℓu = (Bℓu,(1,j))j∈[n]

token2,ℓu = (Bℓu,(2,j))j∈[n]

tokenn,ℓu = (Bℓu,(n,j))j∈[n]

Bℓu =

Fig. 4. Updating matrix Bℓs ∈ Zn×n
p .

0 −[PRFk1,2(ℓs)PRF
′
k1,2

(ℓu)] · · · [−RF(1,n)(ℓs||ℓu)]

[PRFk2,1(ℓs)PRF
′
k2,1

(ℓu)] 0 · · · −[PRFk2,n(ℓs)PRF
′
k2,n

(ℓu)]

...
...

. . .
...

[RF(1,n)(ℓs||ℓu)] [PRFkn,2(ℓs)PRF
′
kn,2

(ℓu)] · · · 0




PRF keys {ki,2}i∈[n],i ̸=2

are corrupted

DDH holds for non-
corrupted pairs
{(i, j)}i ̸=2,j ̸=2

PRF keys
{k2,i}i∈[n],i ̸=2

are corrupted

[Cℓs||ℓu] = [Aℓs ⊙Bℓu]

PRF,DDH
≈

Fig. 5. Indistinguishability for entries in the updated seeding matrix [Cℓs||ℓu], where RF denotes a random
function. For simple illustration, we assume only user P2 is corrupted by the adversary.

7

In both cases, when ℓ = ℓs or ℓ = ℓs||ℓu, each sharei,ℓ computes the sum of all entries on the
i-th row of an antisymmetric matrix. Therefore,

∑
i∈[n] sharei,ℓ computes the sum of all entries in the

matrix, resulting in the group identity [0]. This implies the correctness of the scheme.
At a high level, the standard security of a pseudorandom zero-sharing scheme guarantees that when

the adversary corrupts a subset of parties and computes their shares on its own, the shares of the
remaining honest users are computationally indistinguishable from a correlated random distribution.
However, this security is insu�cient for the security proofs in DDFE schemes. Our scheme not only
satis�es this standard security but also provides indistinguishability from a random distribution for
the updated shares: even when the adversary has access to the seeding matrix [Aℓs] and thereby has
access to all the shares of the honest users on ℓs, the indistinguishability still holds for the updated
honest users' shares in [Cℓs||ℓu].

The reason is that the product maintains the integrity of the honest entries from [Aℓs] and Bℓu
to [Cℓs||ℓu]. We then have [PRFki,j (ℓs)PRF

′
ki,j

(ℓu)]
PRF,DDH
≈ RF(i,j)(ℓs||ℓu) for each honest pair (i, j)

(see Figure 5). This implies that the honest shares in [Cℓs||ℓu] are independent from those in [Aℓs].
Moreover, by using the Multi-DDH assumption (De�nition 2), which tightly reduces to the DDH
assumption using the random-self reducibility, the indistinguisability of the honest updated shares on
(ℓs||ℓu) holds for a polynomial number of labels ℓs given a label ℓu. Therefore, we obtain a security
without RO that is applicable to DDFE schemes.

The cost of achieving DDFE schemes in the standard model will be an increase in ciphertext
size per client by an additive factor of Oλ(n). Each ciphertext now hides a row of the updating
matrix, while each functional key hides a row of the seeding matrix. While this trade-o� increases
the ciphertext size, it does not compromise the completeness of our solution with respect to the open
question on the feasibility of FH-IP-DDFE in the standard model, as posed in [SV23]. Moreover, it
remains more e�cient than the multiplicative overhead of Oλ(n) in [ABG19] (see Figure 1). On the
other hand, it is challenging to compress seeds and tokens, as the relation between updated shares
does not hold anymore.

A concrete construction for the dynamic setting is provided in Section 3.3, which relies on a non-
interactive key exchange protocol NIKE, a pseudorandom function PRF and the DDH assumption. Its
security for a restricted setting of one-time-update and static corruption is provided in Theorem 1.

From UZS to DDFE Schemes Without RO. For each client pk ∈ U , the encryption of xpk

under (U , ℓM) and the generation of decryption key for ypk under (U , ℓK) can be brie�y described as
follows:

ctpk = IPE.Enc(1ρ(λ,d)+|U|,skpk)([xpk, b
ℓM
pk,U ,0

ρ(λ,d)]1);

dkpk = IPE.DKGen(1ρ(λ,d)+|U|,skpk)([ypk,a
ℓK
pk,U ,0

ρ(λ,d)]2)

Here, d is an inner-product dimension, [aℓK
pk,U]1 = seedℓKpk,U and bℓMpk,U = tokenℓMpk,U are generated using

the UZS scheme. The IPE scheme is instantiated for inner products of dimension (ρ(λ, d)+ |U|) where
ρ(λ, d) is polynomial.

The correctness of the scheme holds since

IPE.Dec(ctpk, dkpk) = [x⊤
pk · ypk + bℓMpk,U

⊤
· aℓK

pk,U]T

= [x⊤
pk · ypk]T + e([1]1, share

ℓK ||ℓM
pk,U)

by the bilinear-update property of the UZS scheme.
For the security proof, we use a sequence of hybrid games in Figure 9 and Figure 10, with the

goal of gradually replacing xb with x0 in every ciphertext under each message label ℓM . Eventually,
we remove yb and leave y0 in every honest functional key to fully eliminate the challenge bit b.
The security of UZS applies through a formal reduction in G⋆

ℓM .3 (see Figure 10). It is important to
emphasize that this strategy aims to achieve security for adaptive message and key queries, which
di�ers from the strategies for selective ones used in previous works [AGT21b,SV23].

Using a similar approach with the UZS scheme, we also construct a selectively secure AWS-DDFE
scheme in the standard model, as detailed in Section 5. However, since the technique for preserving
adaptive security applies only to FH-IP-DDFE, we leave as an open question whether it is possible
to achieve adaptively secure AWS-DDFE from any adaptively secure AWS/IP-FE scheme.

8

Adaptive Security Preserving. In [AGT21b, SV23], the constructions of FH-IP-MCFE that use
FH-IPFE as a black-box achieve security for only selective message and key queries. For simplicity in
illustrating the core ideas, we assume that under each label, there is at most one queried message and
one queried key2. The primary obstacle to achieving adaptive security lies in a speci�c step within
the hybrid games, where the challenger must encode both a zero share RℓM ,ℓK

pk,U and the product of the

challenge message and key xb
pk,ℓM

⊤ ·yb
pk,ℓK

in the same slot. This forms a sum xb
pk,ℓM

⊤ ·yb
pk,ℓK

+RℓM ,ℓK
pk,U ,

which, due to the randomness of the zero share and the admissibility conditions, is indistinguishable
from x0

pk,ℓM

⊤ · y0
pk,ℓK

+ RℓM ,ℓK
pk,U . From here, a sequence of symmetric games is applied to x0

pk,ℓM
and

y0
pk,ℓK

. Complexity leveraging is not possible in this case, as guessing key or message queries would
result in exponential security loss, while the indistinguishability between the games before and after
encoding that sum is guaranteed only by a computational assumption. To overcome this obstacle,
the adaptively-secure construction in [SV23] is based on a speci�c FH-IPFE scheme to leverage the
underlying computational assumption. In another related work [Tom19], Tomida presented an MIFE
construction for FH-IP that preserves adaptive security when derived from any FH-IPFE, but it
remains unclear whether there exists an extension from this MIFE construction to DDFE.

Our approach to address this issue is that for each argument on ℓM , we introduce intermedi-
ate one-time pads uℓM

pk,U and vℓM
pk,U to mask the message-containing slots in ciphertexts as (xb

pk,ℓM
+

uℓM
pk,U ,v

ℓM
pk,U). The resulting o�set, −(u

ℓM
pk,U · yb

pk,ℓK
+ vℓM

pk,U · y0
pk,ℓK

), is encoded and randomized using

the zero share RℓM ,ℓK
pk,U in the functional keys. We also introduce the Injection Lemma (see Lemma 2),

which considers the randomness of both the one-time pads and the zero share, alongside the admis-
sibility conditions, to enable a perfectly indistinguishable transition from (xb

pk,ℓM
+ uℓM

pk,U ,v
ℓM
pk,U) to

(uℓM
pk,U ,x

0
pk,ℓM

+ vℓM
pk,U). From this point, a sequence of symmetric games is applied to x0

pk,ℓM
and

y0
pk,ℓK

. By using these intermediate one-time pads, we overcome the challenge of having to encode
xb
pk,ℓM

and yb
pk,ℓK

in the same slot, thereby obtaining adaptive security for FH-IP-DDFE from any
adaptively secure FH-IPFE.

2 Preliminaries

We defer the de�nitions of arithmetic branching programs, pseudorandom functions, non-interactive
key exchange, and all-or-nothing encapsulation in Appendix A.

2.1 Notations

Given any n ∈ N, we denote by [n] the set of integers {1, ..., n}. Given any set A, L(A) will denote the
set of �nite lists of elements of A, and S(A) will denote the set of �nite subsets of A. While both lists
and sets are ordered by default, lists may contain repeated elements. We denote by |A| the cardinal
of any �nite set A. For any vector a ∈ An, we denote by ai the i-th component of a. Similarly, for
any matrix A ∈ Am×n, we denote by Ai,j the component at the position (i, j) of A.

We also use the following notation for condition-based function-selecting functions

[f0/f1]
con(inp) =

{
out← f0(inp) if con = 0;

out← f1(inp) if con = 1.

2.2 Prime Order Group.

Let GGen be a prime-order group generator, a probabilistic polynomial time (PPT) algorithm that
on input the security parameter 1λ returns a description G = (G, p, P) of an additive cyclic group G
of order p for a 2λ-bit prime p, whose generator is P . For a ∈ Zp, de�ne [a] = aP ∈ G as the implicit
representation of a in G.

From a random element [a] ∈ G, it is computationally hard to compute the value a (the discrete
logarithm problem). Given [a], [b] ∈ G and a scalar x ∈ Zp, one can e�ciently compute [ax] ∈ G and
[a+ b] = [a] + [b] ∈ G.

2 A complete analysis considering multiple queries is provided in Section 4.

9

De�nition 1 (Decisional Di�e-Hellman Assumption). The Decisional Di�e-Hellman As-
sumption states that, for every PPT adversary A, there exists a negligible function negl(·) such that
for all λ ∈ N,

AdvDDH(A) :=

∣∣∣∣∣∣∣∣P
A(G,Db) = b

∣∣∣∣∣∣∣∣
b

$←− {0, 1},G $←− GGen(1λ)

a, r, s
$←− Zp, d0 = ar, d1 = s

Db = ([a], [r], [db])

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

De�nition 2 (m-Multi DDH Assumption [CDG+18]). For all λ ∈ N and for every PPT
adversary A running within time t, then

Advm-DDH(A, t) :=

∣∣∣∣∣∣∣∣∣∣∣
P

A(G,Db) = b

∣∣∣∣∣∣∣∣∣∣∣

b
$←− {0, 1},G $←− GGen(1λ)

X,Yj , Zj
$←− G ∀j ∈ [m]

D0 = (X, (Yj ,CDH(X,Yj))
m
j=1)

D1 = (X, (Yj , Zj)
m
j=1)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
is bounded by AdvDDH(A, t+ 4m× tG), where tG is the time for an exponentiation in G.

2.3 Pairing Group.

Let PGGen be a pairing group generator, a PPT algorithm that on input the security parameter 1λ

returns a description PG = (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups where G1, G2, GT

are additive cyclic groups of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2,
respectively, and e : G1 × G2 −→ GT is an e�ciently computable (non-degenerate) bilinear group
elements. For s ∈ {1, 2, T} and a ∈ Zp, we de�ne [a]s = aPs ∈ Gs as the implicit representation of a

in Gs, and then for any 0 < B < p
2 , we de�ne G[−B,B]

s = {[a] ∈ Gs : a ∈ [−B,B]}. Given [a]1, [b]2,
one can e�ciently compute [ab]T using the pairing e.

De�nition 3 (Symmetric eXternal Di�e-Hellman Assumption). The Symmetric eXternal

Di�e-Hellman (SXDH) Assumption states that, in a pairing group PG $←− PGen(1λ), the DDH as-
sumption holds in both G1 and G2.

2.4 Dynamic Decentralized Functional Encryption

De�nition 4 (Dynamic Decentralized Functional Encryption). A dynamic decentralized
functional encryption scheme over a set of public keys PK for functionality F : L(PK×K)×L(PK×
M)→ {0, 1}∗ consists of �ve algorithms:

� SetUp(1λ): On input a parameter 1λ, it generates and outputs public parameters pp. Those pa-
rameters are implicit arguments to all the other algorithms.

� KeyGen(): It generates and outputs a party's public key pk ∈ PK and the corresponding secret key
skpk.

� Enc(skpk,m): On input a party's secret key skpk, a value m ∈M to encrypt, it outputs a ciphertext
ctpk,m.

� DKGen(skpk, k): On input a party's secret key skpk, a key space object k, it outputs a functional
decryption key dkpk,k.

� Dec((dkpk,kpk
)pk∈UK

, (ctpk,mpk
)pk∈UM

): On input a list of functional decryption keys (dkpk,kpk
)pk∈UK

,
a �nite list of ciphertexts (ctpk,mpk

)pk∈UM , where UM,UK ∈ L(PK) are the lists of senders and
receivers respectively, it outputs a value y ∈ {0, 1}∗.

Correctness. For all parameters λ ∈ N, all polynomial size lists UM ,UK ∈ L(PK), (pk, kpk)pk∈UK
∈

L(PK ×K) and (pk,mpk)pk∈UM
∈ L(PK ×M), it holds that

Pr
[
Dec((dkpk,kpk

)pk∈UK
, (ctpk,mpk

)pk∈UM
) = F ((pk, kpk)pk∈UK

, (pk,mpk)pk∈UM
)
]
= 1,

where the probability is taken over all algorithms.

10

In this work, we assume that each user is identi�ed by a public key pk, which it can generate on
its own with the (unique) associated secret key, using KeyGen. Anyone can thus dynamically join the
system, by publishing its public key.

Remark 1 (Empty lists). As in [CDSG+20], we denote by ϵK the empty list in L(PK×K), indicating
that there is no key required. Furthermore, ϵM denotes the empty list in L(PK×M), indicating that
there is no message required.

