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ABSTRACT
Order-preserving encryption (OPE) allows efficient comparison

operations over encrypted data and thus is popular in encrypted

databases. However, most existing OPE schemes are vulnerable to

inference attacks as they leak plaintext frequency. To this end, some

frequency-hiding order-preserving encryption (FH-OPE) schemes

are proposed and claim to prevent the leakage of frequency. FH-

OPE schemes are considered an important step towards mitigating

inference attacks.

Unfortunately, there are still vulnerabilities in all existing FH-

OPE schemes. In this work, we revisit the security of all existing

FH-OPE schemes. We are the first to demonstrate that plaintext fre-

quency hidden by them is recoverable. We present three ciphertext-

only attacks named frequency-revealing attacks to recover plaintext

frequency. We evaluate our attacks in three real-world datasets.

They recover over 90% of plaintext frequency hidden by any exist-

ing FH-OPE scheme. With frequency revealed, we also show the

potentiality to apply inference attacks on existing FH-OPE schemes.

Our findings highlight the limitations of current FH-OPE schemes.

We demonstrate that achieving frequency-hiding requires address-

ing the leakages of both non-uniform ciphertext distribution and

insertion orders of ciphertexts, even though the leakage of insertion

orders is often ignored in OPE.

1 INTRODUCTION
Order-preserving encryption (OPE) [9–11, 21, 22, 30, 35] is a widely

used technique in encrypted databases for performing range queries [5,

31, 36]. It preserves plaintext order in ciphertexts to allow efficient

sorting and comparison operations over encrypted data. Moreover,

it does not require any modification to existing database engines.

However, the security of OPE has been debated for a long time.

Boldyreva et al. [9] present the ideal-security of OPE: not to reveal

any other information besides plaintext order. But most existing

OPE schemes [9, 22, 30] additionally leak plaintext frequency be-

cause they are designed to be deterministic, i.e., the same plain-

text is always encrypted to the same ciphertext. The leakage of

frequency makes OPE vulnerable to plenty of frequency-based

inference attacks [6, 17, 28]. For example, Grubbs et al. [17] pro-

pose a frequency-based inference attack that recovers over 80% of

plaintexts protected by deterministic OPE schemes.

∗
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To this end, some frequency-hiding order-preserving encryption

(FH-OPE) schemes [21, 25, 32] are proposed to protect plaintext

frequency. The core idea is to randomize ciphertexts of repeated

plaintexts such that each plaintext is encrypted to a unique cipher-

text. For example, plaintexts (0, 0, 0, 1) are encrypted to ciphertexts

(64, 32, 96, 112). There are three different ciphertexts of 0 and all of

them are smaller than the ciphertext of 1.

Up to now, there have been three FH-OPE schemes proposed.

Kerschbaum presents the first FH-OPE scheme [21]. The client

in this scheme maintains the mapping between plaintexts and ci-

phertexts so it can encrypt each plaintext to a unique ciphertext.

However, this scheme is hard to deploy as the mapping requires

𝑂 (𝑛) storage space in the client where 𝑛 is the number of plaintexts.

Roche et al. also present a FH-OPE scheme named POPE [32] and

reduce the storage cost in the client to𝑂 (1). But the client in POPE

has to interact with the server𝑂 (log𝑛) rounds for each range query,
which makes the scheme still unrealistic. The state-of-the-art FH-

OPE scheme [25] is recently proposed by Li et al. in VLDB ’21. It

achieves only 𝑂 (𝑁 ) storage space in the client and 1 interaction

per range query, where 𝑁 is the number of distinct plaintexts.

Motivation. These FH-OPE schemes have been recognized as a

crucial advancement in mitigating inference attacks, as they con-

ceal the frequency of plaintext values, making them impervious to

all frequency-based inference attacks. The best-known published

inference attack against existing FH-OPE schemes is the binomial
attack, which is based on only plaintext order. But it is considered

an ineffective attack since it recovers at most 30% of plaintexts

in [17] and 15% of plaintexts in [18]. As a result, FH-OPE schemes

are still recommended for use in encrypted databases by various

studies [17, 18, 25].

Our contribution. However, we found that there are still vulnera-

bilities in all existing FH-OPE schemes. In this work, we revisit these

schemes and expose the overestimation of their security. Surpris-

ingly, our analysis reveals that plaintext frequency in all existing

FH-OPE schemes is recoverable, which is a new finding to the best

of our knowledge. We present three novel ciphertext-only attacks

named frequency-revealing attacks to recover plaintext frequency.

Our analysis and attacks exploit the leakages of non-uniform ci-

phertext distribution and ciphertext insertion orders, highlighting
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the importance of avoiding these leakages to achieve frequency-

hiding. Notably, the leakage of ciphertext insertion orders is of-

ten overlooked in OPE despite being crucial to the security of the

schemes [21, 22].

We summarize our contributions as follows:

(1) We revisit the security of Kerschbaum’s FH-OPE scheme

and show that its non-uniform ciphertext distribution leaks

plaintext frequency. We present a frequency-revealing at-

tack named density attack that recovers frequency with

only ciphertexts (§ 4).

(2) We revisit the security of POPE and the state-of-the-art

FH-OPE scheme. We present two frequency-revealing at-

tacks named Fisher exact test attack and binomial test attack
against them, respectively. The two attacks are based on

only ciphertexts and their partial insertion orders. As far

as we know, they are the first attacks based on the leakage

of ciphertexts insertion orders [7] (§ 5).

(3) We validate our attacks on three real-world datasets. In

our experiments, our attacks recover more than 90% of

plaintext frequency hidden by any existing FH-OPE scheme.

With frequency revealed, we also evaluate the potential for

inference attacks on existing FH-OPE schemes (§ 6).

(4) We discuss some possible scenarios and directions for im-

proving the security of FH-OPE schemes and further ana-

lyze the impact of recent work [33] on FH-OPE, which tries

to enhance the security of FH-OPE with differential privacy
(§ 7).

2 PRELIMINARIES
Notation. For positive integer 𝑛, [𝑛] is the set {1, ..., 𝑛}, and |𝐼 | is
the cardinality (number of elements) of set 𝐼 . 𝑟

$← 𝐼 means sampling

an element uniformly at random from 𝐼 . [𝑎, 𝑏] and (𝑎, 𝑏) denote
integer sets {𝑎, 𝑎 + 1, ..., 𝑏} and {𝑎 + 1, 𝑎 + 2, ..., 𝑏 − 1}, respectively.
Ber(𝑝) is the Bernoulli distribution, returning 1 with probability 𝑝

and 0 with probability 1 − 𝑝 . Bin(𝑛, 𝑝) is the Binomial distribution,

representing the number of successes in 𝑛 independent trials, each

with probability 𝑝 of success.

2.1 OPE and inference attacks.
Order-preserving encryption (OPE). OPE preserves plaintext or-

der in ciphertexts to achieve both data privacy and functionality in

cloud computing. It is widely used in encrypted databases for range

queries including CryptDB [31], Cipherbase [5] and Monomi [36].

A (stateful) OPE schemeOPE = (KeyGen, Encrypt,Decrypt) con-
sists of the following three algorithms:

• st← KeyGen(1𝜆): Generates a secret state st according to the

security parameter 𝜆.

• st′, 𝑐 ← Encrypt(st, 𝑣): Computes the ciphertext 𝑐 for plaintext

𝑣 and updates the state from st to st′.
• 𝑣 ← Decrypt(st, 𝑐): Computes the plaintext 𝑣 for ciphertext 𝑐

based on state st.
It satisfies: for any plaintexts 𝑣1, 𝑣2, valid state st, and st′, 𝑐𝑖 =

Encrypt(st, 𝑣𝑖 ), if 𝑣1 > 𝑣2 then 𝑐1 > 𝑐2. A deterministic OPE scheme

additionally satisfies if 𝑣1 = 𝑣2 then 𝑐1 = 𝑐2.

Most existing OPE schemes [9, 10, 30? ] are designed to be deter-
ministic. They generically leak both plaintext order and frequency.

The leakages incur two kinds of frequency-based inference attacks:

sorting attack and frequency-analyzing attacks.

Sorting attack. It is presented in [29] for dense data (e.g., age, gen-

der), where each distinct plaintext in plaintext spaceM is encrypted

at least once. In this case, the number of distinct OPE ciphertexts

is equal to the number of distinct plaintexts. Attackers recover

plaintexts by mapping sorted distinct ciphertexts one-to-one to the

sorted distinct plaintexts. So this attack requires that the attacker

knows the plaintext spaceM.

Frequency-analyzing attacks. These attacks [6, 17, 29] are suit-
able for low-density data where only some plaintexts in M are

encrypted. They apply both frequency and order leakages to find

the mapping between ciphertexts and plaintexts such that the dis-

tributions of ciphertexts and plaintexts are close. So these attacks

require that the attacker estimates plaintext distribution in advance

with public auxiliary information.

These inference attacks show, with plaintext frequency revealed,
an OPE scheme is insecure, e.g., in [29], the sorting attack recovers

100% dense plaintexts and a frequency-analyzing attack named

cumulative attack recovers more than 80% low-density plaintexts.

3 THREAT MODEL
3.1 Security model
To describe the plaintext order in a non-deterministic OPE scheme,

Kerschbaum presents the notion of randomized order.

Definition 1 (randomized order). Let 𝑛 be the number of not
necessarily distinct plaintexts in sequence 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛}. For a
randomized order Γ = {𝛾1, 𝛾2, ..., 𝛾𝑛} (∀𝑖 .1 ≤ 𝛾𝑖 ≤ 𝑛,∀𝑖, 𝑗 .𝑖 ≠ 𝑗 =⇒
𝛾𝑖 ≠ 𝛾 𝑗 ) of sequence 𝑉 , it holds that

∀𝑖, 𝑗 .𝑣𝑖 > 𝑣 𝑗 =⇒ 𝛾𝑖 > 𝛾 𝑗

and
∀𝑖, 𝑗 .𝛾𝑖 > 𝛾 𝑗 =⇒ 𝑣𝑖 ≥ 𝑣 𝑗

The randomized order actually assigns order relations between

repeated plaintexts in 𝑉 . So a plaintext sequence can have multiple

randomized orders. For example, let the plaintext sequence 𝑉 =

{1, 2, 2, 3}, then possible randomized orders are Γ1 = {1, 2, 3, 4} and
Γ2 = {1, 3, 2, 4}. Besides, multiple plaintext sequences can have the

same randomized order even if they have different plaintext frequen-

cies, e.g., plaintext sequences 𝑉1 = {2, 2, 2, 3}, 𝑉2 = {1, 2, 1, 3}, and
𝑉3 = {1, 1, 1, 1} have a common randomized order Γ = {1, 3, 2, 4}.
Based on the randomized order, Kerschbaum presents the notion

of frequency-hiding OPE (FH-OPE) with a formal security guaran-

tee named indistinguishability under frequency-analyzing ordered
chosen-plaintext attack (IND-FAOCPA) [21].

IND-FAOCPA security game.The security game𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆)

between a challenger and an adversary A for an OPE scheme Π
with security parameter 𝜆 proceeds as follows:

(1) The adversary A chooses two sequences 𝑉0 and 𝑉1 of 𝑛 not

necessarily distinct plaintexts, such that they have at least one

common randomized order Γ1. He sends them to the challenger.

1
Multiple common randomized orders are possible and allowed
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(2) The challenger flips an unbiased coin 𝑏 ∈ {0, 1}, executes the
key generation Π.KeyGen(1𝜆), and encrypts 𝑉𝑏 = {𝑣𝑏

1
, ..., 𝑣𝑏𝑛}

as 𝐶′ = {𝑐′
1
, ..., 𝑐′𝑛}, i.e., st𝑖 , 𝑐′𝑖 ← Π.Encrypt(st𝑖−1, 𝑣𝑏𝑖 ).

(3) The adversary A outputs a guess 𝑏∗ of 𝑏, i.e. which of the two

sequences it is.

Then the IND-FAOCPA is defined as below:

Definition 2. An OPE encryption scheme Π is IND-FAOCPA
secure against frequency-analyzing ordered chosen plaintext attack if
the adversary A’s advantage of outputting 𝑏 in 𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴

A,Π (𝜆) is
negligible in 𝜆, i.e.

𝑃𝑟 [𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆) = 𝑏] < 1

2

+ 1

𝑝𝑜𝑙𝑦 (𝜆)
IND-FAOCPA implies an OPE scheme leaks the randomized or-

der of the plaintexts, i.e., two plaintext sequences with the same

randomized order - but different plaintext frequency - should be in-

distinguishable [21]. Kerschbaum claims the randomized order does

not contain any frequency information because each value (order)

always occurs exactly once. Therefore, an OPE scheme achieving

IND-FAOCPA secure is called a FH-OPE scheme.

Adversary power. It is clear that FH-OPE encrypts 𝑉 by inserting
the ciphertexts of 𝑉 one by one. The adversary in the game above

observes 𝐶′, which preserves 1) all the order-preserving cipher-

texts of 𝑉 including the entire ciphertext distribution; 2) the exact

insertion order of each ciphertext, i.e., the insertion order of 𝑐′
𝑖
is 𝑖 .

Therefore, suppose the adversary sorts ciphertexts in 𝐶′ according
to their orders and get sorted ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛}, we can
formally describe the two leakage profiles as

L0 (𝑉 ) = {(𝑐1, id1), ..., (𝑐𝑛, id𝑛)}
where id𝑖 is the exact insertion order of 𝑐𝑖 and ∀𝑖, 𝑗 ∈ [𝑛], 𝑐𝑖 < 𝑐 𝑗
iff 𝑖 < 𝑗 . In reality, this adversary captures a passive (honest-but-
curious) attacker: persistent attacker. It does not deviate from the

protocol specified or access the client to issue queries but can get

any information available in the server, e.g., query execution and

results. So the persistent attacker can get all ciphertexts and the

exact insertion order of each ciphertext, i.e., L0 (𝑉 )

3.2 Threat model
In this paper, we consider an adversary which is weaker than the

adversary assumed in FH-OPE. It still has access to all ciphertexts

but is limited to obtaining only partial information about the in-

sertion orders. Given sorted ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛} of 𝑉 , we
refer to the leakage profiles obtained by this adversary as L1 (𝑉 )
and describe them as follows:

L1 (𝑉 ) = {(𝑐1, part(id1)), ..., (𝑐𝑛, part(id𝑛)}
where part(id𝑖 ) represents partial information about the inser-

tion order id𝑖 and ∀𝑖, 𝑗 ∈ [𝑛], part(id𝑖 ) ≥ part(id𝑗 ) if id𝑖 > id𝑗 .
For example, with L0 (𝑉 ) = {(𝑐1, 1), (𝑐2, 3), (𝑐3, 2)}, we may have

L1 (𝑉 ) = {(𝑐1, 1), (𝑐2, 2), (𝑐3, 1)} which implies 𝑐1 and 𝑐3 are cipher-

texts inserted prior to 𝑐2 but it is unknown which of 𝑐1 and 𝑐3 was

inserted earlier. This adversary captures a very weak attacker in

reality: snapshot attacker. It only tries to steal one or multiple snap-
shots of the encrypted database and cannot access any in-memory

information related to the execution in the server. According to

the number of snapshots, we divide the snapshot attacker as single-
snapshot attacker and multi-snapshot attacker. The single-snapshot
attacker [17, 28] observes one snapshot of the encrypted database.

It can get only ciphertexts and their orders. i.e., sorted ciphertexts

𝒄 = (𝑐1, ..., 𝑐𝑛). The multi-snapshot attacker [4, 12] has access to

multiple snapshots of the encrypted database. Each snapshot is

interspersed with a batch of (insertion) operations.

Definition 3 (multi-snapshot attacker). A multi-snapshot
attacker accesses the server at 𝜇 + 1 (𝜇 ≥ 1) ordered distinct moments
𝑇 = {𝑡0, 𝑡1, ..., 𝑡𝜇 } and observes the encrypted database. In the end, it
gets ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛} and an indicator sequence
{part(id1), ..., part(id𝑛)} where part(id𝑖 ) ∈ [𝜇] ∪ {0} indicates that
𝑐𝑖 is firstly observed in 𝑡part(id𝑖 ) by the attacker.

The multi-snapshot attacker additionally observes the leakage of

partial insertion orders, i.e., for two ciphertexts observed in two dis-

tinct moments, it knows which one is inserted earlier. This attacker

captures an adversary who gets access to the encrypted database

periodically [4, 12], e.g., a malicious employee steals a snapshot of

the company’s encrypted database each month.

Snapshot vs Persistent. The multi-snapshot attacker is

much weaker than the persistent attacker. Its power de-

pends on the number of snapshots it has access to. It can

be as strong as the persistent attacker only if it gets a snap-

shot every time an operation happens. In our experiments,

we assume the multi-snapshot attacker gets no more than

11 snapshots while there are millions of operations.

3.3 Frequency-revealing attacks
Our attacks are the first trying to recover plaintext frequency in

FH-OPE. We define frequency-revealing attacks by finding the order
range of ciphertexts whose underlying plaintexts are the same.

Roughly speaking, given ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛}, we
reveal the frequency of 𝑣 by finding the minimal and maximal

orders of its ciphertexts, i.e., we find [𝜙, 𝜋] such that the underlying
plaintext of ciphertexts {𝑐𝜙 , 𝑐𝜙+1, ..., 𝑐𝜋 } is 𝑣 and the underlying

plaintexts of all other ciphertexts in 𝐶 are not 𝑣 . For example, let

{7, 7, 7, 8} be encrypted to {𝑐1, 𝑐2, 𝑐3, 𝑐4}. We find the ciphertexts of

plaintext 7 are {𝑐1, 𝑐2, 𝑐3} and corresponding order range is [1, 3].
So for plaintext 7 we have [𝜙, 𝜋] = [1, 3]. Now we formally define

frequency-revealing attacks as below:

Definition 4 (Freqency-revealing attack). In a FH-OPE
scheme Π, let 𝐶 = {𝑐1, ..., 𝑐𝑛} be an ordered list of (randomized)
ciphertexts for 𝑁 ordered distinct plaintexts {𝑣1, ..., 𝑣𝑁 }. A frequency-
revealing attack Attack works by finding two sorted order vectors:

(𝝓, 𝝅) ← Attack(𝐶, aux)
where 𝝓 = (𝜙1, ..., 𝜙𝑁 ) and 𝝅 = (𝜋1, ..., 𝜋𝑁 ) (∀𝑖 ∈ [𝑁 ], 1 ≤ 𝜙𝑖 ≤
𝜋𝑖 ≤ 𝑛) and aux denotes some (possible) auxiliary information like
partial insertion orders of ciphertexts. It holds that

𝑗 ∈ [𝜙𝑖 , 𝜋𝑖 ] ⇐⇒ 𝑣𝑖 ← Π.Decrypt(st, 𝑐 𝑗 ) .
Example. Let plaintexts {7, 7, 7, 8, 8, 9} be encrypted to ordered

ciphertexts {𝑐1, ..., 𝑐6}. The ciphertexts of plaintexts 7, 8 and 9 are

{𝑐1, 𝑐2, 𝑐3}, {𝑐4, 𝑐5} and {𝑐6}, respectively. The corresponding order
ranges are [1, 3], [4, 5] and [6, 6], respectively. Therefore, the vector
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Algorithm 1: Encrypt in Kerschbaum’s FH-OPE scheme