De�nition 5 (Security for DDFE). For xx ∈ {sel-sta, sta, any}, yy ∈ {sym, asym}, a xx-yy-IND
security game of DDFE for every PPT adversary A is de�ned with access to the oracles QNewHon,
QEnc, QDKGen and QCor described below:

� Initialize: the challenger runs the setup algorithm pp ← SetUp(λ) and chooses a random bit

b
$←− {0, 1}. It provides pp to the adversary A;

� Participation creation queries QNewHon(): it generates (pk, skpk) ← KeyGen(), stores the associ-
ation (pk, skpk) and returns pk to the adversary;

� Challenge message queries QEnc(pk,m0,m1): it outputs the ciphertext ctm ← (sk,mb) where sk
is associated with pk. If pk is not associated with any secret key, nothing is returned;

� Challenge key queries QDKGen(pk, k0, k1): it outputs the decryption key dkk ← DKGen(sk, kb)
where sk is associated with pk. If pk is not associated with any secret key, nothing is returned;

� Corruption queries QCor(pk): it outputs the secret key sk associated to pk. If pk is not associated
with any secret key, nothing is returned;

� Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β according to
the admissibility condition given below.

Let PK be the set of parties on which QNewHon() is queried, C ⊂ PK be the set of corrupted parties,
H = PK\C be the set of honest (non-corrupted) participants at the end of the game. Finalize outputs

the bit β = (b′ = b) if the Condition (∗) is satis�ed, otherwise Finalize outputs β $←− {0, 1}. Condition
(∗) holds if all the following conditions hold:
� there do not exist two lists of messages (m0 = (pk,m0

pk)pk∈UM
,m1 = (pk,m1

pk)pk∈UM
),

including (ϵM , ϵM), and two lists of keys (k0 = (pk, k0pk)pk∈UK
,k1 = (pk, k1pk)pk∈UK

),
including (ϵK , ϵK), such that
• F (k0,m0) ̸= F (k1,m1);
• ∀pk ∈ UM , [QEnc(pk,m0

pk,m
1
pk) was made and pk ∈ H] or [m0

pk = m1
pk ∈M and pk ∈ C];

• ∀pk ∈ UK , [QDKGen(pk, k0pk, k
1
pk) was made and pk ∈ H] or [k0pk = k1pk ∈ K and pk ∈ C].

� when xx = sel-sta: the adversary sends all its QNewHon() queries in one shot. After that it sends
in one shot all QEnc(pk,m0,m1), QDKGen(pk, k0, k1) and QCor(pk) queries3;

� when xx = sta: the adversary sends all its QNewHon() queries in one shot. After that it sends in
one shot all QCor(pk) queries only;

� when yy = sym: for pk ∈ C, the QDKGen(pk, k0pk, k1pk) and QEnc(pk,m0
pk,m

1
pk) queries must satisfy

k0pk = k1pk and m0
pk = m1

pk, respectively.
4

We say DDFE is xx-yy-IND-secure if given any parameter λ ∈ N, for every PPT adversary A, the
following holds

Advxx-yyDDFE(A) :=
∣∣∣∣Pr[β = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

We also have sta-sym-IND-security implies sel-sta-sym-IND-security.

De�nition 6 (Function-Hiding Inner-Product DDFE). A function-hiding IP-DDFE scheme
over a pairing group PG = (G1,G2,GT , p) is de�ned for a dimension d ∈ N, a message bound X < p

2 ,
a function bound Y < p

2 , and label spaces (LM ,LK) as follows:

K =
(
G[−Y,Y]

2

)d

× S(PK)× LK ;

M =
(
G[−X,X]

1

)d

× S(PK)× LM .

3 This setting is equivalent to the selective setting de�ned in [CDSG+20].
4 The symmetric setting is a natural restriction for FH-IP-DDFE, as knowing skpk from corruption queries al-
lows any adversary to generate itself valid ciphertexts (or decryption keys) to learn the challenge decryption
keys (or ciphertexts) from inner-products.

11

Then, one has

F (ϵK , (pk, [xpk]1,Upk, ℓpk)pk∈U) = (Upk, ℓpk)pk∈U ;

F ((pk, ([ypk]2,Upk, ℓpk))pk∈U , ϵM) = (Upk, ℓpk)pk∈U

for any U ∈ L(PK) and

F ((pk, kpk)pk∈UK
, (pk,mpk)pk∈UM

) =


∑

pk∈UK

x⊤
pk · ypk if condition (∗)

⊥ otherwise.

FH-IP-DDFE condition (∗) is:

� UK = UM = U ;
� ∃ℓK ∈ LK , ∀pk ∈ U , kpk = ([ypk]2,U , ℓK);
� ∃ℓM ∈ LM , ∀pk ∈ U , mpk = ([xpk]1,U , ℓM).

Remark 2 (Single-Input Inner-Product). We denote by IPE a single-input FE for function-hiding inner
products, that was de�ned as in De�nition 6 for the case |PK| = 1.

De�nition 7 (Attribute-Weighted-Sum DDFE). A function-revealing AWS-DDFE scheme over
a pairing group PG = (G1,G2,GT , p) is de�ned for the class of arithmetic branching programs FABP

n0,n1

and a label space LM as follows:

K =
{
f := (pk, fpk)pk∈UK

where fpk ∈ FABP
n0,n1

and UK ∈ S(PK)
}

M =
⋃
i∈N

(Zn0
p × Zn1

p)i × S(PK)× LM .

Then, one has

F (ϵK , (pk, (xpk,j , zpk,j)j∈[Npk],Upk, ℓpk)pk∈U) = ((xpk,j)j∈[Npk],Upk, ℓpk)pk∈U ;

F ((pk, (fpk,Upk))pk∈U , ϵM) = (fpk,Upk)pk∈U

for any U ∈ L(PK) and

F ((pk, kpk)pk∈UK
, (pk,mpk)pk∈UM

) =

[
∑

pk∈UK

∑
j∈[Npk]

fpk(xpk,j)
⊤
zpk,j]T if (∗)

⊥ otherwise.

AWS-DDFE condition (∗) is:

� UK = UM = U ;
� ∃f ∈ (pk,FABP

n0,n1
)pk∈U , ∀pk′ ∈ U , kpk′ = (f ,U);

� ∃ℓM ∈ LM , ∀pk ∈ U , mpk = ((xpk,j , zpk,j)j∈[Npk],U , ℓM).

De�nition 8 (Single-Input FE for AWSw/IP). Consider the case |PK| = 1 in De�nition 4 for
the single-input setting, an FE for attribute-weighted sums with function-hiding inner product scheme
over PG = (G1,G2,GT , p) is de�ned for the class of arithmetic branching programs FABP

n0,n1
as follows:

K = FABP
n0,n1

×Gd
2

M =
⋃
i∈N

(Zn0
p × Zn1

p)i ×Gd
1.

Then, one has

F (ϵK , ((xj , zj)j∈[N], [s]1)) = ((xj)j∈[N]);

F ((f, [t]2), ϵM) = f ;

and
F ((f, [t]2), ((xj , zj)j∈[N], [s]1)) = [

∑
j∈[N]

f(xj)
⊤
zj + s⊤t]T .

We note that a single-input FE construction for AWSw/IP in the standard model is provided
in [ATY23].

12

3 Updatable Pseudorandom Zero Sharing

In this section, we provide a de�nition and a security model for Updatable Pseudorandom Zero-
Sharing, which serves as the key building block for later pairing-based DDFE constructions. A scheme
in DDH groups that supports the bilinear update property will also be provided.

3.1 De�nition

De�nition 9 (Updatable Pseudorandom Zero Sharing). Given a set of users PK, a seeding
label space LS and an updating label space LU , an updatable pseudorandom zero sharing scheme UZS
over a group (A,+) consists of six algorithms:

� SetUp(λ): On input a security parameter λ, it outputs public parameters pp. Those parameters
are implicit arguments to all the other algorithms.

� KeyGen(): It outputs a party's public key pk ∈ PK and the corresponding secret key skpk.
� SeedGen(skpk,U , ℓs): On input a secret key skpk, a user set U ∈ S(PK), and a seeding label ℓs ∈ LS,

it outputs a seed seedℓspk,U if pk ∈ U . Otherwise, it outputs ⊥.
� TokGen(skpk,U , ℓu): On input a secret key skpk, a user set U ∈ S(PK), and an updating label

ℓu ∈ LU , it outputs a token tokenℓupk,U if pk ∈ U . Otherwise, it outputs ⊥.
� SeedUpt(seedℓspk,U , token

ℓu
pk,U): On input a seed seedℓspk,U and a token tokenℓupk,U , it outputs a seed

seed
ℓs||ℓu
pk,U .

� ShareEval(seedℓpk,U): On input a seed seedℓpk,U for ℓ ∈ LS ∪ (LS×LU), it outputs a share shareℓpk,U .

Correctness. For any security parameter λ ∈ N, any ℓs ∈ LS, any ℓu ∈ LU , any U ∈ S(PK), then
it holds that

Pr

∑
pk∈U

shareℓspk,U =
∑
pk∈U

share
ℓs||ℓu
pk,U = 0A

 = 1

where the probability is taken over all algorithms.

De�nition 10 (Correlated Pseudorandomness for UZS). For xx ∈ {otu, any}, yy ∈ {sta, adt},
a xx-yy-IND security game of UZS for every PPT adversary A is de�ned with access to the oracles
QNewHon,QCor,QTokGen,QSeedGen, and QShare described below:

� Initialize: the challenger runs the setup algorithm pp ← SetUp(λ) and chooses a random bit

b
$←− {0, 1}. It initializes the sets H and C of honest participants and corrupted participants

respectively to ∅, and provides pp to the adversary A;
� Participant creation queries QNewHon(): it generates (pk, skpk) ← KeyGen() to simulate a new
participant, stores the association (pk, skpk) in the set H, and returns pk to the adversary;

� Corruption queries QCor(pk): it moves the association (pk, skpk) from H to C and returns the
secret key sk. If pk is not associated with any secret key in H, then nothing is returned;

� Seed generation queries QSeedGen(pk,U , ℓs): if one of conditions [pk /∈ U] or [ℓs /∈ LS] or
[pk is not associated with any secret key in either H or C], then nothing is returned. Otherwise it
returns seedℓspk,U ← SeedGen(sk,U , ℓs) to the adversary.

� Token generation queries QTokGen(pk,U , ℓu): if one of conditions [pk /∈ U] or [ℓu /∈ LU] or
[pk is not associated with any secret key in either H or C], nothing is returned. Otherwise it re-
turns tokenℓupk,U ← TokGen(sk,U , ℓu) to the adversary.

� Challenge share queries QShare(U , ℓ): if [ℓ /∈ LS∪(LS×LU)] or [|H ∩ U| = 0], nothing is returned.
We de�ne the following share distributions:
• A pseudorandom share generation algorithm PShareGen(S,U , ℓ): it outputs ⊥ if S ̸⊂ U , oth-
erwise the challenger generates seedℓpk,U as follows:

* if ℓ = ℓs ∈ LS: seed
ℓs
pk,U = QSeedGen(pk,U , ℓs);

* if ℓ = ℓs||ℓu ∈ LS × LU : seed
ℓ
pk,U = SeedUpt(seedℓspk,U , token

ℓu
pk,U)

where

{
seedℓspk,U = QSeedGen(pk,U , ℓs)
tokenℓupk,U = QTokGen(pk,U , ℓu)

and outputs shareℓpk,U ← ShareEval(seedℓpk,U) for all pk ∈ S.

13

• A uniformly correlated random distribution for any (S,U , ℓ) where S ⊂ U

Rℓ
S,U :=

(spk)pk∈S
$←− A|S| |

∑
pk∈S

spk = −
∑

pk∈U\S

tpk


where (tpk)pk∈U\S = PShareGen(U \ S,U , ℓ).

Then,
• if b = 0, the challenger returns (shareℓpk,U)pk∈H∩U ← PShareGen(H∩U ,U , ℓ) to the adversary;

• if b = 1, the challenger returns (shareℓpk,U)pk∈H∩U ← Rℓ
H∩U,U to the adversary;

� Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the game,
according to the admissibility condition below which aims at preventing trivial wins.

Let H and C be the sets of honest users and corrupted users at the end of the game respectively.
Finalize outputs the bit β = (b′ = b) if the Condition (∗) is satis�ed, otherwise Finalize outputs

β
$←− {0, 1}. Condition (∗) holds if all the following conditions hold:

� there are no QCor(pk) queries after a QShare(U , ℓ) query was made;
� there does not exist ℓs ∈ LS such that a QShare(U , ℓs) query and a QSeedGen(pk, ℓs) query are
sent;

� there does not exist (ℓs, ℓu) ∈ LS×LU such that a QShare(U , ℓs||ℓu) query and a QTokGen(pk, ℓu)
query are sent;

� when xx = otu: for any U , the queries of the form QShare(U , ℓs||·) can be sent for only one
ℓu ∈ LU .

� when yy = sta: the adversary sends all its QNewHon() queries in one shot. After that it sends in
one shot all QCor(pk) queries.

We say UZS is xx-yy-IND-secure if given any parameter λ ∈ N, for every PPT adversary A, the
following holds

Advxx-yyUZS (A) =
∣∣∣∣Pr[β = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

The security model described above captures the security of a standard pseudorandom zero-sharing
scheme: the adversary has full access to the oracles and can win the game by only distinguishing the
pseudorandom non-updated shares from the correlated random ones. Additionally, Condition (∗) does
not prevent the adversary from querying the seeds that result in the updated challenge shares. This
intuitively means that even when the adversary has access to the seeds of honest users, the resulting
updated shares remain indistinguishable from a correlated random distribution.

On the other hand, extending a standard pseudorandom zero-sharing scheme over L = LS × LU

to an updatable one can be achieved by using its share generation algorithm to create new shares
on concatenated labels of the form (ℓs||ℓu). However, this approach may require operations that are
more complex than those allowed in pairing groups. Therefore, we specify a more pairing-friendly
property for the updating algorithm of an UZS scheme.

De�nition 11 (Bilinear Update). An updatable pseudorandom zero sharing scheme UZS of secu-
rity parameter λ is said to satisfy the bilinear update property if each seed is of the form [a] ∈ Aρ(λ),
each token is of the form b ∈ Zρ(λ) where ρ is a λ-dependent parameter, and for any pk ∈ PK, any
ℓs ∈ LS, and any ℓu ∈ LU , it holds that

[aℓs
pk,U]⊙λ bℓupk,U = SeedUpt([aℓs

pk,U], b
ℓu
pk,U),

where ⊙ρ : Aρ × Zρ → Aρ is an entry-wise bilinear map.