Input: 𝑣, 𝑡,𝑚𝑖𝑛,𝑚𝑎𝑥

Output: 𝑐

State: Binary search tree 𝑇 of nodes {𝑡} in client

1 if 𝑇 is empty then initialize 𝑇

2 𝑇 .𝑟𝑜𝑜𝑡 = 𝑁𝑜𝑑𝑒 (𝑣,𝑚𝑖𝑛 + ⌈𝑚𝑎𝑥−𝑚𝑖𝑛
2

⌉)
3 return 𝑇 .𝑟𝑜𝑜𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟

4 end

5 if 𝑣 = 𝑡 .𝑝𝑙𝑎𝑖𝑛 then randomize repeated plaintexts
6 𝑐𝑜𝑖𝑛 = RandomCoin() ∈ {0, 1}
7 else
8 𝑐𝑜𝑖𝑛 = ⊥
9 end

10 if 𝑣 > 𝑡 .𝑝𝑙𝑎𝑖𝑛 or 𝑐𝑜𝑖𝑛 = 1 then
11 if 𝑡 .𝑟𝑖𝑔ℎ𝑡 ≠ NULL then
12 return Encrypt(𝑣, 𝑡 .𝑟𝑖𝑔ℎ𝑡, 𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟,𝑚𝑎𝑥)
13 else
14 𝑡 .𝑟𝑖𝑔ℎ𝑡 = 𝑁𝑜𝑑𝑒 (𝑣, 𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟 + ⌈𝑚𝑎𝑥−𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟

2
⌉)

15 return 𝑡 .𝑟𝑖𝑔ℎ𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟

16 end
17 end

18 if 𝑣 < 𝑡 .𝑝𝑙𝑎𝑖𝑛 or 𝑐𝑜𝑖𝑛 = 0 then
19 if 𝑡 .𝑙𝑒 𝑓 𝑡 ≠ NULL then
20 return Encrypt(𝑣, 𝑡 .𝑙𝑒 𝑓 𝑡,𝑚𝑖𝑛, 𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟 )
21 else
22 𝑡 .𝑙𝑒 𝑓 𝑡 = 𝑁𝑜𝑑𝑒 (𝑣,𝑚𝑖𝑛 + ⌈ 𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟−𝑚𝑖𝑛

2
⌉)

23 return 𝑡 .𝑙𝑒 𝑓 𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟

24 end
25 end

𝝓 consisting of minimal orders in these order ranges is (1, 4, 6) while
the vector 𝝅 consisting of maximal orders in these order ranges is

(3, 5, 6). Throughout this paper, we only try to find 𝝅 since 𝝓 can

be calculated based on 𝝅 : 𝜙𝑖+1 = 𝜋𝑖 + 1 (𝑖 ∈ [𝑁 − 1]) and 𝜙1 = 1.

4 ATTACKING KERSCHBAUM’S FH-OPE
SCHEME

In this section, we revisit the security of Kerschbaum’s FH-OPE

scheme under the single-snapshot attacker. We make some obser-

vations about its data structure and ciphertext distribution. Based

on them, we present a frequency-revealing attack named density
attack. It recovers most plaintext frequency hidden by this scheme

with only ciphertexts.

4.1 Review
Encryption. In Kerschbaum’s FH-OPE scheme, the clientmaintains

a binary search tree 𝑇 to record mapping between plaintexts and

OPE ciphertexts: each node in 𝑇 corresponds to a plaintext and its

ciphertext, and these nodes are sorted according to plaintext order.

To encrypt a new plaintext 𝑣 , the client finds its order by searching

𝑣 in𝑇 , and then maps 𝑣 to the ciphertext which is the mean value of

Figure 1. Let plaintext sequence be 𝑉 = {7, 8, 7, 8} and cipher-

text space be C = [0, 128], then plaintexts are encrypted to

{64, 96, 80, 88} with RandomCoin() outputs 1 and 0 in subfigure

3 and 4 respectively.

the ciphertexts for the next smaller plaintext and the next greater

plaintext, e.g., let plaintexts {0, 2} be encrypted to {0, 100}, then a

new plaintext 1 is encrypted to the ciphertext 50.

We formally describe the encryption in Algorithm 1. It is de-

signed recursively to search 𝑣 in 𝑇 . We denote the binary search

tree 𝑇 as a set of nodes {𝑡} and each node consists of a plaintext

(𝑝𝑙𝑎𝑖𝑛), a ciphertext (𝑐𝑖𝑝ℎ𝑒𝑟 ) and pointers to its child nodes. The

input 𝑡 is for the current node searched on. The inputs𝑚𝑖𝑛 and𝑚𝑎𝑥

are the lower and upper limits for the ciphertext. Initially, the client

calls the encryption function with plaintext 𝑣 , the root of 𝑇 , and

the minimal and maximal values in ciphertext space C. Throughout
this paper, we assume |C| is a power of 2 for convenience in the

calculation.

Frequency-hiding. In order to map repeated plaintexts to different

ciphertexts, the client randomly determines their order relations

by calling a function named RandomCoin(), which outputs 0 and

1 with the same probability. We give an example of Kerschbaum’s

FH-OPE scheme in Figure 1. We show the growth of 𝑇 with four

subfigures. There are two calls for RandomCoin(): When inserting

plaintext 7 for the second time in subfigure 3, it outputs 1 so the

second 7 is regarded as greater than the first 7; When inserting 8 for

the second time in subfigure 4, it outputs 0 so the first 8 is greater.

4.2 Observations
Kerschbaum’s FH-OPE scheme ensures each plaintext is mapped to

a unique ciphertext, preventing attackers from determining plain-

text frequency through repeated ciphertexts. However, our obser-

vations regarding the distribution of the ciphertexts suggest that

there may be some leakages about frequency. We give examples to

introduce the leakage intuitively and then formally describe it with

some observations.

Examples. The ciphertext distribution in Kerschbaum’s FH-OPE

scheme often exhibits non-uniformity, thereby leaking plaintext

frequency. Suppose C = [0, 1024], consider the following example.

We divide this example into three phases for ease of presentation.

In each phase, we make RandomCoin() output the same number of

0 and 1 to guarantee fair randomness.

(1) The client first encrypts {7, 8, 7, 8} to {512, 768, 256, 896}. It in-
dicates RandomCoin() is called twice and outputs {0, 1}.
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(2) Then the client encrypts new plaintexts {7, 7, 7, 8} and gets

new ciphertexts {640, 128, 704, 736}. RandomCoin() is called six
times and outputs {1, 0, 0, 1, 1, 0}.

(3) Finally, the client encrypts new plaintexts {8, 8, 8, 7} and gets

new ciphertexts {960, 832, 720, 576}. RandomCoin() is called
eight times and outputs {1, 1, 1, 0, 0, 0, 1, 0}.
We visualize all the ciphertexts in C in Figure 2, revealing the

non-uniform ciphertext distribution and an important phenomenon:

In general, larger ciphertexts of 7 are closer than smaller ciphertexts
of 7, while smaller ciphertexts of 8 are closer than larger ciphertexts of
8. Consequently, the single-snapshot attacker can guess the cipher-

texts belong to two distinct plaintexts. It estimates the maximal

ciphertext of the smaller plaintext and the minimal ciphertext of

the larger plaintext with the closest neighboring ciphertexts such

as 704 and 720. It recovers the plaintext frequency although it does

not know the two distinct plaintexts are 7 and 8. In some cases,

the closet neighboring ciphertexts may have the same underly-

ing plaintext, e.g., in the third phase, {8, 8, 7, 7} are encrypted to

{960, 832, 720, 576} so the maximal ciphertext of 7 is 720 but the

attacker incorrectly guesses 704. However, it is still dangerous as

the attacker still finds most ciphertexts of 7.

10240
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Figure 2. The ciphertext distribution in the example. The cipher-

texts of 7 and 8 are represented by red and blue points, respectively.

We also provide an example where all plaintexts are distinct. Con-

sider C = [0, 128] and encrypting the plaintexts {1, 4, 2, 6, 7, 5, 9}
produces {64, 96, 80, 112, 120, 104, 124}. The single-snapshot attacker
knows 64 is the first encrypted ciphertext because it occupies the

mean value in C. It observes that all ciphertexts are no smaller than

the first encrypted ciphertext 64. However, if all ciphertexts had

the same underlying plaintext, half of the ciphertexts (excluding

64) would be expected to be smaller than 64 due to RandomCoin().
Hence, the attacker infers there are distinct plaintexts in the se-

quence, i.e., ciphertexts 64 and 124 have distinct underlying plain-

texts w.h.p. Similarly, It can further deduce that 80 and 124 have

distinct underlying plaintexts w.h.p. by examining the set of cipher-

texts larger than 64, e.g., if all ciphertexts in the set have the same

underlying plaintexts, then half of them (excluding 80) are expected

to be smaller than 80. Now we formally describe and explain the

unusual ciphertext distributions with our two observations. We

first introduce a basic notion used in the observations.

Definition 5 (Leaf nodes of 𝑣𝑖 ). In the binary tree 𝑇 , we call a
node of plaintext 𝑣𝑖 as a leaf node of 𝑣𝑖 if there is no node of 𝑣𝑖 in its
subtrees.

Observations overview.Wepresent three observations that demon-

strate how the ciphertext distribution of plaintext 𝑣𝑖 leaks its fre-

quency. First, we observe that the leaf nodes of 𝑣𝑖 are expected to

have almost the same number of ancestors corresponding to 𝑣𝑖 ,

providing a useful insight into the structure of the tree. Further-

more, we describe how the depths of nodes of 𝑣𝑖 are affected by

nodes of other plaintexts, which reflects the depth distribution of

leaf nodes of 𝑣𝑖 . Finally, we connect the depth distribution to the

ciphertext distribution, revealing the potential for leakages in the

encryption scheme. By examining these observations, we gain a

deeper understanding of the limitations of the FH-OPE scheme and

the potential for attacks based on its ciphertext distribution. The

following lemmas are used in the proof of our observations. We

introduce and prove them here. They are also important properties

of 𝑇 .

Lemma 1. For any node of 𝑣𝑖 in 𝑇 , it is expected that the number
of nodes of 𝑣𝑖 in its left and right subtree differs no more than 1.

Proof. For any node of 𝑣𝑖 in 𝑇 , the order relations between it

and nodes of 𝑣𝑖 to be inserted into its subtrees are determined by

calling RandomCoin(). It is expected that the number of 0 and 1

outputted by the function differs no more than 1, which concludes

the lemma. □

Lemma 2. Suppose there are ℎ nodes of plaintext 𝑣𝑖 in a path of
𝑇 . Then, it is expected that the number of nodes of plaintext 𝑣𝑖 in 𝑇
lying on this path is at least 2ℎ−1 and at most 2ℎ + 2ℎ−1 − 2.

Proof. We assume that there is a node P in 𝑇 corresponding to

𝑣𝑖 , and it has a subtree with 𝑘 nodes of 𝑣𝑖 . According to Lemma 1,

the other subtree of P is expected to have at least 𝑘 − 1 and at most

𝑘 + 1 nodes of 𝑣𝑖 . To express the expected number of nodes of 𝑣𝑖 in

the subtree rooted at P, we define functions 𝑓 (𝑘) and 𝑔(𝑘) as the
lower and upper bounds, respectively. We can calculate 𝑓 (𝑘) and
𝑔(𝑘) as follows:

𝑓 (𝑘) = 𝑘 + (𝑘 − 1) + 1 = 2𝑘,

𝑔(𝑘) = 𝑘 + (𝑘 + 1) + 1 = 2𝑘 + 2.
For a path with ℎ nodes of 𝑣𝑖 , we can recursively call 𝑓 and 𝑔 for

ℎ − 1 times by traversing the path from the second lowest node of

𝑣𝑖 to the highest node of 𝑣𝑖 and calling the functions at each node

of 𝑣𝑖 encountered. Therefore, the expected number of nodes of 𝑣𝑖

in 𝑇 can be expressed as

𝑓 ℎ−1 (1) = 2
ℎ−1,

𝑔ℎ−1 (1) = 2
ℎ + 2ℎ−1 − 2

for the lower and upper bound, respectively. □

Observation 1. It is expected that the number of ancestors with
plaintext 𝑣𝑖 for any two leaf nodes of 𝑣𝑖 differs no more than 1.

Proof. We prove this observation by showing that the number

of nodes of 𝑣𝑖 in any two paths is expected to differ no more than

1. Suppose there are 𝑘 nodes of 𝑣𝑖 expected in 𝑇 , and two paths

in 𝑇 have 𝜏 and 𝜏 + 𝛿 (𝛿 > 0) nodes of 𝑣𝑖 , respectively. Then with

Lemma 2, the two paths imply it is expected that:

𝑘 ≤ 2
𝜏 − 2𝜏−1 + 2 and 𝑘 ≥ 2

𝜏+𝛿−1 .

Assume 𝛿 ≥ 2, we have

𝑘 ≤ 2
𝜏 + 2𝜏−1 − 2 < 2

𝜏+𝛿−1 ≤ 𝑘.

There is a contradiction that 𝑘 < 𝑘 , so we conclude our proof. □

Observation 2. Denote the first inserted node of plaintext 𝑣𝑖 in
𝑇 as P. Let P1 and P2 be two nodes of 𝑣𝑖 in 𝑇 . If P1 < P2 ≤ P or
P ≤ P2 < P1, then P1 is likely to have more ancestors with plaintexts
other than 𝑣𝑖 than P2.
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Proof. We note a simple but important fact: If a node of plain-

text 𝑣 is inserted into the subtrees of a node with 𝑣𝑖 , then it only can

be inserted into the left (right) subtree when 𝑣 < 𝑣𝑖 (𝑣 > 𝑣𝑖 ) because

of the order relation. Then we discuss the case where P1 < P2 ≤ P.
In this case, the fact implies P1 and P2 have the same number of

ancestors with plaintexts larger than 𝑣𝑖 as 𝑃 . So we only need to

prove P1 is likely to have more ancestors with plaintexts smaller

than 𝑣𝑖 than P2. We first consider that the lowest common ancestor

of the two nodes is one of them:

(1) P1 is in the left subtree of P2. All ancestors of P2 are also an-

cestors of P1. Besides, nodes of plaintexts smaller than 𝑣𝑖 can

appear in the left subtree of P2 and even can be ancestors of P1.
So P1 is likely to have more ancestors with plaintexts smaller

than 𝑣𝑖 .

(2) P2 is in the right subtree of P1. Nodes of plaintexts smaller than

𝑣𝑖 cannot appear in the right subtree of P1. So the two nodes

have the same number of ancestors of plaintexts smaller than

𝑣𝑖 .

When the lowest common ancestor of the two nodes is another

node P′. Clearly, P′ .𝑝𝑙𝑎𝑖𝑛 = 𝑣𝑖 as

𝑣𝑖 = P1 .𝑝𝑙𝑎𝑖𝑛 ≤ P′ .𝑝𝑙𝑎𝑖𝑛 ≤ P2 .𝑝𝑙𝑎𝑖𝑛 = 𝑣𝑖 .

Then nodes of plaintexts smaller than 𝑣𝑖 can only appear in the

left subtree of P′ and even can be ancestors of P1. This also implies

P1 is likely to have more ancestors with plaintexts smaller than 𝑣𝑖 .

So we conclude our conclusion with P1 < P2 ≤ P. The case where
P ≤ P2 < P1 can be analyzed similarly. □

Observation 3. For any two nodes P1 and P2 (P2 > P1) in 𝑇 ,
suppose their ciphertexts are neighboring, i.e., P2 .𝑐𝑖𝑝ℎ𝑒𝑟 is the next
greater ciphertext of P1 .𝑐𝑖𝑝ℎ𝑒𝑟 . Denote the higher node of them as H,
then it holds that:

P2 .𝑐𝑖𝑝ℎ𝑒𝑟 − P1 .𝑐𝑖𝑝ℎ𝑒𝑟 =
|C|
2
𝜂
.

where𝜂 = 𝑑𝑒𝑝𝑡ℎ(H). Especially, it is expected that one of the following
two cases holds:
(1) H is a leaf node of 𝑣𝑖 ;
(2) The subtrees of H have only one node of 𝑣𝑖 , which is also a leaf

node of 𝑣𝑖 .

Proof. The tree structure ensures that P2 is the smallest node

in P1’s right subtree or P1 is the greatest node in P2’s left subtree.
In the first case, 𝑃2 is the higher node and 𝜂 = 𝑑𝑒𝑝𝑡ℎ(P2). To insert

𝑃2 into 𝑇 , the client recursively executes Algorithm 1 for 𝜂 times.

In the last recursion, a ciphertext limit with size
|C |
2
𝜂−1 is assigned to

P2 and the next smaller ciphertext (𝑚𝑖𝑛) is P1 .𝑐𝑖𝑝ℎ𝑒𝑟 . Therefore, it
holds that:

P2 .𝑐𝑖𝑝ℎ𝑒𝑟 = P1 .𝑐𝑖𝑝ℎ𝑒𝑟 +
1

2

· |C|
2
𝜂−1 .

Besides, there is no node in the left subtree of P2. According
to Lemma 1, there is at most one node of 𝑣𝑖 expected in the right

subtree of P2. So it is expected that P2 is either a leaf node of 𝑣𝑖 or
its right subtree has only one node of 𝑣𝑖 .

The second case can be analyzed similarly as P1 is the great-

est node in P2’s left subtree. The same equation holds with 𝜂 =

𝑑𝑒𝑝𝑡ℎ(P1). It is expected that P1 is a leaf node of 𝑣𝑖 or its left subtree
has only one node of 𝑣𝑖 . □

Putting it all together.We combine our observations to gain in-

sight into the distribution of ciphertexts. As we saw in Observation

3, if two nodes of 𝑣𝑖 have neighboring ciphertexts, then the distance

between their ciphertexts depends on the depth of the higher node.

The two cases in observation 3 imply that the number of ances-

tors with 𝑣𝑖 of the higher node and one leaf node of 𝑣𝑖 is expected

to differ by no more than 1. Recall Observation 1 tells us that all

leaf nodes of 𝑣𝑖 are expected to have roughly the same number of

ancestors with 𝑣𝑖 . So the higher node is expected to have almost

the same number of ancestors with 𝑣𝑖 as leaf nodes of 𝑣𝑖 . Now we

consider the ancestors with other plaintexts of the higher node to

study its the depth.

Observation 2 is used to complete the final step. It shows the

higher node is likely to have more ancestors with other plaintexts if

it is farther away from the first inserted node of 𝑣𝑖 . Therefore, when

the two nodes of 𝑣𝑖 with neighboring ciphertexts are farther away

from the first inserted node of 𝑣𝑖 , the higher node is likely to have

a greater depth. As a result, the distance between the neighboring

ciphertexts is likely to be smaller.

Revealing frequency. Suppose we traverse from the smallest node

of 𝑣𝑖 to the second-greatest node of 𝑣𝑖 . For each node, we calculate

the distance between its ciphertexts and the next greater ciphertext.

Our analysis imply there are two stages in the traverse:

(1) Increase stage. As we traverse towards the first inserted node

of 𝑣𝑖 , the distance is expected to increase.

(2) Decrease stage. As we traverse away the first inserted node of

𝑣𝑖 , the distance is expected to decrease.

It is important to note that our analysis assumes that the output

of RandomCoin() produces roughly the same number of 0s and 1s,

with a difference of no more than 1 as expected. However, due to the

inherent randomness of the function, this assumption may not al-

ways hold true in practice, leading to some slight fluctuations in the

real distance in a local field. To mitigate the impact of this random-

ness, we sum consecutive distances to observe the overall distance

distribution. We refer to this notion as the 𝛼-ciphertext density,

which provides a more robust characterization of the distribution

of ciphertexts.