3.2 Construction in DDH Groups

Let PRF : {0, 1}∗ → Zp be a pseudorandom function, NIKE be a non-interactive key exchange protocol,
LS be a seeding label space, and LU be an updating label space. A construction of UZS is described
in Figure 6. We emphasize that zero shares in the scheme are group elements that sum up to the
group identity.

14

Construction:

� SetUp(1λ): It generates G ← GGen(1λ) and NIKE.pp← NIKE.SetUp(1λ) and returns

pp = (G,NIKE.pp,PRF,LS ,LU).

The parameters pp are implicit to other algorithms.
� KeyGen(): Each user samples
• NIKE keys (pk,NIKE.skpk)← NIKE.KeyGen();
• a shared key kpk,pk′ ← NIKE.SharedKey(pk′,NIKE.skpk) for each published pk′ ∈ PK \ {pk}.

It returns
(pk, skpk) =

(
pk, (NIKE.skpk, (kpk,pk′)pk′∈PK\pk)

)
.

� SeedGen(skpk, (U , ℓs)): It computes

aℓs
pk,U =

(
(−1)pk<pk′PRFkpk,pk′ (”s”||U||ℓs)

)
pk′∈U\{pk}

,

and returns seedℓspk,U = [aℓs
pk,U]. If pk /∈ U , it returns ⊥.

� TokGen(skpk, (U , ℓu)): It computes

bℓupk,U =
(
PRFkpk,pk′ (”u”||U||ℓu)

)
pk′∈U\{pk}

,

and returns tokenℓupk,U = bℓupk,U . If pk /∈ U , it returns ⊥.
� SeedUpt(seedℓspk,U , token

ℓu
pk,U): It parses

• seedℓspk,U = [aℓs
pk,U],

• tokenℓupk,U = bℓupk,U ,
• ρ = |U| − 1;

and returns
seed

ℓs||ℓu
pk,U = [aℓs

pk,U]⊙ρ bℓupk,U .

� ShareEval(seedℓpk,U): It parses ρ = |U| − 1, seedℓpk,U = [aℓ
pk,U] ∈ Gρ, and returns

shareℓpk,U =
∑

pk′∈U\{pk}

[aℓ
pk,U,pk′].

Fig. 6. Updatable Pseudorandom Zero-Sharing in DDH groups.

15

Correctness. Given λ ∈ N, pp ← SetUp(1λ), (pk, skpk) ← KeyGen() ∀pk ∈ PK, U ∈ S(PK), any
labels ℓs ∈ LS and ℓu ∈ LU , from the above scheme, one has∑

pk∈U

shareℓspk,U =
∑
pk∈U

∑
pk′∈U\{pk}

[aℓspk,U,pk′]

=
∑
pk∈U

∑
pk′∈U\{pk}

[(−1)pk<pk′cpk,pk′]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[(−1)pk<pk′cpk,pk′ + (−1)pk
′<pkcpk′,pk]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[0] = [0].

where cpk,pk′ := PRFkpk,pk′ (”s”||U||ℓs) and cpk′,pk = cpk,pk′ . Similarly, one has∑
pk∈U

share
ℓs||ℓu
pk,U =

∑
pk∈U

∑
pk′∈U\{pk}

[aℓspk,U,pk′ · b
ℓu
pk,U,pk′]

=
∑
pk∈U

∑
pk′∈U\{pk}

[(−1)pk<pk′c′pk,pk′]

=
∑

(pk,pk′)∈U2

pk ̸=pk′

[0] = [0].

where c′pk,pk′ := PRFkpk,pk′ (”s”||U||ℓs) · PRFkpk,pk′ (”u”||U||ℓu) and c′pk′,pk = c′pk,pk′ . ⊓⊔

Remark 3 (Bilinear Update). The UZS scheme in the above construction satis�es the bilinear update
property in De�nition 11.

3.3 Security Analysis

Theorem 1 (Indistinguishability for UZS). If NIKE is a IND-secure non-interactive key exchange
protocol, and the DDH assumption holds in G, then the UZS scheme constructed in Section 3.2 is otu-
sta-IND secure (as in De�nition 10) in the standard model.

Proof. In the static corruption game, we can �x PK to be the set of parties generated by QNewHon(),
C to be the set of corrupted parties and H = PK\C to be the set of honest parties. Let qQNewHon and
qQShare be the number of QNewHon and QShare queries respectively. We consider two cases separately:
|H| < 2 and |H| ≥ 2.

The case of |H| < 2. There is no information about b in this case: the output of QShare(U , ℓ)
does not return ⊥ only if |H ∩ U| = 1, then the distribution Rℓ

S,U contains a single value to assign to
the honest share. This value is equal to PShareGen(H ∩ U ,U , ℓ).

The case of |H| ≥ 2. We proceed via a hybrid argument by using the games described in
Figure 12. In this argument, the game G0 corresponds to the otu-sta-IND security game as de�ned
in De�nition 10, and the game G3 corresponds to the case where the adversary's advantage is 0 since
there is no challenge bit b. Given λ ∈ N, we denote by Advi the advantage of a PPT adversary A
running in time t in each game Gi, and Advxx be the best advantage of any PPT adversary running
in time t against the primitive xx that is setup with λ.

Game G1: The change is that for each (pk, pk′) ∈ H2, the challenger uses uniformly random shared
keys kpk,pk′ in answering to QSeedGen(pk⋆,U , ℓu), QTokGen(pk⋆,U , ℓs) queries for pk⋆ ∈ {pk, pk′}
(then in QShare(U , ℓ) queries). The indistinguishability is implied by the security of the non-
interactive key exchange protocol, given in Lemma 5.

Game G2: The change is that for each (pk, pk′) ∈ H2, the challenger uses a random function
RFpk,pk′ = RFpk′,pk instead of PRFkpk,pk′ in generating answers to the queries QSeedGen(pk⋆,U , ℓu)
and QTokGen(pk⋆,U , ℓs) for pk⋆ ∈ {pk, pk′}, (then in QShare(U , ℓ) queries). The indistinguisha-
bility is implied by the security of the pseudorandom functions, given in Lemma 6.

16

Game G3: The change is that for each QShare(U , ℓ) query, the challenger answers independently

from b by sampling (sharepk,ℓ)pk∈H∩U
$←− Rℓ

H∩U,U , where the distribution Rℓ
H∩U,U is de�ned in the

QShare oracle in De�nition 10. The indistinguishability is implied by the DDH assumption, given
in Lemma 1.

From the transitions above, one completes the theorem. ⊓⊔

We show the main proof technique that lies in the following lemma.

Lemma 1 (UZS: Transition from G2 to G3). For any PPT adversary A, the advantage in
distinguishing two games is

|Adv2 − Adv3| ≤
1

2
qQNewHon(qQNewHon − 1)qQShare · AdvDDH(t+ 4qQShare × tG).

Proof. For every U queried in the form of QShare(U , ·) such that |H ∩U| ≥ 2, we use multiple hybrid
games that go all over the pairs in PU = {(pk, pk′) := (pk′, pk) ∈ (H∩U)2, pk ̸= pk′}. We assume that
all pairs in PU are bijectively mapped by κ to [qU] for some integer qU ≥ 1. For i ∈ [qU], we de�ne
the following sequence of games as follows:

Game G2.U.i: In this game, for any QShare(U , ℓs||ℓ⋆u) query5, when b = 0, for all pk ∈ H ∩ U , the
challenger computes

[aℓs
pk,U] = QSeedGen(pk,U , ℓs),

b
ℓ⋆u
pk,U = QTokGen(pk,U , ℓ⋆u),

seed
ℓs||ℓ⋆u
pk,U = [a

ℓs||ℓ⋆u
pk,U]

where 

a
ℓs||ℓ⋆u
pk,U,pk′

$←− Zp if (pk, pk′) ∈ PU and κ(pk, pk′) < i

a
ℓs||ℓ⋆u
pk,U,pk′

$←− Zp if (pk, pk′) ∈ PU and κ(pk, pk′) = i

a
ℓs||ℓ⋆u
pk,U,pk′ = aℓspk,U,pk′ · b

ℓ⋆u
pk,U,pk′ if (pk, pk′) ∈ PU and κ(pk, pk′) > i

a
ℓs||ℓ⋆u
pk,U,pk′ = aℓspk,U,pk′ · b

ℓ⋆u
pk,U,pk′ if (pk, pk′) /∈ PU

and outputs share
ℓs||ℓ⋆u
pk,U = ShareEval(seed

ℓs||ℓ⋆u
pk,U). The change between G2.i−1 and G2.i is in the

PShareGen algorithm (de�ned by the QShare oracle in De�nition 10) and is highlighted in gray.

For every U , we assume that G2.U.0 is the game where QShare(U , ·) is the same as in G2. For each
transition from G2.U.i−1 to G2.U.i for i ∈ [qU], we build an adversary B against the multi-DDH
assumption (De�nition 2), which can be described as follows:

� To answer QSeedGen(pk,U , ℓs) and QSeedGen(pk′,U , ℓs) queries, the adversary B implicitly uses

[cℓspk,U,pk′] := Yℓs
$←− G from the multi-DDH instance when κ(pk, pk′) = i to compute [aℓspk,U,pk′] =

[(−1)pk<pk′cℓspk,U,pk′] and [aℓspk′,U,pk] = [(−1)pk′<pkcℓspk,U,pk′] respectively.

� To answer QShare(U , ℓs||ℓ⋆u) queries, if b = 0, B implicitly uses [c
ℓs||ℓ⋆u
pk,U,pk′] := Zℓs from the multi-

DDH instance when κ(pk, pk′) = i to compute [a
ℓs||ℓ⋆u
pk,U,pk′] = [(−1)pk<pk′c

ℓs||ℓ⋆u
pk,U,pk′] and [a

ℓs||ℓ⋆u
pk′,U,pk] =

[(−1)pk′<pkc
ℓs||ℓ⋆u
pk,U,pk′] respectively.

� B outputs A's guess for the challenge bit DDHmulti.b.

The adversary B has a complete multi-DDH challenge D = (X, (Yℓs)ℓs , (Zℓs)ℓs) where X can be

implicitly considered as [bℓ
⋆
u

pk,U,pk′]
$←− G.

� When DDH
multi.b = 0, one has [c

ℓs||ℓ⋆u
pk,U,pk′] = Zℓs = CDH(X,Yℓs) = [cℓspk,U,pk′] · b

ℓ⋆u
pk,U,pk′ , which

corresponds to G2.U.i−1.

5 In the one-time-update setting, for each U , ℓs can change while ℓ⋆u is �xed.

17

� When DDHmulti.b = 1, one has [cℓs||ℓ
⋆
u

pk,U,pk′] = Zℓs
$←− G, which corresponds to G2.U.i.

Therefore, the computational gap between each G2.U.i−1 and G2.U.i happens only when b = 0 and is
then bounded by 1

2 · AdvDDH(λ, t+ 4qQShare · tG).
The last step is to show that for the last U⋆ queried to QShare(·, ·), one has G2.U⋆.qU⋆ = G3. It

su�ces to describe the case b = 0. We note that QShare(U , ℓ) = (shareℓpk,U)pk∈H∩U where shareℓpk,U =∑
pk′∈U\{pk}[a

ℓ
pk,U,pk′]. By all transitions until G2.U⋆.qU⋆ , we have aℓpk,U,pk′

$←− Zp for any pair of honest

users (pk, pk′), any set U , any label ℓ. As aℓpk′,U,pk = −aℓpk,U,pk′ , thenshare0,ℓpk,H∩U :=
∑

pk′∈H∩U\{pk}

aℓpk,U,pk′


pk∈H∩U

are uniformly random shares of zero among users in H ∩ U . Therefore, one hasshareℓpk,U :=
∑

pk′∈C∩U

aℓpk,U,pk′ + share0,ℓpk,H∩U


pk∈H∩U

are uniformly random shares of -
∑

pk∈C∩U shareℓpk,U , which is identical to the distribution Rℓ
H∩U . Since

the number of sets U queried to QShare(·, ℓ) for ℓ ∈ LS × LU is bounded by qQShare, and each qU is
bounded by

(
qQNewHon−qQCor

2

)
, one obtains

|Adv2 − Adv3| ≤
1

2

(
qQNewHon − qQCor

2

)
qQShare · AdvDDH(λ, t+ 4qQShare × tG).

⊓⊔

4 Function-Hiding Inner-Product DDFE

In this section, we construct a DDFE scheme for function-hiding inner products. As an additional
independent contribution, we present a lemma that supports transforming an IPE scheme into a
DDFE scheme in a black-box manner while preserving the adaptive security of the original scheme.
By simultaneously applying the UZS scheme and this lemma to construction, we achieve an FH-IP-
DDFE scheme that is adaptively secure in the standard model.

4.1 Lemma for Adaptive Security

We �rst state a remark from the admissibility for FH-IP-DDFE, which will be extremely useful for
proofs of lemmas and theorems in our DDFE construction.

Remark 4 (Invariance in FH-IP-DDFE). From DDFE security model (De�nition 5) and FH-IP
functionality (De�nition 6), given any admissible adversary against FH-IP-DDFE and any challenge
bit b, Condition (∗) implies that among encryption queries under (ℓM ,U) and decryption-key queries
under (ℓK ,U), the equalities∑

pk∈H∩U\pk⋆
xb
pk

⊤ · yb
pk + xb,τM

pk⋆
⊤
· yb,τK

pk⋆ =
∑

pk∈H∩U\pk⋆
x0
pk

⊤ · y0
pk + x0,τM

pk⋆
⊤
· y0,τK

pk⋆

holds for each pk⋆ ∈ H∩ U and each pair of index (τM , τK) that numerates repetitions of encryption
queries under (pk⋆, ℓM ,U) and repetitions of decryption-key queries under (pk⋆, ℓK ,U) respectively.
Then one has the value

∆b
pk⋆ := x0,1

pk⋆
⊤
· y0,1

pk⋆ − xb,1
pk⋆

⊤
· yb,1

pk⋆ = x0,τM
pk⋆

⊤
· y0,τK

pk⋆ − xb,τM
pk⋆

⊤
· yb,τK

pk⋆

be an invariance across (τM , τK). Furthermore, each variance is a share of zero, i.e.
∑

pk∈H∩U ∆b
pk = 0.