Definition 6 (𝛼-ciphertext density). For 𝑛 ordered ciphertexts
c = {𝑐1, ..., 𝑐𝑛} in Kerschbaum’s FH-OPE scheme, the 𝛼-ciphertext
density of 𝑐 𝑗 (𝛼 < 𝑗 < 𝑛 − 𝛼) is denoted as 𝑑𝛼,𝑗 and is calculated as
below:

𝑑𝛼,𝑗 = 𝑐 𝑗+𝛼 − 𝑐 𝑗−𝛼 .
When we traverse sorted ciphertexts of the same plaintext and

calculate the 𝛼-ciphertext density, the two stages described earlier

also apply. This provides the potential of recovering frequency by

finding the decrease stage of ciphertexts of 𝑣𝑖 and the increase stage

of ciphertetxs of 𝑣𝑖+1. To illustrate this, we give an example of the

𝛼-ciphertext distribution in Figure 3. We show the decrease stage of

ciphertexts of 𝑣𝑖 and the increase stage of 𝑣𝑖+1. Clearly, the density
of the maximal ciphertext of 𝑣𝑖 , denoted by 𝑑𝛼,𝜋𝑖 lies between the

two stages and keeps a very small value. This implies the potential

for finding 𝜋 and revealing the frequency of plaintext 𝑣𝑖 .

Tree depth. Note the non-uniform distribution is independent of

the depth of the search tree 𝑇 . It results from the gaps between the

depths of nodes corresponding to the same plaintext. Moreover, the
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Figure 3. The 𝛼-ciphertext density of plaintexts 𝑣𝑖 and 𝑣𝑖+1 (𝛼 =

20).

presence of these gaps is a consequence of multiple distinct plain-

texts being encrypted within this scheme. Thus, in our experiments,

the accuracy of our attack applying the non-uniform ciphertext

distribution in this scheme is always more than 96% even if the tree

depth varies between 32 and 57 with database size varying from

∼ 196K to ∼ 532239K.

4.3 Density Attack
Based on the observations and analyis, we present a frequency-

revealing attack named density attack in Algorithm 2. It takes only

ciphertexts and attacking parametwes (𝛼,𝛾) as inputs and outputs

an order set 𝝅 ′
, which is an estimation of 𝝅 . This attack works by

traversing the sorted ciphertexts and calculating their 𝛼-ciphertext

density. When it traverse from the decrease stage of ciphertexts of

𝑣𝑖 to the increase stage of ciphertexts of 𝑣𝑖+1, the minimal density

is considered as an approximation of 𝑑𝛼,𝜋𝑖 .

Converting stages. When the attack traverses ciphertexts, it uses

𝑠𝑡𝑎𝑔𝑒 to record the stage currently traversed. It stores the maximal

(minimal) density in the increase (decrease) stage and correspond-

ing order in 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑜𝑟𝑑𝑒𝑟 , respectively. There are two cases

for the attack to convert stages.

• Case 1. In the increase stage,𝑑𝑒𝑛𝑠𝑖𝑡𝑦 records the maximal density

in this stage. If current density is much smaller than the maximal

density (𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝛾 · 𝑑), which violates the expectation for the

increase stage, the attack knows the increase stage is over and

converts the stage into decrease.

• Case 2. Similarly, in the decrease stage, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 records the min-

imal density in this stage. If current density is much larger than

the minimal density (𝛾 · 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 < 𝑑), the attack knows the

decrease stage is over and converts the stage into increase.

The conversion in Case 2 indicates the traverse from the decrease

stage of ciphertexts of 𝑣𝑖 to the increase stage of ciphertexts of 𝑣𝑖+1.
Therefore, the attack outputs the value of 𝑜𝑟𝑑𝑒𝑟 in Case 2 as the

estimation of 𝜋𝑖 .

Attacking parameters (𝛼,𝛾). 𝛼 is used to calculate ciphertext

density and𝛾 is a threshold for noticing the two cases of conversion.

Algorithm 2: Density attack

Input: Ciphertexts 𝒄 = {𝑐1, ..., 𝑐𝑛}, 𝛼, 𝛽
Output: An order set 𝝅 ′ = {𝜋 ′

1
, ..., 𝜋 ′

𝑁 ′ }

1 𝑠𝑡𝑎𝑔𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

2 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = −1
3 𝑜𝑟𝑑𝑒𝑟 = −1
4 𝝅 ′ = {}
5 for 𝑗 = 𝛼 + 1→ 𝑛 − 𝛼 do traverse ciphertexts
6 𝑑 = 𝑐 𝑗+𝛼 − 𝑐 𝑗−𝛼
7 if 𝑠𝑡𝑎𝑔𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 then
8 if 𝑑 > 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then
9 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑

10 𝑜𝑟𝑑𝑒𝑟 = 𝑗

11 end
12 if 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝛽 · 𝑑 then Case 1
13 𝑠𝑡𝑎𝑔𝑒 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒

14 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑

15 𝑜𝑟𝑑𝑒𝑟 = 𝑗

16 end
17 end

18 if 𝑠𝑡𝑎𝑔𝑒 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 then
19 if 𝑑 < 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then
20 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑

21 𝑜𝑟𝑑𝑒𝑟 = 𝑗

22 end
23 if 𝛽 · 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 < 𝑑 then Case 2
24 𝑠𝑡𝑎𝑔𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

25 𝝅 ′ .𝑎𝑑𝑑 (𝑜𝑟𝑑𝑒𝑟 )
26 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑

27 𝑜𝑟𝑑𝑒𝑟 = 𝑗

28 end
29 end
30 end

Large 𝛼 and 𝛾 can effectively remove the randomness brought by

RandomCoin(). For example, in Figure 3, 𝛼-ciphertext density also

slightly decreases (with the order from 1300 to 1350) in the increase

stage. As 𝑑1300 < 𝛾 · 𝑑1350 still holds under a large 𝛾 , it will not be
regarded as a decrease stage.

Efficiency and accuracy. Density attack succeeds by traversing

ciphertext. Its computation is simple and the computational com-

plexity is only 𝑂 (𝑛). Meanwhile, in our experiments, it achieves

over 96% accuracy in recovering plaintext frequency hidden by

Kerschbaum’s FH-OPE scheme.

5 ATTACKING POPE AND THE FH-OPE
SCHEME IN VLDB ’21

In this section, we review the other two FH-OPE schemes: POPE and

the FH-OPE scheme proposed by Li et al. Differ from Kerschbaum’s

FH-OPE scheme, they encrypt plaintexts with a semantically secure

encryption scheme S = (S.KeyGen, S.Encrypt, S.Decrypt). In these

schemes, the client uploads ciphertexts along with the orders of
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Algorithm 3: Encrypt in POPE

Input: 𝑣, 𝑠𝑘

State: Sorted binary tree 𝑇 of nodes {𝑡} in server

1 Client encrypts 𝑣 + 𝑟 with semantically secure encryption:

𝑐 = S.Encrypt(𝑠𝑘, 𝑣 + 𝑟 ) where 𝑟 $←− {0, 1}𝑙/2𝑙 .
2 if 𝑇 is empty then
3 Server sets 𝑇 .𝑟𝑜𝑜𝑡 = 𝑁𝑜𝑑𝑒 (𝑐)
4 else
5 Client retrieves 𝑇 .𝑟𝑜𝑜𝑡 as 𝑡

6 end

7 while 1 do client searches 𝑣 + 𝑟 in 𝑇

8 if 𝑣 + 𝑟 > S.Decrypt(𝑠𝑘, 𝑡 .𝑐𝑖𝑝ℎ𝑒𝑟 ) then
9 if 𝑡 .𝑟𝑖𝑔ℎ𝑡 = NULL then
10 Client tells server to set 𝑡 .𝑟𝑖𝑔ℎ𝑡 = 𝑁𝑜𝑑𝑒 (𝑐);break
11 else
12 Client retrieves 𝑡 .𝑟𝑖𝑔ℎ𝑡 as 𝑡

13 end
14 else
15 if 𝑡 .𝑙𝑒 𝑓 𝑡 = NULL then
16 Client tells server to set 𝑡 .𝑙𝑒 𝑓 𝑡 = 𝑁𝑜𝑑𝑒 (𝑐);break
17 else
18 Client retrieves 𝑡 .𝑙𝑒 𝑓 𝑡 as 𝑡

19 end
20 end
21 end

their corresponding plaintexts, allowing the server to compare

ciphertexts based on their orders. The encryption process in these

schemes for a plaintext 𝑣 involves the following steps:

(1) The client uploads 𝑣 ’s semantically secure ciphertext 𝑐 and the

order of 𝑣 to the server.

(2) The server always organizes ciphertexts as a search tree 𝑇

according to the orders of their underlying plaintexts. It inserts

𝑐 into 𝑇 based on the order of 𝑣 .

In both schemes, a single-snapshot attacker can only observe

plaintext order and semantically secure ciphertexts, making the

density attack unfeasible. However, under a multi-snapshot attacker

(cf. Definition 3), we show that the two schemes are still vulnerable

to frequency-revealing attacks. Our analysis and attacks demon-

strate the leakage of the ciphertext insertion order is essential for

achieving frequency-hiding. To the best of our knowledge, this is a
new finding as this leakage is always ignored in OPE [8, 22].

Batch encryption. The multi-snapshot attacker observes ordered

ciphertexts 𝐶 = {𝑐1, ...𝑐𝑛} at 𝜇 + 1 distinct ordered moments 𝑇 =

{𝑡0, 𝑡1, ..., 𝑡𝜇 }, with an indicator sequence {part(id1), ..., part(id𝑛)}
where part(id𝑖 ) ∈ [𝜇] ∪ {0} indicates that 𝑐𝑖 is first observed in

𝑡part(id𝑖 ) . For simplicity, we divide the ciphertexts into batches:

(1) Setup batch. This initial batch consists of all ciphertexts ob-

served in 𝑡0, denoted as ordered ciphertexts 𝐶0 = {𝑐0
1
, ...𝑐0𝑛0

}.