The supporting lemma for the adaptive security of DDFE is shown below. At a high level, this
lemma provides an information-theoretically secure masking technique for messages in DDFE.

18

Lemma 2 (FH-IP-DDFE: Injection Lemma). Considering the security game of DDFE (in De�-
nition 5) for function-hiding inner products, given any challenge bit b, any user set U , any message
tuple qℓM = (x0

pk,x
1
pk,U , ℓM)pk∈H∩U and any QK-set of key tuples {qℓK =

(y0,τK
pk,ℓK

,y1,τK
pk,ℓK

,U , ℓK)τK∈[repℓK
],pk∈H∩U}ℓK∈QK

that come from admissible queries with respect

to Condition (∗), then the outputs of experiments ExpαINJ(b,U , qℓM , {qℓK}ℓK∈QK
) for α ∈ {0, 1}

de�ned in Figure 7 are perfectly indistinguishable.

ExpαINJ(b,U , qℓM , {qℓK}ℓK∈QK):

1. It generates: ∀pk ∈ H ∩ U ,
� upk,vpk

$←− Zd
p;

� RℓK
pk

$←− Zp subjected to
∑

pk∈H∩U RℓK
pk = 0 for each ℓK ∈ QK .

2. It computes: ∀ℓK ∈ QK ,
� zτKpk,ℓK = (u⊤

pk · y
b,τK
pk,ℓK

+ v⊤
pk · y

0,τK
pk,ℓK

) for each τK ∈ [repℓK].
3. Output:

� if α = 0, it returns
(upk,vpk, {(RℓK

pk + zτKpk,ℓK)τK∈[repℓK
]}ℓK∈QK)pk∈H∩U ;

� if α = 1, it returns

(−xb
pk+upk,x

0
pk+vpk, {(RℓK

pk + zτKpk,ℓK)τK∈[repℓK
]}ℓK∈QK)pk∈H∩U .

Fig. 7. Experiment description in Injection Lemma. The injected elements are highlighted in blue.

Proof. From Remark 4, given each pk and ℓK , one has an invariance ∆b
pk,ℓK

that is equal to (x0⊤
pk ·

yτK ,0
pk,ℓK

− xb⊤
pk · y

τK ,b
pk,ℓK

) for every τK ∈ [repℓK]. In the case α = 0, new variables are set as follows

u′
pk := xb

pk + upk; v′
pk := −x0

pk + vpk; R′ℓK
pk := RℓK

pk +∆b
pk,ℓK ;

z′τKpk,ℓK
:= u′⊤

pk · y
b,τK
pk + v′⊤

pk · y
0,τK
pk

= zτKpk,ℓK − (x0⊤
pk · y

τK ,0
pk,ℓK

− xb⊤
pk · y

τK ,b
pk,ℓK

)

= zτKpk,ℓK −∆b
pk,ℓK .

Then the output of the experiment when α = 0 can be rewritten as

(−xb
pk+u′

pk,x
0
pk+v′

pk, {(R
′ℓK
pk + z′τKpk,ℓK

)τK∈[repℓK
]}ℓK∈QK

)pk∈H∩U

Since (∆b
pk,ℓK

)pk are zero shares, then (R′ℓK
pk)pk are also uniformly-random zero shares. The lemma is

then completed as the rewritten output is of the same distribution as the output in the experiment
α = 1. ⊓⊔

4.2 FH-IP-DDFE Construction

For every client, let d be an inner-product dimension, let X and Y be a message bound and a
function bound of size poly(λ) respectively, let LM and LK be a message-label space and key-label
space respectively. The scheme is described in Figure 8 with the following primitives:

� IPE = (iSetup, iKeyGen, iEnc, iDKGen, iDec) be a single-input function-hiding IPFE;
� UZS = (uSetUp, uKeyGen, uSeedGen, uTokGen, uSeedUpt, uShareEval) be a bilinear-updatable
pseudorandom zero-sharing scheme over G2 for a seeding label space LK and an updating label
space LM .

� AoNE = (aSetup, aKeyGen, aEnc, aDKGen, aDec) be an all-or-nothing encapsulation scheme.

Remark 5 (Size of Ciphertext/Decryption Key). In the above FH-IP-DDFE construction, if one uses
the AoNE scheme that is constructed from a rate-1 identity-based encryption and employed in the
hybrid-encryption mode as in [CDSG+20], then the size of each DDFE ciphertext/decryption key will
be Oλ(d+ |U|).

19

Construction:

� SetUp(1λ): It generates PG ← PGGen(1λ) and sets up parameters of the underlying schemes: ipp ←
iSetup(1λ); upp← uSetUp(1λ); app← aSetup(1λ). It returns

pp = (PG, ipp, upp, app).

The parameters pp are implicit to other algorithms.
� KeyGen(): Each client samples

kpk
$←− KPRF; (upk, uskpk)← uKeyGen(); (apk, askpk)← aKeyGen().

It returns pk = (upk, apk) and skpk = (kpk, uskpk, askpk).
� Enc(skpk,m): It parses m = (m,UM , ℓM) and computes

1. a UZS token: bℓMpk,UM
← uTokGen(uskpk, (UM , ℓM));

2. a random coin for IPE key generation: coinpk ← PRFkpk(UM);

3. a 6d+ |UM |-length IPE secret key: iskpk = iKeyGen(16d+|UM |; coinpk);
4. an IPE encryption: x = (m,0d)

ictpk ← iEnc(iskpk, [x,0
2d,02d, bℓMpk,UM

, 0]1);

5. an AoNE layer on ictpk: actpk ← aEnc(askpk, (ictpk,UM , ℓM ||”ct”)).
It returns the ciphertext

ctpk = (actpk,UM , ℓM).

� DKGen(skpk, k): It parses k = (k,UK , ℓK) and computes
1. a UZS seed: [aℓK

pk,UK
]2 ← uTokGen(uskpk,UK , ℓK);

2. a random coin for IPE key generation: coinpk ← PRFkpk(UK);

3. a 6d+ |UK |-length IPE secret key: iskpk = iKeyGen(16d+|UK |; coinpk);
4. an IPE decryption key: y = (k,0d)

idkpk ← iDKGen(iskpk, [y,0
2d,02d,aℓK

pk,UK
, 0]2);

5. an AoNE layer on idkpk: actpk ← aEnc(askpk, (idkpk,UK , ℓK ||”dk”)).
It returns the decryption key

dkpk = (actpk,UK , ℓK).

� Dec ((dkpk)pk∈UK , (ctpk)pk∈UM , (UM , ℓM), (UK , ℓK)): If UM = UK = U is not true, it returns ⊥. Otherwise,
1. it parses dkpk = (actpk,U , ℓK) and recovers the IPE decryption keys

(idkpk)pk∈U = aDec((actpk)pk∈U ,U , ℓK ||”dk”);

2. it parses ctpk = (act′pk,U , ℓM) and recovers the IPE ciphertexts

(ictpk)pk∈U = aDec((act′pk)pk∈U ,U , ℓM ||”ct”);

3. it computes [α]T =
∑

pk∈U iDec(ictpk, idkpk) and returns α.

Fig. 8. DDFE for Function-Hiding Inner Products

20

Correctness. By the correctness of the AoNE scheme, one can always recover IPE ciphertexts
(ictpk)pk∈U and decryption keys (idkpk)pk∈U . The correctness is then implied by the correctness of
the IPE scheme and the UZS scheme:∑

pk∈U

iDec(ictpk, idkpk)

=
∑
pk∈U

[x⊤
pk · ypk + bℓMpk,U

⊤
· aℓK

pk,U]T

=[
∑
pk∈U

x⊤
pk · ypk]T + e

[1]1,
∑
pk∈U

uShareEval(uSeedUpt(seedℓKpk,U , token
ℓM
pk,U))


=[

∑
pk∈U

x⊤
pk · ypk]T + e

[1]1,
∑
pk∈U

share
ℓK ||ℓM
pk,U


=[

∑
pk∈U

x⊤
pk · ypk]T + e ([1]1, [0]2) = [

∑
pk∈U

x⊤
pk · ypk]T = [

∑
pk∈U

m⊤
pk · kpk]T .

As the inner product
∑

pk∈U m⊤
pk · kpk is of size poly(λ), it can always be recovered. ⊓⊔

4.3 Security Analysis

Theorem 2 (Indistinguishability for FH-IP-DDFE). If IPE is a single-input sym-IND-secure
FE for function-hiding inner products, AoNE is a sym-IND-secure all-or-nothing encapsulation, and
UZS is an otu-sta-IND-secure updatable pseudorandom zero sharing, then the FH-IP-DDFE scheme
constructed in Figure 8 is sta-sym-IND secure (as in De�nition 5) in the standard model.

Proof. In the static-corruption game, we can �x PK to be the set of parties generated by QNewHon()
queries, C to be the set of corrupted parties in PK and H = PK\C to be the set of honest parties. Let
qxx be the number of xx-oracle queries where xx ∈ {QNewHon,QEnc,QDKGen,QCor}. Given λ ∈ N,
we denote by AdvGi

the advantage of an PPT adversary A in each game Gi, and Advxx be the best
advantage of any PPT adversary against the primitive xx that is setup with λ.

The DDFE scheme can be parsed as a scheme for messages and keys in the forms xb = (mb,0d)
and yb = (kb,0d) respectively. Let QM and QK

6 be the set of adaptive encryption queries and
decryption key queries sent by A respectively by the end of the game. When pk ∈ H, a decryption
key query (pk,y0,y1,UK , ℓK)7 ∈ QK is said to be incomplete if there exists pk′ ∈ H ∩ UK such that
there is no decryption key query (pk′,y′0,y′1,UK , ℓK) ∈ QK . Similarly, when pk ∈ H, an encryption
query (pk,x0,x1,UM , ℓM) ∈ QM is said to be incomplete if there exists pk′ ∈ H∩UM such that there
is no encryption query (pk′,x′0,x′1,UM , ℓM) ∈ QM .

We proceed via a global hybrid argument: we describe the changes in the IND game by using the
games G0, G1, and G3 (see Figure 13). Notably, the game G0 corresponds to sta-sym-IND security
game as de�ned in De�nition 5, and the gameG3 corresponds to the case where adversary's advantage
is 0 since there is no challenge bit b. We �rst prove the indistinguishability under the assumption that
all encryption queries and decryption-key queries are complete.

The case of complete queries. The transition between G1 and G3 requires intermediate games
G1.1, {G1.1.ℓM }ℓM∈QM

, and G2 (see Figure 9). The transition between {G1.1.ℓM }ℓM∈QM
requires

intermediate (G⋆
ℓM .i)i∈[6] (see Figure 10) for each ℓM .

The security notion of UZS applies to the transition from G∗
ℓM .2 to G∗

ℓM .3 as in the lemma below.

Lemma 3 (FH-IP-DDFE: Transition from G∗
ℓM .2 to G∗

ℓM .3). For any PPT adversary A, the
advantage in distinguishing two games is∣∣∣AdvG∗

ℓM.2
− AdvG∗

ℓM.3

∣∣∣ ≤ Advotu-staUZS .

6 QM and QK contain elements of the form (pk, ·, ·,U , ℓ). For a string xx ∈ {0, 1}∗, we denote by xx ∈ QM

or xx ∈ QK if there exists a query containing xx.
7 For ease of exposition, we omit subscript/superscript indexes in contexts where these indexes are explicitly
mentioned in queries.

21

Game iEnc iKeyGen Assumption

G1 (xb,τM
pk ,02d,02d, bℓMpk,U , 0) (yb,τK

pk ,02d,02d,aℓK
pk,U , 0)

G1.1 (xb,τM
pk ,02d,02d, bℓMpk,U , 0) (yb,τK

pk ,y0,τK
pk ,02d,aℓK

pk,U , 0) IND of IPE

ℓ′M < ℓM :

G1.1.ℓM (02d,x0,τM
pk ,02d, b

ℓ′M
pk,U , 0) same as in explained

ℓM ∈ QM ℓ′M ≥ ℓM : G2.1 in Figure 10

(xb,τM
pk ,02d,02d, b

ℓ′M
pk,U , 0)

G2 (02d,x0,τM
pk ,02d, bℓMpk,U , 0) (02d,y0,τK

pk ,02d,aℓK
pk,U , 0) IND of IPE

G3 (x0,τM
pk ,02d,02d, bℓMpk,U , 0) (y0,τK

pk ,02d,02d,aℓK
pk,U , 0) IND of IPE

Fig. 9. Sequence of hybrids for transition from G1 to G3 in the security proof of FH-IP-DDFE (see Theo-
rem 2), under the assumption that all queries are complete. All changes are made within iEnc and iDKGen
algorithms for the replies of encryption and decryption key generation oracles respectively, and higlighted in
blue.

Proof. We build an adversary B against the otu-sta-IND security of UZS from an adversary A that
distinguishes between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses the
UZS oracles to handle all UZS related operations in DDFE.

� For each encryption query on (pk,x0
pk,x

1
pk,U , ℓ′M),

• If ℓ′M ̸= ℓM : B obtains bℓ
′
M

pk,U ← QTokGen(pk,U , ℓ′M) to complete the message to IPE encryp-
tion.
• If ℓ′M = ℓM : it does not have to obtain bℓMpk,U as the message to IPE encryption is (xb

pk +

uℓM
pk,U ,0

2d,02d,0|U|−1, 1) in this case.
� For each decryption-key query on (pk,y0

pk,y
1
pk,U , ℓK),

• B obtains [aℓK
pk,U]2 ← QSeedGen(pk,U , ℓK) and ([RℓM ,ℓK

pk,U]2)pk∈H∩U ← QShare(U , ℓK ||ℓM);
• B completes the IPE key in G2 as

[yb
pk,y

0
pk,y

0
pk,a

ℓK
pk,U , R

ℓM ,ℓK
pk,U + zτKpk,ℓK]2.

The admissibility condition (∗) of UZS holds since

� all the corruption queries in FH-IP-DDFE are sent in one shot;
� QShare(U , ℓK ||ℓM) queries are made for the same ℓM on every U and there are no QTokGen(pk,U , ℓM)
queries required.

When UZS.b = 0, one has [RℓM ,ℓK
pk,U]2 = [bℓMpk,U

⊤
·aℓK

pk,U]2 which corresponds toG
∗
ℓM .2; and when UZS.b =

1, one has ([RℓM ,ℓK
pk,U]2)pk∈H∩U are random shares of −

∑
pk∈C∩U [b

ℓM
pk,U

⊤
·aℓK

pk,U]2, which corresponds to
G∗

ℓM .3. Therefore, one has ∣∣∣AdvG∗
ℓM.2
− AdvG∗

ℓM.3

∣∣∣ ≤ Advotu-staUZS .

⊓⊔

The Injection Lemma applies to the transition from G∗
ℓM .4 to G∗

ℓM .5 as in the lemma below.

Lemma 4 (FH-IP-DDFE: Transition from G∗
ℓM .4 to G∗

ℓM .5). The two games G∗
ℓM .4 and G∗

ℓM .5

are identical.

Proof. In these games, we parse the randomnessRℓM ,ℓK
pk,U = R0,ℓM ,ℓK

pk,U +R1,ℓM ,ℓK
pk,U where (R1,ℓM ,ℓK

pk,U)pk∈H∩U

are random shares of −
∑

pk∈C∩U bℓMpk,U
⊤
· aℓK

pk,U and (R0,ℓM ,ℓK
pk,U)pk∈H∩U are random shares of 0.

Given each U , we set qℓM = (x0,1
pk ,x

1,1
pk ,U , ℓM)pk∈H∩U and for each ℓK ∈ QK , we set qℓK =

(y0,τK
pk ,y1,τK

pk ,U , ℓK)τK∈[repℓK
],pk∈H∩U . Then the di�erence between two games are the outputs of

{ExpαINJ(b,U , qℓM , {qℓK}ℓK∈QK
)}U∈QM

, where α = 0 corresponds to G∗
ℓM .4 and α = 1 corresponds to

22

Game Adjustment Assumption

G⋆
ℓM

:= G1.1.ℓM as in Figure 9

iEnc: on label ℓM ,

(xb,τM
pk + uℓM

pk,U ,0
2d,uℓM

pk,U , b
ℓM
pk,U , 1)

G⋆
ℓM .1 where uℓM

pk,U
$←− Zd

p IND of IPE

iKeyGen: on all labels ℓK ,

(yb,τK
pk ,y0,τK

pk ,−yb,τK
pk ,aℓK

pk,U , 0)

iEnc: on label ℓM ,

(xb,τM
pk + uℓM

pk,U ,0
2d,02d,0|U|−1, 1)

G⋆
ℓM .2 where uℓM

pk,U
$←− Zd

p IND of IPE

iKeyGen: on all labels ℓK ,

(yb,τK
pk ,y0,τK

pk ,y0,τK
pk ,aℓK

pk,U , b
ℓM
pk,U

⊤ · aℓK
pk,U + zτKpk,ℓK)

where zτKpk,ℓK = −uℓM
pk,U

⊤ · yb,τK
pk

iEnc: on label ℓM ,

(xb,τM
pk + uℓM

pk,U ,0
2d,02d,0|U|−1, 1)

where uℓM
pk,U

$←− Zd
p

G⋆
ℓM .3 iKeyGen: on all labels ℓK , IND of UZS

(yb,τK
pk ,y0,τK

pk ,y0,τK
pk ,aℓK

pk,U , R
ℓM ,ℓK
pk,U + zτKpk,ℓK)

where (RℓM ,ℓK
pk,U)pk∈H∩U are random subjected to∑

pk∈H∩U RℓM ,ℓK
pk,U = −

∑
pk∈C∩U bℓMpk,U

⊤ · aℓK
pk,U

iEnc: on label ℓM ,

(xb,τM
pk + uℓM

pk,U ,0
2d,vℓM

pk,U ,0
|U|−1, 1)

G⋆
ℓM .4 where uℓM

pk,U ,v
ℓM
pk,U

$←− Zd
p IND of IPE

iKeyGen: on all labels ℓK ,

(yb,τK
pk ,y0,τK

pk ,y0,τK
pk ,aℓK

pk,U , R
ℓM ,ℓK
pk,U + zτKpk,ℓK)

where zτKpk,ℓK = −(uℓM
pk,U

⊤ · yb,τK
pk +vℓM

pk,U
⊤ · y0,τK

pk)

iEnc: on label ℓM ,

(xb,τM
pk −xb,1

pk + uℓM
pk,U ,0

2d,x0,1
pk + vℓM

pk,U ,0
|U|−1, 1)

G⋆
ℓM .5 where uℓM

pk,U ,v
ℓM
pk,U

$←− Zd
p Statistical by

iKeyGen: Injection Lemma

(yb,τK
pk ,y0,τK

pk ,y0,τK
pk ,aℓK

pk,U , R
ℓM ,ℓK
pk,U + zτKpk,ℓK)

iEnc: on label ℓM ,

(uℓM
pk,U ,0

2d,x0,τM
pk + vℓM

pk,U ,0
|U|−1, 1)

G⋆
ℓM .6 where uℓM

pk,U ,v
ℓM
pk,U

$←− Zd
p IND of IPE

iKeyGen:

(yb,τK
pk ,y0,τK

pk ,y0,τK
pk ,aℓK

pk,U , R
ℓM ,ℓK
pk,U + zτKpk,ℓK)

G⋆
ℓM+1 := G1.1.ℓM+1 as in Figure 9 Symmetric

transitions as
from G⋆

ℓM
to

G⋆
ℓM .4

Fig. 10. Sequence of hybrids for each transition from G1.1.ℓM to G1.1.ℓM+1 in Figure 9. We denote by H (and
C) the set of honest (and corrupted) users and (ℓM + 1) the subsequent message label of ℓM in the ordered
set QM of encryption queries.

23

G∗
ℓM .5. By Lemma 2, we have Exp0INJ(b,U , qℓM , {qℓK}ℓK∈QK

) = Exp1INJ(b,U , qℓM , {qℓK}ℓK∈QK
) with

respect to experiment randomness (uℓM
pk,U ,v

ℓM
pk,U , R

0,ℓM ,ℓK
pk,U) that are generated independently for each

U . Therefore, the lemma is complete. ⊓⊔

Lemmas for other transitions and the indistinguishability in the case of incomplete queries are
provided in Appendix B.2. By completing the proof in both cases, we complete the theorem. ⊓⊔

5 Attribute-Weighted-Sum DDFE

In this section, we construct a DDFE scheme for attribute-weighted sums that is sel-sta-sym-IND
secure in the standard model.

5.1 Construction

Let LM and LK be a message-label space and a key-label space respectively. The AWS-DDFE scheme
is described in Figure 11 with these primitives: AWIPE = (aiSetup, aiKeyGen, aiEnc, aiDKGen, aiDec) be
a FE for attribute-weighted sums with function-hiding inner products; UZS be a bilinear-updatable
pseudorandom zero-sharing scheme over G2 for a seeding-label space LK and an updating-label space
LM ; AoNE be an all-or-nothing encapsulation scheme.

We defer the correctness and the e�ciency analysis to Section C.

5.2 Security Analysis

Theorem 3 (Indistinguishability for AWS-DDFE). If AWIPE is a single-input sel-sym-IND-
secure FE for attribute-weighted sums with function-hiding inner products, AoNE is a sel-sym-IND-
secure all-or-nothing encapsulation, and UZS is an otu-sta-IND-secure updatable pseudorandom zero
sharing, then the AWS-DDFE scheme constructed in Figure 11 is sel-sta-sym-IND secure (as in Def-
inition 5) in the standard model.

We defer the proof of the above theorem to Section C.

Acknowledgements. We would like to thank Ky Nguyen, Duong Hieu Phan and David Pointcheval
for fruitful discussions that motivated this work.

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for
inner products. In PKC 2015: 18th International Conference on Theory and Practice of Public

Key Cryptography, Lecture Notes in Computer Science 9020, pages 733�751, Gaithersburg, MD,
USA, March 30 � April 1, 2015. Springer, Heidelberg, Germany.

ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product func-
tional encryption. In Advances in Cryptology � ASIACRYPT 2019, Part III, Lecture Notes in

Computer Science 11923, pages 552�582, Kobe, Japan, December 8�12, 2019. Springer, Heidel-
berg, Germany.

ABKW19. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product func-
tional encryption. In PKC 2019: 22nd International Conference on Theory and Practice of Public

Key Cryptography, Part II, Lecture Notes in Computer Science 11443, pages 128�157, Beijing,
China, April 14�17, 2019. Springer, Heidelberg, Germany.

ABM+20. M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner. Multi-client
inner-product functional encryption in the random-oracle model. In SCN 20: 12th International

Conference on Security in Communication Networks, Lecture Notes in Computer Science 12238,
pages 525�545, Amal�, Italy, September 14�16, 2020. Springer, Heidelberg, Germany.

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for
inner products: Function-hiding realizations and constructions without pairings. In Advances in

Cryptology � CRYPTO 2018, Part I, Lecture Notes in Computer Science 10991, pages 597�627,
Santa Barbara, CA, USA, August 19�23, 2018. Springer, Heidelberg, Germany.

24

Construction:

� SetUp(1λ): It generates PG ← PGGen(1λ) and sets up parameters of the underlying schemes: aipp ←
aiSetup(1λ); upp← uSetUp(1λ); app← aSetup(1λ). It returns

pp = (PG, aipp, upp, app).

The parameters pp are implicit to other algorithms.
� KeyGen(): Each client samples

kpk
$←− KPRF; (upk, uskpk)← uKeyGen(); (apk, askpk)← aKeyGen().

It returns pk = (upk, apk) and skpk = (kpk, uskpk, askpk).
� Enc(skpk,m): It parses m = ((xj ,zj)j∈[N],UM , ℓM)a and computes

1. a UZS token: bℓMpk,UM
← uTokGen(uskpk,UM , ℓM);

2. a random coin for AWIPE key generation: coinpk ← PRFkpk(UM);

3. a AWIPE secret key: aiskpk = aiKeyGen(1
|UM |
ip ; coinpk);

4. an AWIPE encryption:

aictpk ← aiEnc(aiskpk, (xj ,zj)j∈[N], [b
ℓM
pk,UM

, 0]1);

5. an AoNE layer on ictpk: actpk ← aEnc(askpk, (aictpk,UM , ℓM ||”ct”)).
It returns the ciphertext

ctpk = (actpk,UM , ℓM).

� DKGen(skpk, k): It parses k = (f := (fpk, pk)pk∈UK ,UK) and computes

1. a UZS seed: [a
ℓf
pk,UK

]2 ← uSeedGen(uskpk,UK , ℓf);
b

2. a random coin for AWIPE key generation: coinpk ← PRFkpk(UK);

3. a AWIPE secret key: aiskpk = aiKeyGen(1
|UK |
ip ; coinpk);

4. an AWIPE decryption key:

aidkpk ← aiDKGen(aiskpk, fpk, [a
ℓf
pk,UK

, 0]2);

5. an AoNE layer on aidkpk: actpk ← aEnc(askpk, (aidkpk,UK , ℓf ||”dk”)).
It returns the decryption key

dkpk = (actpk,UK , ℓf).

� Dec ((dkpk)pk∈UK , (ctpk)pk∈UM , (UM , ℓM), (UK , ℓf)): If UM = UK = U is not true, it returns ⊥. Otherwise,
1. it parses dkpk = (actpk,U , ℓf) and recovers the AWIPE decryption keys

(aidkpk)pk∈U = aDec((actpk)pk∈U ,U , ℓf ||”dk”);

2. it parses ctpk = (act′pk,U , ℓM) and recovers the AWIPE ciphertexts

(aictpk)pk∈U = aDec((act′pk)pk∈U ,U , ℓM ||”ct”);

It returns [α]T =
∑

pk∈U aiDec(aictpk, aidkpk).

a Each client can choose an arbitrary number N of AWS inputs.
b ℓf ∈ LK contains a description of f .

Fig. 11. DDFE for Attribute-Weighted Sums

25

ACF+20. S. Agrawal, M. Clear, O. Frieder, S. Garg, A. O'Neill, and J. Thaler. Ad hoc multi-input functional
encryption. In ITCS 2020: 11th Innovations in Theoretical Computer Science Conference, pages
40:1�40:41, Seattle, WA, USA, January 12�14, 2020. LIPIcs.

ACGU20. M. Abdalla, D. Catalano, R. Gay, and B. Ursu. Inner-product functional encryption with �ne-
grained access control. In Advances in Cryptology � ASIACRYPT 2020, Part III, Lecture Notes in
Computer Science 12493, pages 467�497, Daejeon, South Korea, December 7�11, 2020. Springer,
Heidelberg, Germany.

AGT21a. S. Agrawal, R. Goyal, and J. Tomida. Multi-input quadratic functional encryption from pairings.
In Advances in Cryptology � CRYPTO 2021, Part IV, Lecture Notes in Computer Science 12828,
pages 208�238, Virtual Event, August 16�20, 2021. Springer, Heidelberg, Germany.

AGT21b. S. Agrawal, R. Goyal, and J. Tomida. Multi-party functional encryption. In TCC 2021: 19th

Theory of Cryptography Conference, Part II, Lecture Notes in Computer Science 13043, pages
224�255, Raleigh, NC, USA, November 8�11, 2021. Springer, Heidelberg, Germany.

AGT22. S. Agrawal, R. Goyal, and J. Tomida. Multi-input quadratic functional encryption: Stronger
security, broader functionality. In TCC 2022: 20th Theory of Cryptography Conference, Part I,
Lecture Notes in Computer Science 13747, pages 711�740, Chicago, IL, USA, November 7�10,
2022. Springer, Heidelberg, Germany.

AGW20. M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from k-Lin.
In Advances in Cryptology � CRYPTO 2020, Part I, Lecture Notes in Computer Science 12170,
pages 685�716, Santa Barbara, CA, USA, August 17�21, 2020. Springer, Heidelberg, Germany.

ALMT20. S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for inner product
functional encryption. In PKC 2020: 23rd International Conference on Theory and Practice

of Public Key Cryptography, Part I, Lecture Notes in Computer Science 12110, pages 34�64,
Edinburgh, UK, May 4�7, 2020. Springer, Heidelberg, Germany.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In Advances in Cryptology � CRYPTO 2016, Part III, Lecture Notes in

Computer Science 9816, pages 333�362, Santa Barbara, CA, USA, August 14�18, 2016. Springer,
Heidelberg, Germany.

ATY23. S. Agrawal, J. Tomida, and A. Yadav. Attribute-based multi-input FE (and more) for attribute-
weighted sums. In Advances in Cryptology � CRYPTO 2023, Part IV, Lecture Notes in Computer

Science 14084, pages 464�497, Santa Barbara, CA, USA, August 20�24, 2023. Springer, Heidel-
berg, Germany.