(2) Insertion batches. The 𝑖th batch consists of all ciphertexts firstly

observed in 𝑡𝑖 , denoted as ordered ciphertexts:

∀𝑖 ∈ [𝜇],𝐶𝑖 = (𝑐𝑖
1
, ..., 𝑐𝑖𝑛𝑖 ) .

These batches are inserted into the setup batch. The sum of the

sizes of all insertion batches is 𝑛 − 𝑛0.

5.1 Review
POPE. POPE randomizes orders of repeated plaintexts by adding a

random fractional component between 0 and 1 on each plaintext.

For example, to encrypt (1, 1, 1, 2), the client samples random com-

ponents (0.70, 0.32, 0.45, 0.04) and adds them on plaintexts in order.

The final plaintexts that the client encrypts are (1.70, 1.32, 1.45, 2.04)
and the randomized order is (3, 1, 2, 4). In this way, there is no plain-
text with the same order in POPE2.

In POPE, the server organizes semantically secure ciphertexts

as a search tree called POPE tree, which is similar to a standard

B tree. Ciphertexts can be compared according to their positions

in the POPE tree. For ease of presentation, we just describe the

POPE tree as a binary search tree 𝑇 . To encrypt a new plaintext 𝑣 ,

the client first samples a random component 𝑟
$← {0, 1}𝑙/2𝑙 and

encrypts 𝑣 + 𝑟 with semantically secure encryption. Then the client

interacts with the server to search the insertion position of 𝑣 + 𝑟 in
𝑇 and tells the server where to insert the ciphertext. We describe

the encryption function in Algorithm 3. It takes the plaintext 𝑣 and

a secret key 𝑠𝑘 as inputs. We denote the binary search tree 𝑇 as a

set of nodes {𝑡}. When this function is completed, the ciphertext

of 𝑣 + 𝑟 is inserted into 𝑇 .

In fact, searching 𝑣 + 𝑟 in 𝑇 requires client and server to interact

𝑂 (log𝑛) rounds: In each round, the client retrieves the node com-

pared from the server, decrypts its ciphertext and then compares

its plaintext with 𝑣 + 𝑟 to chose the next node compared. Therefore,

POPE actually requires 𝑂 (log𝑛) rounds of interaction between

client and server per range query, which makes it impractical.

The FH-OPE scheme proposed by Li et al. In this scheme, the

server also organizes semantically secure ciphertexts as a search

tree. It achieves 𝑂 (1) interaction by requiring the client to store

plaintext frequency in memory. In detail, the client records plaintext

frequency with a local table 𝐿𝑇 = {(𝑣𝑖 , 𝑓 𝑟𝑒 (𝑣𝑖 ))} where 𝑓 𝑟𝑒 (𝑣𝑖 )
denotes the frequency of 𝑣𝑖 . With this table, the client obtains the

order of 𝑣 by calculating the number of plaintexts smaller than 𝑣 .

To achieve frequency-hiding, client assigns 𝑣 with a random order

𝑟𝑑 ∈ [𝑙, 𝑢] where 𝑙 = ∑
𝑣𝑖<𝑣 𝑓 𝑟𝑒 (𝑣𝑖 ) and 𝑢 =

∑
𝑣𝑖≤𝑣 𝑓 𝑟𝑒 (𝑣𝑖 ). The

ciphertext of 𝑣 will be inserted between 𝑐𝑟𝑑 and 𝑐𝑟𝑑+1.
We describe the encryption function in the client side in Algo-

rithm 4. It takes a new plaintext 𝑣 , the secret key 𝑠𝑘 , and the local

table 𝐿𝑇 as inputs and returns a ciphertext 𝑐 and a random order

𝑟𝑑 . The client uploads 𝑐 and 𝑟𝑑 to the server and then the server

inserts 𝑐 into the search tree such that the position of 𝑐 is between

positions of 𝑐𝑟𝑑 and 𝑐𝑟𝑑+1.

Other techniques.There are also some other important techniques

in the two schemes. We refer the reader to [25, 32] for details. Here

we just briefly introduce them as they have little effect on the

property of frequency-hiding. POPE reduces the leakage of plaintext

2
The probability of repeated random components is negligible in 𝑙 .
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Algorithm 4: Encrypt (client-side) in the FH-OPE scheme

presented by Li et al.

Input: 𝑠𝑘, 𝑣, 𝐿𝑇 = {(𝑣𝑖 , 𝑓 𝑟𝑒 (𝑣𝑖 )}
Output: 𝑐, 𝑟𝑑

1 𝑐 = S.Encrypt(𝑠𝑘, 𝑣) semantically secure encryption

2 𝑙 = 0, 𝑢 = 0

3 for 𝑖 = 1→ |𝐿𝑇 | do
4 if 𝑣𝑖 < 𝑣 then
5 𝑙 += 𝑓 𝑟𝑒 (𝑣𝑖 ), 𝑢 += 𝑓 𝑟𝑒 (𝑣𝑖 )
6 else if 𝑣𝑖 = 𝑣 then
7 𝑢 += 𝑓 𝑟𝑒 (𝑣𝑖 )
8 end
9 if 𝑣 in 𝐿𝑇 then
10 𝑓 𝑟𝑒 (𝑣) += 1

11 else
12 𝐿𝑇 .𝑎𝑑𝑑 ((𝑣, 1))
13 end

14 𝑟𝑑
$←− [𝑙, 𝑢]

15 return 𝑐, 𝑟𝑑

order by delaying the insertion of ciphertexts: The client first buffers

some ciphertexts in the server. It leaks their insertion positions in

𝑇 only when there are range queries for them. However, the client

has to download these buffered ciphertexts to get their insertion

positions, which incurs a huge communication volume overhead

for range queries. In this paper, we focus on the ciphertexts whose

insertion positions are public. We note range queries are common

and frequent in plenty of real-world scenarios so there are only

a small fraction of ciphertexts in POPE whose insertion positions

can be protected
3
. Moreover, even if we consider that the range

queries are rare, the multi-snapshot attacker fits POPE well as the

attacker can access the encrypted database periodically to get the

ciphertexts whose insertion positions are revealed by range queries

during the last period of time.

For the FH-OPE scheme proposed by Li et al., the search tree

in the scheme is named coding tree because it encodes ciphertexts
according to their positions. These encodings are order-preserving
so ciphertexts can be compared efficiently by using their encodings

instead of positions. We note the coding method is similar to Ker-

schbaum’s FH-OPE scheme and possibly leaks ciphertext insertion

orders, which can leak more information to the multi-snapshot

attacker than we used in this paper.

5.2 Observations
Under the multi-snapshot attacker, both POPE and the FH-OPE

scheme in VLDB ’21 leak partial insertion orders of ciphertexts,

which can subsequently result in the leakage of plaintext frequency.

For each of the two schemes, we provide simple examples to show

the frequency leakage and then describe the leakage with a formal

observation. While these examples provided are too small to fully

illustrate our frequency-revealing attacks, they are sufficient to

show the frequency leakage and basic intuition behind the attacks.

3
As the authors of POPE said, hiding partial order information is only suitable for

cases where insertions are common and range queries are rare.

5.2.1 Leakage in POPE. Consider an example in POPE where the

multi-snapshot attacker observes three batches of ciphertexts.

(1) Setup batch. Suppose {7, 8, 7, 8} are encrypted with random com-

ponents {0.11, 0.80, 0.96, 0.92}. Let the resulting ordered cipher-
texts be {𝑐1, 𝑐2, 𝑐3, 𝑐4} corresponding to {7.11, 7.96, 8.80, 8.92}.

(2) Insertion batch 1. Plaintexts {7, 7, 7, 8} are encrypted and in-

serted with random components {0.22, 0.69, 0.78, 0.31}.
(3) Insertion batch 2. Plaintexts {8, 8, 8, 7} are encrypted and in-

serted with random components {0.19, 0.58, 0.42, 0.81}.

Figure 4. An example in POPE.

We visualize the insertion process in Figure 4. Notably, an un-

usual insertion pattern emerges: the majority of ciphertexts (3/4)

in insertion batch 1 are inserted between 𝑐1 and 𝑐2, while only a

small portion of ciphertexts (1/4) in insertion batch 2 fall between

the two ciphertexts. From the attacker’s view, if all plaintexts in the
setup batch are the same, then it has two contradictory conclusions:

• Insertion batch 1 indicates a significant difference between

the random components of 𝑐1 and 𝑐2, resulting in most new

ciphertexts being inserted between them.

• Insertion batch 2 suggests a small difference between the ran-

dom components of 𝑐1 and 𝑐2, leading to most new ciphertexts

not being inserted between them.

The most plausible explanation for the contradictory results is there

are distinct plaintexts in the setup batch, i.e., S.Decrypt(𝑠𝑘, 𝑐1) ≠
S.Decrypt(𝑠𝑘, 𝑐4). Clearly, the results reveal some frequency leak-

age. To further extract the leakage, the attacker can selectively

observe subsets of the setup batch. For instance, by first assuming

{𝑐1, 𝑐2, 𝑐3} have the same plaintext and then trying to deduce contra-

dictory results, the attacker also can infer that S.Decrypt(𝑠𝑘, 𝑐1) ≠
S.Decrypt(𝑠𝑘, 𝑐3) holds w.h.p.

We also give an example where all plaintexts are distinct. Con-

sider an example with setup batch {1} and one insertion batch

{4, 2, 6, 7, 5, 9}. Denote the ciphertext of {1} as {𝑐1}. All ciphertexts
of the insertion batch are inserted larger than 𝑐1, which is also

unusual: if all the seven ciphertexts have the same underlying plain-

text, this insertion pattern happens with a small probability of only

1/7. Thus, the attacker can deduce the minimal ciphertext and max-

imal ciphertext of the seven ciphertexts have distinct underlying

plaintexts w.h.p. Now we formally explain the leakage with our

observation about a simple case.