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic
functions with applications to predicate encryption. In Advances in Cryptology � CRYPTO 2017,

Part I, Lecture Notes in Computer Science 10401, pages 67�98, Santa Barbara, CA, USA, Au-
gust 20�24, 2017. Springer, Heidelberg, Germany.

BIK+17. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In
ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1175�1191,
Dallas, TX, USA, October 31 � November 2, 2017. ACM Press.

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In Advances in

Cryptology � ASIACRYPT 2015, Part I, Lecture Notes in Computer Science 9452, pages 470�491,
Auckland, New Zealand, November 30 � December 3, 2015. Springer, Heidelberg, Germany.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: De�nitions and challenges. In
TCC 2011: 8th Theory of Cryptography Conference, Lecture Notes in Computer Science 6597,
pages 253�273, Providence, RI, USA, March 28�30, 2011. Springer, Heidelberg, Germany.

CDG+18. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client
functional encryption for inner product. In Advances in Cryptology � ASIACRYPT 2018, Part II,
Lecture Notes in Computer Science 11273, pages 703�732, Brisbane, Queensland, Australia, De-
cember 2�6, 2018. Springer, Heidelberg, Germany.

CDSG+20. J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval. Dynamic decentralized
functional encryption. In Advances in Cryptology � CRYPTO 2020, Part I, Lecture Notes in

Computer Science 12170, pages 747�775, Santa Barbara, CA, USA, August 17�21, 2020. Springer,
Heidelberg, Germany.

Cha07. M. Chase. Multi-authority attribute based encryption. In TCC 2007: 4th Theory of Cryptog-

raphy Conference, Lecture Notes in Computer Science 4392, pages 515�534, Amsterdam, The
Netherlands, February 21�24, 2007. Springer, Heidelberg, Germany.

CLT18. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In Advances in Cryptology � ASIACRYPT 2018, Part II, Lecture
Notes in Computer Science 11273, pages 733�764, Brisbane, Queensland, Australia, December 2�
6, 2018. Springer, Heidelberg, Germany.

DP19. E. Dufour Sans and D. Pointcheval. Unbounded inner-product functional encryption with succinct
keys. In ACNS 19: 17th International Conference on Applied Cryptography and Network Security,

26

Lecture Notes in Computer Science 11464, pages 426�441, Bogota, Colombia, June 5�7, 2019.
Springer, Heidelberg, Germany.

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-
S. Zhou. Multi-input functional encryption. In Advances in Cryptology � EUROCRYPT 2014,
Lecture Notes in Computer Science 8441, pages 578�602, Copenhagen, Denmark, May 11�15,
2014. Springer, Heidelberg, Germany.

GKL+13. S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/774, 2013. https://eprint.iacr.org/2013/774.

IW14. Y. Ishai and H. Wee. Partial garbling schemes and their applications. In ICALP 2014: 41st

International Colloquium on Automata, Languages and Programming, Part I, Lecture Notes in

Computer Science 8572, pages 650�662, Copenhagen, Denmark, July 8�11, 2014. Springer, Hei-
delberg, Germany.

KDK11. K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the smart-grid. In
PETS 2011: 11th International Symposium on Privacy Enhancing Technologies, Lecture Notes

in Computer Science 6794, pages 175�191, Waterloo, ON, Canada, July 27�29, 2011. Springer,
Heidelberg, Germany.

LT19. B. Libert and R. Titiu. Multi-client functional encryption for linear functions in the standard
model from LWE. In Advances in Cryptology � ASIACRYPT 2019, Part III, Lecture Notes in

Computer Science 11923, pages 520�551, Kobe, Japan, December 8�12, 2019. Springer, Heidel-
berg, Germany.

LW11. A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In Advances in Cryptology

� EUROCRYPT 2011, Lecture Notes in Computer Science 6632, pages 568�588, Tallinn, Estonia,
May 15�19, 2011. Springer, Heidelberg, Germany.

LWG+23. Y. Li, J. Wei, F. Guo, W. Susilo, and X. Chen. Robust decentralized multi-client functional
encryption: Motivation, de�nition, and inner-product constructions. In Advances in Cryptol-

ogy � ASIACRYPT 2023, Part V, Lecture Notes in Computer Science 14442, pages 134�165,
Guangzhou, China, December 4�8, 2023. Springer, Heidelberg, Germany.

MJ18. Y. Michalevsky and M. Joye. Decentralized policy-hiding ABE with receiver privacy. In ES-

ORICS 2018: 23rd European Symposium on Research in Computer Security, Part II, Lecture Notes
in Computer Science 11099, pages 548�567, Barcelona, Spain, September 3�7, 2018. Springer, Hei-
delberg, Germany.

MKMS22. J. M. B. Mera, A. Karmakar, T. Marc, and A. Soleimanian. E�cient lattice-based inner-product
functional encryption. In PKC 2022: 25th International Conference on Theory and Practice of

Public Key Cryptography, Part II, Lecture Notes in Computer Science 13178, pages 163�193,
Virtual Event, March 8�11, 2022. Springer, Heidelberg, Germany.

NPP22. K. Nguyen, D. H. Phan, and D. Pointcheval. Multi-client functional encryption with �ne-grained
access control. In Advances in Cryptology � ASIACRYPT 2022, Part I, Lecture Notes in Computer

Science 13791, pages 95�125, Taipei, Taiwan, December 5�9, 2022. Springer, Heidelberg, Germany.
NPP23a. D. D. Nguyen, D. H. Phan, and D. Pointcheval. Veri�able decentralized multi-client functional

encryption for inner product. In Advances in Cryptology � ASIACRYPT 2023, Part V, Lecture
Notes in Computer Science 14442, pages 33�65, Guangzhou, China, December 4�8, 2023. Springer,
Heidelberg, Germany.

NPP23b. K. Nguyen, D. H. Phan, and D. Pointcheval. Optimal security notion for decentralized multi-
client functional encryption. In ACNS 23: 21st International Conference on Applied Cryptography

and Network Security, Part II, Lecture Notes in Computer Science 13906, pages 336�365, Kyoto,
Japan, June 19�22, 2023. Springer, Heidelberg, Germany.

SV23. E. Shi and N. Vanjani. Multi-client inner product encryption: Function-hiding instantiations
without random oracles. In PKC 2023: 26th International Conference on Theory and Practice

of Public Key Cryptography, Part I, Lecture Notes in Computer Science 13940, pages 622�651,
Atlanta, GA, USA, May 7�10, 2023. Springer, Heidelberg, Germany.

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In Advances in Cryptology �

EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pages 457�473, Aarhus, Denmark,
May 22�26, 2005. Springer, Heidelberg, Germany.

Tom19. J. Tomida. Tightly secure inner product functional encryption: Multi-input and function-hiding
constructions. In Advances in Cryptology � ASIACRYPT 2019, Part III, Lecture Notes in Com-

puter Science 11923, pages 459�488, Kobe, Japan, December 8�12, 2019. Springer, Heidelberg,
Germany.

TT18. J. Tomida and K. Takashima. Unbounded inner product functional encryption from bilinear
maps. In Advances in Cryptology � ASIACRYPT 2018, Part II, Lecture Notes in Computer

Science 11273, pages 609�639, Brisbane, Queensland, Australia, December 2�6, 2018. Springer,
Heidelberg, Germany.

Üna20. A. Ünal. Impossibility results for lattice-based functional encryption schemes. In Advances in

Cryptology � EUROCRYPT 2020, Part I, Lecture Notes in Computer Science 12105, pages 169�
199, Zagreb, Croatia, May 10�14, 2020. Springer, Heidelberg, Germany.

https://eprint.iacr.org/2013/774

27

ZLZ+24. Z. Zhu, J. Li, K. Zhang, J. Gong, and H. Qian. Registered functional encryptions from pairings.
Cryptology ePrint Archive, Paper 2024/327, 2024. https://eprint.iacr.org/2024/327.

A More De�nitions

A.1 Arithmetic Branching Programs

De�nition 12 (Arithmetic Branching Programs (ABPs) [IW14, AGW20, ATY23]). An
arithmetic branching program f : Zn0

p → Zp is de�ned by a prime p, a directed acyclic graph (V,E),

two special vertices v0, v1 ∈ V , and a labeling function σ : E → FAffine, where FAffine consists of all
a�ne functions g : Zn0

p → Zp. The size of f is the number of vertices |V |. Given an input x ∈ Zn0
p to

the ABP, we can assign a Zp element to edge e ∈ E by σ(e)(x). Let P be the set of all paths from v0
to v1. Each element in P can be represented by a subset of E. The output of the ABP on input x is
de�ned as

∑
E′∈P

∏
e∈E′ σ(e)(x). We can extend the de�nition of ABPs for functions f : Zn0

p → Zn1
p

by evaluating each output in a coordinate-wise manner and denote such a function class by FABP
n0,n1

.

There exists a linear-time algorithm that converts any boolean formula, boolean branching pro-
gram or arithmetic formula to an arithmetic branching program with a constant blow-up in the
representation size, so ABPs can be considered as a stronger computational model than the others.

A.2 DDFE for All-or-Nothing Encapsulation

De�nition 13 (All-or-Nothing Encapsulation [CDSG+20]). AoNE is de�ned on messages of
length L and label space L as follows:

K = ∅ M = {0, 1}L × S(PK)× L

Then, F (ϵK , (pk, (xpk,Upk, ℓpk))pk∈U) = (Upk, ℓpk)pk∈U for any U ∈ L(PK) and

F (ϵK , (pk,mpk)pk∈UM
) =

{
(pk, xpk)pk∈UM

if condition (∗)
⊥ otherwise.

and AoNE condition (∗) is: ∃ℓ ∈ L,∀pk ∈ UM ,mpk = (xpk,UM , ℓ).

We note that a concrete AoNE construction that is secure in the standard model is provided
in [CDSG+20].

A.3 Pseudorandom Functions (PRF)

De�nition 14 (PRF). A PRF from input space X to output space Y is secure if for any security
parameter λ ∈ N, and for every PPT adversary A, there exists a negligible function negl(·) such that

AdvPRF,A(λ) :=

∣∣∣∣∣∣∣∣∣∣
P

AOb
PRF(·)(1λ) = b

∣∣∣∣∣∣∣∣∣∣
K

$←− {0, 1}λ, b $←− {0, 1}
∀ℓ ∈ X :

O0
PRF(ℓ) := PRFK(ℓ)

O1
PRF(ℓ) := RF(ℓ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where Ob
PRF(·) is an oracle depending on the challenge bit b and RF is a random function computed

on the �y.

A.4 Non-Interactive Key Exchange (NIKE)

De�nition 15 (Non-Interactive Key Exchange). A NIKE scheme consists of three PPT algo-
rithms:

� SetUp(λ) : On input a security parameter λ, it outputs public parameters pp. Those parameters
are implicit arguments to all the other algorithms;

� KeyGen(): It generates and outputs a party's public key pk ∈ PK and the corresponding secret key
skpk;

� SharedKey(pk, skpk′): On input a public key and a secret key corresponding to a di�erent public
key, it deterministically outputs a shared key K.

https://eprint.iacr.org/2024/327

28

Correctness. For all security parameters λ ∈ N, it holds that

Pr[SharedKey(pk, skpk′) = SharedKey(pk′, skpk)] = 1,

where the probability is taken over pp← SetUp(λ), (pk, skpk)← KeyGen(), (pk′, sk′pk)← KeyGen().

De�nition 16 (Security for NIKE). No adversary A should be able to win the following security
game against a challenger C, with unlimited and adaptive access to the oracles QNewHon, QRev,
QTest, and QCor described below:

� Initialize: the challenger runs the setup algorithm pp ← SetUp(λ) and chooses a random bit

b
$←− {0, 1}. It initializes the set H of honest participants to ∅. It provides pp to the adversary A;

� Participant creation queries QNewHon(): it generates (pk, skpk)← KeyGen(), stores the association
(pk, skpk) in the set H of honest keys, and returns pk to the adversary;

� Reveal queries QRev(pk, pk′) : it requires at least one of pk and pk′ be in H. Assume pk ∈ H, then
it returns SharedKey(pk′, skpk);

� Test queries QTest(pk, pk′): it requires that both pk and pk′ were generated via QNewHon.
• if b = 0, it returns SharedKey(pk′, skpk);
• if b = 1, it returns a (uniformly) random value and stores the value so it can consistently
answer further queries to QTest(pk, pk′) or QTest(pk′, pk).

� Corruption queries QCor(pk): it recovers the secret key sk associated to pk from H and returns
it, then removes (pk, sk) from H. If pk is not associated with any secret key (i.e. it is not in H),
then nothing is returned;

� Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β according to
the analysis given below.

Finalize outputs the bit β = (b′ = b) unless a QCor query was made for any public key which was
involved in a query to QTest, or a QRev query was made for a pair of public keys which was also
involved in a QTest query, in which case a random bit β is returned. We say NIKE is secure if given
any parameter λ ∈ N, for every PPT adversary A, the following holds:

AdvNIKE(A) = |Pr[β = 1]− 1/2| ≤ negl(λ).

B Deferred Proofs

B.1 Updatable Zero Sharing

Lemma 5 (UZS: Transition from G0 to G1). For any PPT adversary A, the advantage in
distinguishing two games is

|Adv0 − Adv1| ≤ AdvNIKE.

Proof. We build an adversary B against the IND security of NIKE from an adversary A that distin-
guishes between G0 and G1. To simulate a UZS challenger, B uses the NIKE oracles as follows:

� For every QNewHon() query, B returns pk from the NIKE.QNewHon() query to A.
� For every QCor(pk) query, B obtains NIKE.skpk from the NIKE.QCor(pk) query, and computes

kpk,pk′ ← NIKE.SharedKey(pk′,NIKE.skpk) for all pk
′ ∈ PK to complete the reply to A.

� Instead of generating by itself the keys (kpk,pk′)(pk,pk′)∈H2,pk ̸=pk′ , the adversary B uses the challenge
shared keys kpk,pk′ from the NIKE.QTest(pk, pk′) queries.

� B outputs A's guess for the challenge bit NIKE.b.
The admissibility condition (∗) of NIKE holds since the set of corrupted users in UZS is sent in one
shot. Therefore, when NIKE.b = 0, B is playing G0; when NIKE.b = 1, B is playing G1. ⊓⊔
Lemma 6 (UZS: Transition from G1 to G2). For any PPT adversary A, the advantage in
distinguishing two games is

|Adv1 − Adv2| ≤
(
qQNewHon − qQCor

2

)
· AdvPRF.

Proof. We proceed by using multiple hybrid games over each pair of di�erent honest parties (pk, pk′) ∈
H2. For each transition, we build an adversary B against the IND security of PRF from an adversary
A that distinguishes two games in the transition. To simulate a UZS challenger, B uses the PRF
oracle, instead of generating by itself the PRF key kpk,pk′ to handle all PRFkpk,pk′ related operations,
and �nally outputs A's guess for the challenge bit PRF.b. Since the number of honest pairs is bounded
by

(
qQNewHon−qQCor

2

)
, one completes the proof. ⊓⊔

29

G0, G1, G2, G3 :

pp← SetUp(1λ); b
$←− {0, 1}

(PK, st1)← A(pp); (pk)pk∈PK ← QNewHon([PK])
(C, st2)← A((pk)pk∈PK, st1); (skpk)pk∈C ← QCor([C])
b′ ← AQSeedGen(·,·,·),QTokGen(·,·,·),QShare(·,·)((skpk)pk∈C , st2)

Output: b′ if Condition (∗) is satis�ed, or b′ $←− {0, 1} otherwise.

QNewHon():
(pk,NIKE.skpk)← NIKE.KeyGen()
∀pk′ ∈ PK : kpk,pk′ ← NIKE.SharedKey(pk′, skpk)

For (pk1, pk2) ∈ H2 and pk1 ̸= pk2 : kpk1,pk2
$←− Zp

Store (pk, skpk) = (pk,NIKE.skpk, (kpk,pk′)pk′∈U\{pk})
Return pk

QCor(pk):
If pk /∈ PK, return ⊥.
Return skpk = (NIKE.skpk, (kpk,pk′)pk′∈U\{pk}).

QSeedGen(pk,U , ℓs):
aℓs
pk,U =

(
(−1)pk<pk′PRFkpk,pk′ (”s”||U||ℓs)

)
pk′∈U\{pk}

aℓs
pk,U =

(
(−1)pk<pk′ [PRFkpk,pk′ /RFpk,pk′]

(pk,pk′)∈H2

(”s”||U||ℓs)
)
pk′∈U\{pk}

Return seedℓspk,U = [aℓs
pk,U].

QTokGen(pk,U , ℓu):
bℓupk,U =

(
PRFkpk,pk′ (”u”||U||ℓu)

)
pk′∈U\{pk}

bℓupk,U =
(
[PRFkpk,pk′ /RFpk,pk′]

(pk,pk′)∈H2

(”u”||U||ℓu)
)
pk′∈U\{pk}

Return tokenℓupk,U = bℓupk,U .

QShare(U , ℓ):
Return (shareℓpk,U)pk∈H∩U ← [PShareGen(H ∩ U ,U , ℓ)/Rℓ

H∩U,U]
b

(shareℓpk,U)pk∈H∩U ←Rℓ
H∩U,U

Fig. 12. Games for the otu-sta-IND proof of UZS in Theorem 1

30

B.2 Function-Hiding Inner-Product DDFE

G0, G1, G3 :

pp← SetUp(1λ); b
$←− {0, 1}

(PK, st1)← A(pp); (pk)pk∈PK ← QNewHon([PK])
(C, st2)← A((pk)pk∈PK, st1); (skpk)pk∈C ← QCor([C])
b′ ← AQEnc(·,·,·,·),QDKGen(·,·,·,·)((skpk)pk∈C , st2)
Output b′ if Condition (∗) is satis�ed, or b′ ← {0, 1} otherwise.

QNewHon():
kpk ← KPRF; (upk, uskpk)← uKeyGen(); (apk, askpk)← aKeyGen()
pk = (upk, apk); skpk = (kpk, uskpk, askpk)
Store (pk, skpk) and return pk.

QDKGen(pk,y0 = (k0,0d),y1 = (k1,0d), (U , ℓ)):
[a]2 ← uSeedGen(uskpk, (U , ℓ))
coin← PRFkpk(U) coin← RFpk(U) ∀pk ∈ H
isk← iKeyGen(16d+|U|; coin)

[g]2 = [(yb,02d,02d,a, 0)]2 [g]2 = [(y0,02d,02d,a, 0)]2

idk← iDKGen(isk, [g]2)
act← aEnc(askpk, (idk,U , ℓ||”dk”))
Return (act,U , ℓ).

QEnc(pk,x0 = (m0,0d),x1 = (m1,0d), (U , ℓ)):
b← uTokGen(uskpk, (U , ℓ))
coin← PRFkpk(U) coin← RFpk(U) ∀pk ∈ H
isk← iKeyGen(16d+|U|; coin)

[h]1 = [(xb,02d,02d, b, 0)]1 [h]1 = [(x0,02d,02d, b, 0)]1

ict← iEnc(isk, [h]1)
act← aEnc(askpk, (ictpk,U , ℓ||”ct”))
Return (act,U , ℓ).

QCor(pk):
If pk /∈ PK, return ⊥.
Return skpk = (kpk, uskpk, askpk).

Fig. 13. Games for the sta-sym-IND proof of FH-IP-DDFE in Theorem 2

The case of complete queries. The deferred lemmas for transitions are provided below.

Lemma 7 (FH-IP-DDFE: Transition from G0 to G1). For any PPT adversary A, the advantage
in distinguishing two games is

|AdvG0
− AdvG1

| ≤ (qQNewHon − qQCor) · AdvPRF.

Proof. We proceed by using multiple hybrid games for each pk ∈ H. For each transition, we build an
adversary B against the IND security of PRF from an adversary A that distinguishes two games in
the transition. To simulate a FH-IP-DDFE challenger, B uses the PRF oracle, instead of generating
by itself the PRF key kpk to handle all PRFkpk

related operations, and �nally outputs A's guess for
the challenge bit PRF.b. Since the number of honest parties is bounded by (qQNewHon − qQCor), one
completes the proof. ⊓⊔

Lemma 8 (FH-IP-DDFE: Transitions to G1.1, G
⋆
ℓM .1, G

⋆
ℓM .2, G

⋆
ℓM .4, G

⋆
ℓM .6, G2, G3 from their

previous games). For any PPT adversary A, the advantage in distinguishing between any two
games is upper-bounded by

(qQEnc + qQDKGen) · AdvsymIPE .

31

Proof. We proceed by using multiple hybrid games for each pair of honest (pk,U) ∈ QM ∪ QK .
We build an adversary B against the (adaptive) sym-IND security of IPE from an adversary A that
distinguishes between two games in the considered transition. To simulate a FH-IP-DDFE challenger,
B uses the IPE oracles to handle all IPE related operations for the reply of each (pk,U)-involved query
from A.

� For each complete QDKGen(pk,y0,y1,U , ℓK) query, let g0
pk,U and g1

pk,U be the IPE keys that
B needs to prepare in the previous game and the subsequent game respectively. Then B sends
(g0

pk,U , g
1
pk,U) to IPE decryption key generation oracle. It uses the returned decryption key idkpk

to complete the reply to A.
� For each complete QEnc(pk,x0,x1,U , ℓM) query, let h0

pk,U and h1
pk,U be the IPE messages that

B needs to prepare in the previous game and the subsequent game respectively. Then B sends
(h0

pk,U ,h
1
pk,U) to IPE encryption oracle. It uses the returned ciphertext ictpk to complete the reply

to A.
� B outputs A's guess for the challenge bit IPE.b.

The admissibility condition (∗) of IPE in each transition holds since one always has g0
pk,U

⊤ · h0
pk,U =

g1
pk,U

⊤ · h1
pk,U . Proceeding for each (pk,U) in queries where pk ∈ H, one completes the lemma. ⊓⊔

The case of incomplete queries. We �rst remark that as all transitions in the case of complete
queries do not need to exploit the structure of merged messages and keys, namely x = (m,0d) and
y = (k,0d), then the indistinguishability of complete queries DDFE also holds for arbitrary 2d-length
message x and key y. We use this remark for the following hybrid argument.

Game Gin
1 : This game corresponds to G1, where for each pk ∈ H ∩ U , the challenger encrypts

x = (mb,0d) to answer any query on (pk,m0,m1,U , ℓM) and generates decryption keys for
y = (kb,0d) to answer any query on (pk,k0,k1,U , ℓK).

Game Gin
2 : The change is that the challenger encrypts x = (mb,m0).

Game Gin
3 : The change is that the challenger generates decryption keys for y = (0d,k0).

Game Gin
4 : The change is that the challenger encrypts x = (0d,m0). As y = (0d,k0) in this game,

there is no more challenge bit b, so the adversary's advantage is 0. which is identical to that in
G3.

Inspired by the proof strategy relying on AoNE and complete-queries DDFE in [SV23], we use the
following intermediate games for the transition from Gin

1 to Gin
2 . For every (UM , ℓM) ∈ QM ,

Games Gin
1.(UM ,ℓM): In this game, to answer any query on (pk,m0,m1,U , ℓ) the challenger encrypts

x = (mb,m0) if (U , ℓ) < (UM , ℓM) and x = (mb,0d) if (U , ℓ) ≥ (UM , ℓM). The only change
between games of adjacent pairs (UM , ℓM) and (UM , ℓM) + 1 is the selection of message x to
encrypt for encryption queries on (pk,m0,m1,UM , ℓM).

An adversary A that distinguishes between two games can be used by an adversary B to play against
either DDFE or AoNE as follows.

� B �rst guesses if A sends complete queries at (UM , ℓM) or not. If yes, it starts a sta-sym-IND
game of DDFE for complete queries. If no, it starts an sym-IND game of AoNE. If in the end
the guess is wrong, it aborts the underlying security game. In both games, B receives encryption
queries (pk,m0,m1,U , ℓ) from A and prepares challenge messages and keys as follows:
• y = y0 = y1 = (kb,0d);
• x0 = x1 = (mb,m0) if (U , ℓ) < (UM , ℓM);
• x0 = x1 = (mb,0d) if (U , ℓ) > (UM , ℓM);
• x0 = (mb,0d) and x1 = (mb,m0) if (U , ℓ) = (UM , ℓM).

� If B is playing against DDFE, then B sends the queries (pk,x0,x1,U , ℓ) and (pk,y,y,U , ℓ) to
DDFE oracles. Note that if encryption queries on (U , ℓ) ̸= (UM , ℓM) and decryption-key queries
sent by A are not complete, B can complete them by sending itself queries for identical messages
and keys on missing pk ∈ U ∩H to DDFE oracles. If A sends complete queries at (UM , ℓM), B will
be an adversary against DDFE with all complete queries.

� If B is playing against AoNE, then B uses IPE to encrypt (x0,x1) into (ict0, ict1), and sends
(pk, ict0, ict1,U , ℓ||”ct”) to AoNE encryption oracle. For decryption-key queries, it uses IPE to
generate keys idk for y and sends (pk, idk, idk,U , ℓ||”dk”) to AoNE decryption-key oracle. If A
sends incomplete queries at (UM , ℓM), B will be an admissible adversary against AoNE.

32

The advantage of A between each pair of games Gin
1.(UM ,ℓM) and Gin

1.(UM ,ℓM)+1 is then upper-bounded
by the maximum of best advantages in complete-queries DDFE and AoNE, which is negligible. We
apply a similar strategy of using complete-queries DDFE and AoNE to the transitions between Gin

2 ,
Gin

3 , and Gin
4 .

C Attribute-Weighted-Sum DDFE

Correctness. From the scheme in Figure 11, one can always recover AWIPE ciphertexts (aictpk)pk∈U
and decryption keys (aidkpk)pk∈U from AoNE. The correctness is then implied by the correctness of
the AWIPE scheme and the UZS scheme:∑

pk∈U

aiDec(aictpk, aidkpk)

=
∑
pk∈U

[
∑

j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j + bℓMpk,U

⊤
· aℓf

pk,U]T

=[
∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T

+e

[1]1,
∑
pk∈U

uShareEval(uSeedUpt(seed
ℓf
pk,U , token

ℓM
pk,U))


=[

∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T + e

[1]1,
∑
pk∈U

share
ℓf ||ℓM
pk,U


=[

∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T + e ([1]1, [0]2)

=[
∑
pk∈U

∑
j∈[Npk]

fpk(xpk,j)
⊤ · zpk,j]T .

⊓⊔

Remark 6 (Size of Ciphertext/Decryption Key). In the AWS-DDFE construction (Figure 11), if one
uses the AWSw/IP-FE that is constructed based on the MDDHk assumption as in [ATY23] and
the AoNE that is constructed from a rate-1 identity-based encryption and employed in the hybrid-
encryption mode as in [CDSG+20], then the complexity for the size each DDFE ciphertext will be
Oλ(N(kn0 + n1 + n)), and the size of each DDEE decryption key will be Oλ(t(kn0 + n1 + n)). Here
(t, n0, n1) are parameters related to ABPs in FABP

n0,n1
.

Like FH-IP-DDFE, we have a remark from the admissibility of AWS-DDFE.

Remark 7 (Invariance in AWS-DDFE). Given any admissible adversary against AWS-DDFE and
any challenge bit b, Condition (∗) in De�nition 5 implies that among encryption queries under (ℓM ,U)
and decryption-key queries under (ℓf ,U), the equalities∑

pk∈H∩U\pk⋆

∑
j∈[Npk]

fpk(xpk,j)
⊤
zb
pk,j +

∑
j∈[Npk⋆]

fpk⋆(x
τ
pk⋆,j)

⊤
zb,τ
pk⋆,j

=
∑

pk∈H∩U\pk⋆

∑
j∈[Npk]

fpk(xpk,j)
⊤
z0
pk,j +

∑
j∈[Npk⋆]

fpk⋆(x
τ
pk⋆,j)

⊤
z0,τ
pk⋆,j

holds for each pk⋆ ∈ H ∩ U and each index τ that numerates repetitions of encryption queries under
(pk⋆, ℓM ,U). Then one has the value

∆b
pk⋆ :=

∑
j∈[Npk⋆]

fpk⋆(x
τ
pk⋆,j)

⊤
z0,τ
pk⋆,j −

∑
j∈[Npk⋆]

fpk⋆(x
τ
pk⋆,j)

⊤
zb,τ
pk⋆,j

=
∑

j∈[Npk⋆]

fpk⋆(x
1
pk⋆,j)

⊤
z0,1
pk⋆,j −

∑
j∈[Npk⋆]

fpk⋆(x
1
pk⋆,j)

⊤
zb,1
pk⋆,j

33

be an invariance across τ . Furthermore, each variance is an additive share of zero, i.e.
∑

pk∈H∩U ∆b
pk =

0.