A simple case. Recall the two schemes leak only semantically
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secure ciphertexts and the orders of their underlying plaintexts. For

any two semantically secure ciphertexts 𝑐1 and 𝑐2, we use 𝑐1 < 𝑐2
to denote the order of 𝑐1’s underlying plaintext is smaller than that

of 𝑐2’s underlying plaintext.

Then we focus on a simple insertion case in the two schemes.

Given three semantically secure ciphertexts 𝑐1 < 𝑐2 < 𝑐3, a new

ciphertext 𝑐 is inserted and satisfies 𝑐1 < 𝑐 < 𝑐3, then what is

the probability of 𝑐 < 𝑐2? We define a variable 𝑋 to calculate the

probability:

𝑋 =

{
1, 𝑐 < 𝑐2,

0, 𝑐 > 𝑐2 .

Observation 4. In POPE, suppose {𝑐1, 𝑐2, 𝑐3} have the same un-
derlying plaintext 𝑣 :

𝑐𝑖 = S.Encrypt(𝑠𝑘, 𝑣 + 𝑟𝑖 ), 𝑖 = 1, 2, 3

where 0 < 𝑟1 < 𝑟2 < 𝑟3 < 1, then 𝑋 follows a Bernoulli distribution:

𝑋 ∼ Ber( 𝑟2 − 𝑟1
𝑟3 − 𝑟1

).

Proof. POPE preserves orders of distinct plaintexts, so 𝑐 =

S.Encrypt(𝑣+𝑟 ) where 𝑟 is a random fraction between 0 and 1. POPE

determines orders of repeated plaintexts with random components,

we have

𝑐 < 𝑐2 ⇐⇒ 𝑟 < 𝑟2,

𝑐1 < 𝑐 < 𝑐3 ⇐⇒ 𝑟1 < 𝑟 < 𝑟3 .

Therefore, the conditional probability is calculated as

Pr(𝑐 < 𝑐2 |𝑐1 < 𝑐 < 𝑐3) =
𝑟2 − 𝑟1
𝑟3 − 𝑟1

.

which indicates the Bernoulli distribution. □

This observation can be extended to a more complex and gen-

eral case in POPE: With 𝑛′ ciphertexts inserted between 𝑐1 and

𝑐3, denote the number of ciphertexts smaller than 𝑐2 as 𝑌 , if 𝑐𝑖 =

S.Encrypt(𝑠𝑘, 𝑣 +𝑟𝑖 ) (𝑖 = 1, 2, 3), then𝑌 ∼ Bin(𝑛′, 𝑟2−𝑟1𝑟3−𝑟2 ) where Bin
denotes the binomial distribution. This is because each ciphertext

inserted can be regarded as one independent instance in the simple

case, i.e., a trial has probability
𝑟2−𝑟1
𝑟3−𝑟2 of success.

Furthermore, as the multi-snapshot attacker can have multiple

insertion batches, we assume 𝜇 batches of ciphertexts are inserted

between 𝑐1 and 𝑐3. In the 𝑗 th insertion batch, denote the number of

inserted ciphertexts as 𝑛 ( 𝑗 ) and the number of ciphertexts smaller

than 𝑐2 as 𝑌𝑗 . If 𝑐𝑖 = S.Encrypt(𝑠𝑘, 𝑣 + 𝑟𝑖 ) (𝑖 = 1, 2, 3), then it holds

∀𝑗 ∈ [𝜇], 𝑌𝑗 ∼ Bin(𝑛 ( 𝑗 ) , 𝑟2 − 𝑟1
𝑟3 − 𝑟1

).

Fisher exact test. The extension above provides a method for

the multi-snapshot attacker to verify if {𝑐1, 𝑐2, 𝑐3} have the same

underlying plaintext: It records the value of 𝑌𝑗 and 𝑛 ( 𝑗 ) in each

insertion batch and verifies if the binomial distributions that 𝑌𝑗 s

follow have the same success probability
𝑟2−𝑟1
𝑟3−𝑟1 . Here we apply

Fisher exact test to complete the verification.

Fisher exact test [14] is a statistical test. Suppose there are two

samples under binomial distributions as below:

𝑠1 ∼ Bin(𝑁1, 𝑝1), 𝑠2 ∼ Bin(𝑁2, 𝑝2).

Fisher exact test takes (𝑠1, 𝑁1) and (𝑠2, 𝑁2) as inputs and returns the
probability of 𝑝1 = 𝑝2. Denote the test as Fisher(), the verification
can be done as following:

(1) We use 𝑝𝑟𝑜 to estimate the probability of the binomial dis-

tributions 𝑌𝑖s follow have the same success probability. It

is calculated as follows:

𝑝𝑟𝑜 = min{ Fisher
∀ 𝑗1, 𝑗2∈[𝜇 ]

(𝑌𝑗1 , 𝑛 ( 𝑗1 ) , 𝑌𝑗2 , 𝑛 ( 𝑗2 ) )}.

(2) Given a threshold 1/𝛾 , if 𝑝𝑟𝑜 > 1/𝛾 , we say {𝑐1, 𝑐2, 𝑐3} pass
the verification, i.e., they are thought to have the same

underlying plaintext, otherwise, we say they fail to the

verification and have distinct underlying plaintexts.

5.2.2 Leakage in the scheme in VLDB ’21. We first use examples to

introduce the frequency leakage in the FH-OPE scheme in VLDB

’21. Consider the following example:

(1) Setup batch. Suppose {7, 8, 7, 8} are encrypted. Let the result-
ing ordered ciphertexts be {𝑐1, 𝑐2, 𝑐3, 𝑐4} corresponding to the

ordered plaintexts {7, 7, 8, 8}.
(2) Insertion batch 1. Plaintexts {7, 7, 7, 8} are encrypted and in-

serted. We simply introduce the insertion process with the first

inserted plaintext. The ciphertext of the first plaintext 7 is in-

serted with a random order 𝑟𝑑 ←$ [0, 2]. If 𝑟𝑑 = 0, it is inserted

smaller than 𝑐1. If 𝑟𝑑 = 1, it is inserted between 𝑐1 and 𝑐2. If

𝑟𝑑 = 2, it is inserted between 𝑐2 and 𝑐3.

Suppose the insertion pattern of the ciphertexts in insertion batch

1 aligns with that illustrated in Figure 5. The attacker can observe

these ciphertexts are inserted in a non-uniformly manner, with all

of them inserted smaller than 𝑐3. However, if all ciphertexts have

the same underlying plaintext, the insertion of ciphertexts should

be nearly uniform due to uniformly sampled random orders. The

uniformity implies there is at least one ciphertext inserted larger

than 𝑐3 w.h.p. Therefore, the attacker encounters contradictory

results and deduces the existence of distinct plaintexts in the setup

batch, i.e., S.Dec(c1) ≠ S.Dec(c4). Also, the inserted ciphertext

smaller than 𝑐1 has distinct underlying plaintexts with 𝑐4.

Figure 5. An example in the FH-OPE scheme in VLDB ’21.

We also give an example where all plaintexts are distinct. Con-

sider the example with the setup batch {1} and the insertion batch

{4, 2, 6, 7, 5, 9}. Denote the ciphertext of {1} as {𝑐1}. In this case,

all ciphertexts of the insertion batch are larger than 𝑐1, which is

non-uniform and unusal: if all the seven ciphertexts of the two

batches have the same underlying plaintext, this insertion pattern

happens with a small probability of only 1/7. Therefore, the at-

tacker can deduce the minimal ciphertext and maximal ciphertext

among the seven ciphertexts have distinct underlying plaintexts

w.h.p. This example can also be extended by considering with the

setup batch {1, 4, 2} and the insertion batch {6, 7, 5, 9}, where the
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insertion pattern remains non-uniform and unusual, and thus leaks

frequency. Now we formally describe the leakage and explain it

with an observation about the same simple case defined in § 5.2.1.

Observation 5. In the FH-OPE scheme proposed by Li et al., de-
note the initial order (index) of 𝑐𝑖 as 𝑟𝑑𝑖 (𝑖 = 1, 2, 3), if {𝑐1, 𝑐2, 𝑐3}
have the same underlying plaintext 𝑣 :

𝑣 = S.Decrypt(𝑠𝑘, 𝑐𝑖 ), 𝑖 = 1, 2, 3,

then 𝑋 follows a Bernoulli distribution:

𝑋 ∼ Ber( 𝑟𝑑2 − 𝑟𝑑1
𝑟𝑑3 − 𝑟𝑑1

) .

Proof. Recall the FH-OPE scheme proposed by Li et al. pre-

serves orders of distinct plaintexts, so the underlying plaintext of 𝑐

is 𝑣 . Then the scheme determines its order with a random order 𝑟𝑑 .

Similar to POPE, we have

𝑐 < 𝑐2 ⇐⇒ 𝑟𝑑 < 𝑟𝑑2,

𝑐1 < 𝑐 < 𝑐3 ⇐⇒ 𝑟𝑑1 ≤ 𝑟𝑑 < 𝑟𝑑3 .

So the conditional probability is calculates as

Pr(𝑐 < 𝑐2 |𝑐1 < 𝑐 < 𝑐3) =
𝑟𝑑2 − 𝑟𝑑1
𝑟𝑑3 − 𝑟𝑑1

.

□

Differ from the observation about POPE, Observation 5 cannot

be directly extended to more complex cases because the insertion

of 𝑐 changes both the orders of ciphertexts and the conditional

probability. For example, with 𝑐 inserted between 𝑐1 and 𝑐2, the

orders of 𝑐2 and 𝑐3 are updated to 𝑟𝑑2 + 1 and 𝑟𝑑3 + 1, respectively.
So for a newly inserted ciphertext 𝑐′, we have

Pr(𝑐′ < 𝑐2 |𝑐1 < 𝑐′ < 𝑐3) =
𝑟𝑑2 − 𝑟𝑑1 + 1
𝑟𝑑3 − 𝑟𝑑1 + 1

.