Proof (Theorem 3). This is a selective-static game where any adversary has to send encryption
queries QM , decryption-key queries QK and corruption queries for C = PK \ H in one shot. For
brevity, we use the notations x̂ := (xj , zj)j∈[N] and f̂ for each ABP function f such that f̂(x̂) :=∑

j∈[N] f(xj)
⊤
zj . We proceed via a hybrid argument: we describe the global changes in the IND game

by using the games G0, G1, G2 and G3 that are described below; the transition between G2 and G3

requires intermediate games (G2.(U,ℓM).i)i∈[5] (see Figure 14) for each pair (U , ℓM) ∈ QM . Notably,
the game G0 corresponds to sel-sta-sym-IND security game, and the game G3 corresponds to the
case where adversary's advantage is 0 since there is no challenge bit b.

Game G1: The change is that the challenger uses a random function RFpk instead of PRFkpk
for

pk ∈ H. The indistinguishability is implied by the security of the pseudorandom functions.
Game G2: When pk ∈ H, a decryption key query (pk, (f̂pk)pk∈UK

,UK) ∈ QK is said to be incomplete
if there exists pk′ ∈ H ∩ UK such that there is no key query (pk′, (f̂pk)pk∈UK

,UK) ∈ QK . For
that query, actpk is changed to the encapsulation of (0,UK , ℓf ||”dk”). Similarly, when pk ∈ H,
an encryption query (pk, x̂0

pk, x̂
1
pk,UM , ℓM) ∈ QM is said to be incomplete if there exists pk′ ∈

H ∩ UM such that there is no encryption query (pk′, x̂0
pk′ , x̂

1
pk′ ,UM , ℓM) ∈ QM . For that query,

actpk is changed to the encapsulation of (0,UM , ℓM ||”ct”). The indistinguishability is implied by
the security of the AoNE scheme.

Game G3: In this game, for every complete encryption query on the tuple (pk, x̂0
pk, x̂

1
pk,UM , ℓM), the

challenger chooses x̂0
pk to encrypt.

Lemmas for transitions between the intermediate games (G2.(U,ℓM).i)i∈[5] (see Figure 14) for each
pair (U , ℓM) ∈ QM are provided in the following section, which complete the transition from G2 to
G3. Therefore, the theorem is complete. ⊓⊔

Lemma 9 (AWS-DDFE: Transition from G2.(U,ℓM).0 to G2.(U,ℓM).1). For any PPT adversary A,
the advantage in distinguishing two games is∣∣∣AdvG2.(U,ℓM).0

− AdvG2.(U,ℓM).1

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-symAWIPE .

Proof. On a �xed user set U , we proceed by using multiple hybrid games for each pk ∈ H. We build
an adversary B against the sel-sym security of AWIPE from an adversary A that distinguishes between
two games in the transition. To simulate a AWS-DDFE challenger, B uses the AWIPE oracles to handle
all AWIPE related operations for the reply of each (pk,U)-involved query from A.

� For each complete QDKGen(pk, (f̂pk)pk∈U ,U) query, B prepares the AWIPE key as

k0 = (f̂pk, [a
ℓf
pk,U , 0]2),

k1 = (f̂pk, [a
ℓf
pk,U ,a

ℓf
pk,U

⊤
· bℓMpk,U]2)

where f = (f̂pk)pk∈U and sends (pk, k0, k1) to the AWIPE decryption-key oracle. It uses the
returned decryption key to complete the reply to A.

� For each complete QEnc(pk, x̂0
pk, x̂

1
pk,U , ℓM) query, B prepares the AWIPE message as

m0 = (x̂b
pk, [bpk,U,ℓM , 0]1),

m1 = (x̂b
pk, [0

|U|−1, 1]1);

and sends (pk,m0,m1) to the AWIPE encryption oracle. It uses the returned ciphertext to complete
the reply to A.

� B outputs A's guess for the challenge bit AWIPE.b.

Let FAWIPE be the functionality de�ned in De�nition 8 for AWIPE. The admissibility condition (∗) of
AWIPE in each transition holds since one always has

FAWIPE(k
0,m0) = [f̂pk(x̂

b
pk) + a

ℓf
pk,U

⊤
· bℓMpk,U]T = FAWIPE(k

1,m1).

34

Game Adjustment Assumption

aiEnc:

G2.(U,ℓM).0 (U ′, ℓ′M) < (U , ℓM): (x̂0
pk, b

ℓ′M
pk,U′ , 0) Hybrids on

(U ′, ℓ′M) ≥ (U , ℓM): (x̂b
pk, b

ℓ′M
pk,U′ , 0) (U ′, ℓ′M) < (U , ℓM)

aiDKGen: same as in G2

aiEnc:

G2.(U,ℓM).1 (U ′, ℓ′M) = (U , ℓM) : (x̂b
pk,0

|U|−1, 1) IND of AWIPE

aiKeyGen:

U ′ = U : (f̂pk,a
ℓf
pk,U ,a

ℓf
pk,U

⊤
· bℓMpk,U)

aiEnc: same as in G2.(U,ℓM).1

G2.(U,ℓM).2 aiDKGen: IND of UZS

U ′ = U : (f̂pk,a
ℓf
pk,U , R

ℓM ,ℓf
pk,U) where∑

pk∈H∩U R
ℓM ,ℓf
pk,U = −

∑
pk∈C∩U a

ℓf
pk,U

⊤
· bℓMpk,U

aiEnc: same as in G2.(U,ℓM).1

aiDKGen:

G2.(U,ℓM).3 U ′ = U : (f̂pk,a
ℓf
pk,U , R

ℓM ,ℓf
pk,U +∆

b,ℓM ,ℓf
pk,U) Statistical

where∑
pk∈H∩U R

ℓM ,ℓf
pk,U = −

∑
pk∈C∩U a

ℓf
pk,U

⊤
· bℓMpk,U

∆
b,ℓM ,ℓf
pk,U = f̂pk(x̂

0
pk)− f̂pk(x̂

b
pk)

aiEnc: same as in G2.(U,ℓM).1

aiDKGen:

G2.(U,ℓM).4 U ′ = U : (f̂pk,a
ℓf
pk,U ,a

ℓf
pk,U

⊤
· bℓMpk,U +∆

b,ℓM ,ℓf
pk,U) IND of UZS

where

∆
b,ℓM ,ℓf
pk,U = f̂pk(x̂

0
pk)− f̂pk(x̂

b
pk)

aiEnc:

G2.(U,ℓM)+1.0 := (U ′, ℓ′M) = (U , ℓM) : (x̂0
pk, b

ℓM
pk,U , 0) IND of AWIPE

G2.(U,ℓM).5 aiKeyGen:

U ′ = U : (f̂pk,a
ℓf
pk,U , 0)

Fig. 14. Intermediate hybrids for the transition fromG2 toG3 in Theorem 3. We denote by (U ′, ℓ′M) < (U , ℓM)
when (U ′, ℓ′M) is a previous pair of (U , ℓM) in the encryption-query set QM .

35

Therefore, in each transition of the multiple hybrid games for each pk ∈ H, when AWIPE.b = 0, A is
playing the previous game; when AWIPE.b = 1, A is playing the subsequent game. Since the number
of pk ∈ H queried to either QEnc or QDKGen is bounded by (qQNewHon − qQCor), one has∣∣∣AdvG2.(U,ℓM).0

− AdvG2.(U,ℓM).1

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-symAWIPE .

⊓⊔

Lemma 10 (AWS-DDFE: Transition from G2.(U,ℓM).1 to G2.(U,ℓM).2). For any PPT adversary
A, the advantage in distinguishing two games is∣∣∣AdvG2.(U,ℓM).1

− AdvG2.(U,ℓM).2

∣∣∣ ≤ Advotu-staUZS .

Proof. We build an adversary B against the otu-sta-IND security of UZS from an adversary A that
distinguishes between two games in the transition. To simulate a AWS-DDFE challenger, B uses the
UZS oracles to handle all UZS related operations.

� For each complete QEnc(pk, x̂0
pk, x̂

1
pk,U ′, ℓ′M) query, B prepares the AWIPE message as

• If (U ′, ℓ′M) ̸= (U , ℓM): it obtains bpk,U ′,ℓ′M
← QTokGen(pk,U ′, ℓ′M) to complete m.

• If (U ′, ℓ′M) = (U , ℓM): it does not have to obtain bℓMpk,U as the message to AWIPE encryption

is (x̂b, [0|U|−1, 1]1) in this case.
� For each complete QDKGen(pk, (f̂pk)pk∈U ,U) query, B prepares the AWIPE key as

• B obtains [aℓf
pk,U]2 ← QSeedGen(pk,U , ℓf);

• B obtains ([RℓM ,ℓf
pk,U]2)pk∈U∩H ← QShare(U , ℓf ||ℓM);

where f = (fpk)pk∈U and completes the key with the inner-product input as

k = (f̂pk, [a
ℓf
pk,U , R

ℓM ,ℓf
pk,U]2).

The admissibility condition (∗) of UZS holds since

� all the corruption queries in AWS-DDFE are sent in one shot;
� QShare(U , ℓf ||ℓM) queries are made for the same ℓM on every U and there are no QTokGen(pk,U , ℓM)
queries required.

When UZS.b = 0, one has [R
ℓM ,ℓf
pk,U]2 = [a

ℓf
pk,U

⊤
· bℓMpk,U]2 which corresponds to G2.(U,ℓM).1; and when

UZS.b = 1, one has ([R
ℓM ,ℓf
pk,U]2)pk∈H∩U

$←− RH∩U,ℓf ||ℓM (as in De�nition 10), which corresponds to
G2.(U,ℓM).2. Therefore, one has∣∣∣AdvG2.(U,ℓM).1

− AdvG2.(U,ℓM).2

∣∣∣ ≤ Advotu-staUZS .

⊓⊔

Lemma 11 (AWS-DDFE: Transition from G2.(U,ℓM).2 to G2.(U,ℓM).3). The two games G2.(U,ℓM).2

to G2.(U,ℓM).3 are identical.

Proof. By the fact that
∑

pk∈H∩U ∆
b,ℓM ,ℓf
pk,U = 0 (Remark 7), for any random shares

(
R

ℓM ,ℓf
pk,U

)
pk∈H∩U

of the relation ∑
pk∈H∩U

R
ℓM ,ℓf
pk,U = −

∑
pk∈C∩U

a
ℓf
pk,U

⊤
· bℓMpk,U ,

one has
(
R

ℓM ,ℓf
pk,U +∆

b,ℓM ,ℓf
pk,U

)
pk∈H∩U

are also random shares of the same relation. ⊓⊔

Lemma 12 (AWS-DDFE: Transition from G2.(U,ℓM).4 to G2.(U,ℓM).5). For any PPT adversary
A, the advantage in distinguishing two games is∣∣∣AdvG2.(U,ℓM).4

− AdvG2.(U,ℓM).5

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-symAWIPE .

36

Proof. Given {(pk, x̂τ,0
pk , x̂

τ,1
pk ,U , ℓM)}τ∈[repℓM

] as a set of complete encryption queries and (pk, (f̂pk)pk∈U ,U)
as a complete decryption-key query, one has the following facts by the Remark 7:

1. ∆
b,ℓM ,ℓf
pk,U = f̂pk(x̂

0,τ
pk)− f̂pk(x̂

b,τ
pk) ∀τ ∈ [repℓM],

2.
∑

pk∈H∩U ∆
b,ℓM ,ℓf
pk,U = 0.

We proceed by using multiple hybrid games for each pk ∈ H. We build an adversary B against the sel-
sym security of AWIPE from an adversary A that distinguishes between two games in the transition.
To simulate a AWS-DDFE challenger, B uses the AWIPE oracles to handle all AWIPE related operations
for the reply of each (pk,U)-involved query from A.

� For each complete QDKGen(pk, (f̂pk)pk∈U ,U) query, B prepares the AWIPE key as

k0 = (f̂pk, [a
ℓf
pk,U ,a

ℓf
pk,U

⊤
· bℓMpk,U +∆

b,ℓM ,ℓf
pk,U]2)

k1 = (f̂pk, [a
ℓf
pk,U ,a

ℓf
pk,U

⊤
· bℓMpk,U]2)

where f = (fpk)pk∈U and sends (pk, k0, k1) to the AWIPE decryption key generation oracle. It uses
the returned decryption key to complete the reply to A.

� For each complete QEnc(pk, x̂0
pk, x̂

1
pk,U , ℓM) query, B prepares the AWIPE message as

m0 = (x̂b
pk, [0

|U|−1, 1]1);

m1 = (x̂0
pk, [b

ℓM
pk,U , 0]1);

and sends (pk, m̂0, m̂1) to the AWIPE encryption oracle. It uses the returned ciphertext to complete
the reply to A.

� B outputs A's guess for the challenge bit AWIPE.b.

Let FAWIPE be the functionality de�ned in De�nition 8 for AWIPE. The admissibility condition (∗) of
AWIPE in each transition holds since one always has

FAWIPE(k
0,m0) = [(f̂pk(x̂

b
pk) +∆

b,ℓM ,ℓf
pk,U) + a

ℓf
pk,U

⊤
· bℓMpk,U]T

= [f̂pk(x̂
0
pk) + a

ℓf
pk,U

⊤
· bℓMpk,U]T (by the above fact 1)

= FAWIPE(k
1,m1)

The index τ is omitted in the above equalities as ∆
b,ℓM ,ℓf
pk,U applies to all pairs of τ ∈ [repℓM] and

f = (f̂pk)pk∈U . Therefore, in each transition of the multiple hybrid games for each pk ∈ H, when
AWIPE.b = 0, A is playing the previous game; when AWIPE.b = 1, A is playing the subsequent game.
Since the number of pairs pk ∈ H queried to either QEnc or QDKGen is bounded by (qQNewHon−qQCor),
one has ∣∣∣AdvG2.(U,ℓM).4

− AdvG2.(U,ℓM).5

∣∣∣ ≤ (qQNewHon − qQCor) · Advsel-symAWIPE .

⊓⊔

	Dynamic Decentralized Functional Encryptions from Pairings in the Standard Model