However, it’s still possible to apply binomial distributions to ver-

ify if ciphertexts in this scheme have the same underlying plaintext.

Suppose there are 𝑛′ ciphertexts to be inserted between 𝑐1 and 𝑐3.

For each inserted ciphertext 𝑐𝑡 (∀𝑡 ∈ [𝑛′]), it follows a Bernoulli
distribution Ber(𝑝′𝑡 ) and

𝑟𝑑2 − 𝑟𝑑1
𝑟𝑑3 − 𝑟𝑑1 + 𝑛′

< 𝑝′𝑡 <
𝑟𝑑2 − 𝑟𝑑1 + 𝑛′
𝑟𝑑3 − 𝑟𝑑1 + 𝑛′

.

The lower and upper bound indicates the extreme cases where all

inserted ciphertexts are larger (smaller) than 𝑐2. We set 𝑟𝑑3 − 𝑟𝑑2 =
𝑟𝑑2−𝑟𝑑1 and denote the number of inserted ciphertexts smaller than

𝑐2 as 𝑌 . With 𝑛′ ≪ 𝑟𝑑3 − 𝑟𝑑2, 𝑝′𝑡 s can be estimated with 0.5. So it is

practical to verify if {𝑐1, 𝑐2, 𝑐3} have the same underlying plaintext

by testing if 𝑌 follows the binomial distribution Bin(𝑛′, 0.5).
Binomial test. Binomial test [3] is a statistical test. It can be used

to calculate the probability that a sample follows a given binomial

distribution. In our verification, it takes the sample value of 𝑌 and

(𝑛′, 0.5) as inputs and returns a probability:

𝑝𝑟𝑜 = BinTest(𝑌, 𝑛′, 0.5)
where 𝑝𝑟𝑜 is the probability of 𝑌 ∼ Bin(𝑛′, 1/2). We also give a

threshold of 1/𝛾 for the verification. If 𝑝𝑟𝑜 > 1/𝛾 , we say {𝑐1, 𝑐2, 𝑐3}
pass the verification, i.e., they are thought to have the same under-

lying plaintext, otherwise, we say they do not. Besides, as 0.5 is only

an estimation of 𝑝′𝑡 s, we set a large 𝛾 to promise that ciphertexts

would not fail to pass the verification because of the estimation

error.

5.2.3 Summary. Here we explain why ciphertexts having distinct

underlying plaintexts cannot pass the verifications w.h.p. We still

consider the simple insertion case but assume that {𝑐1, 𝑐2, 𝑐3} have
distinct underlying plaintexts:

𝑣𝑖 = ⌊S.Decrypt(𝑠𝑘, 𝑐𝑖 )⌋, (𝑖 = 1, 2, 3)

where 𝑣1 < 𝑣2 < 𝑣3 and ⌊·⌋ is used for deleting random components

in POPE. In this case, we show the binomial distribution Bin′ that
𝑋 follows violates the requirements in our verification.

In short, our verification process requires two conditions: 1) in

POPE, Bin′ is static and remains the same across insertion batches;

2) in the FH-OPE scheme proposed by Li et al., Bin′ depends only
on the order of ciphertexts. However, in the given case above, Bin′

strongly depends on the distribution of plaintexts. Specifically, for a

newly inserted ciphertext 𝑐 , if its underlying plaintext is 𝑣1, then 𝑐 <

𝑐2, and if its underlying plaintext is 𝑣
3
, then 𝑐 > 𝑐2. As a result, Bin′

is highly dependent on the distribution of ⌊S.Decrypt(sk, c)⌋, i.e.,
the plaintext distribution, which violates the second requirement.

Furthermore, the distribution of plaintexts is often dynamic [16,

19], making it difficult to ensure that the plaintext distribution

remains the same across insertion batches. Consequently, Bin′ is
also dynamic and cannot remain the same across insertion batches,

violating the first requirement. Therefore, we can expect our attacks

to perform better with 𝜇 increasing because dynamic distributions

are more likely to occur.

5.3 Attacks.
In this section, we present frequency-revealing attacks named Fisher
exact test attack and binomial test attack against POPE and the FH-

OPE scheme proposed by Li et al, respectively.

Sliding window. A multi-snapshot attacker is assumed to have a

setup batch of ciphertexts 𝐶0 = (𝑐0
1
, ...𝑐0𝑛0

) and 𝜇 insertion batches

of ciphertexts. As discussed in § 5.2, given any three ciphertexts in

𝐶0
, we can verify whether they have the same underlying plaintext

by observing the orders of ciphertexts in the insertion batches.

To recover the plaintext frequency in𝐶0
, we use a slidingwindow

approach. For each three-tuple {𝑐0
𝑖−𝛼 , 𝑐

0

𝑖
, 𝑐0
𝑖+𝛼 }, we verify whether

ciphertexts from 𝑐0
𝑖−𝛼 to 𝑐0

𝑖+𝛼 have the same underlying plaintext.

We record the order interval [𝑖 −𝛼, 𝑖 +𝛼] if the tuple fails the verifi-
cation. If there are any overlapping intervals, we intersect them to

obtain a shorter interval as the final interval. The sliding window

and intersection are illustrated in Figure 6. Using the intersection

interval 𝐼 , we estimate the maximal order 𝜋 of distinct plaintext

with the order whose corresponding verification probability 𝑝𝑟𝑜 is

the smallest in 𝐼 .

Fisher exact test attack. Algorithm 5 describes the Fisher exact

test attack against POPE. It takes the setup batch 𝐶0
, attacking

parameters (𝛼 ,𝛾 ) and 𝜇 insertion batches of ciphertexts𝐶 𝑗
s as inputs.

It returns an order vector 𝝅 ′
with length𝑁 ′, which reveals plaintext

frequency in 𝐶0
. Based on the Fisher exact test which requires

two samples, it requires there are at least 2 insertion batches, i.e.,

𝜇 ≥ 2. The calculation in this algorithm consists of two parts: 1)

the calculation of 𝑌𝑗 s and 𝑛
( 𝑗 )𝑠 (line 3-9); 2) Fisher exact test (line
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Algorithm 5: Fisher exact test attack

Input: Setup batch 𝐶0 = {(𝑐0
1
, ..., 𝑐0𝑛0

},
Attacking parameters (𝛼,𝛾)
𝜇 insertion batches 𝐶 𝑗 = {𝑐 𝑗

1
, ..., 𝑐

𝑗
𝑛 𝑗
} (∀𝑗 ∈ [𝜇])

Output: An order vector 𝝅 ′ = (𝜋 ′
1
, ..., 𝜋 ′

𝑁 ′ )

1 𝑎 = 1, 𝐼 = [1, 𝑛0]
2 for 𝑖 = 𝛼 + 1→ 𝑛0 − 𝛼 do sliding window

3 for 𝑗 = 1→ 𝜇 do get samples

4 𝑌𝑗 = 0, 𝑛 ( 𝑗 ) = 0

5 for 𝑘 = 1→ 𝑛 𝑗 do
6 if 𝑐0

𝑖−𝛼 < 𝑐
𝑗

𝑘
< 𝑐0

𝑖
then 𝑌𝑗 += 1;

7 if 𝑐0
𝑖−𝛼 < 𝑐

𝑗

𝑘
< 𝑐0

𝑖+𝛼 then 𝑛 ( 𝑗 ) += 1;

8 end
9 end

10 𝑝𝑟𝑜𝑖 = min{ Fisher
∀ 𝑗1, 𝑗2∈[𝜇 ]

(𝑌𝑗1 , 𝑛 ( 𝑗1 ) , 𝑌𝑗2 , 𝑛 ( 𝑗2 ) )}

11 if 𝑝𝑟𝑜𝑖 < 1/𝛾 then
12 if 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼] ≠ ∅ then intersect
13 𝐼 = 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼]
14 else
15 𝑜𝑟𝑑𝑒𝑟 = argmin

∀𝜃 ∈𝐼
𝑝𝑟𝑜𝜃

16 𝜋 ′𝑎 = 𝑜𝑟𝑑𝑒𝑟, 𝑎 += 1

17 𝐼 = [𝑖 − 𝛼, 𝑖 + 𝛼]
18 end
19 end
20 end

Figure 6. The Sliding window and intersection in our attacks. The

intersection intervals 𝐼𝑖 s are used to estimate 𝜋𝑖s.

10). The former costs 𝑂 (𝑛0 ·
∑𝜇

𝑗=1
𝑛 𝑗 ) computation while the latter

requires no more than 𝑂 (𝑛0 · 𝜇2) times Fisher exact test.

Binomial test attack. Differing from Fisher exact test attack, the

binomial test attack can succeed with only one insertion batch

because the binomial test requires only one sample. We describe

the binomial test attack with one insertion batch in Algorithm 6.

It takes the setup batch 𝐶0
, attacking parameter (𝛼,𝛾), and one

insertion batch of ciphertexts 𝐶1
. The multi-snapshot attacker can

repeat the algorithm with more insertion batches to recover more

plaintext frequency, e.g., it may regard 𝐶0 ∪𝐶1
as the new setup

batch and 𝐶2
as the new insertion batch to repeat the algorithm.

There are also two parts of calculation in the algorithm: 1) the

calculation of 𝑌 and 𝑛′ (line 3-7); 2) the calculation of binomial test

Algorithm 6: Binomial test attackwith one insertion batch

Input: Setup batch 𝐶0 = {𝑐0
1
, ..., 𝑐0𝑛0

},
Attacking parameters (𝛼,𝛾),
Insertion ciphertexts 𝐶1 = {𝑐1

1
, ..., 𝑐1𝑛1

}
Output: An order vector 𝝅 ′ = (𝜋 ′

1
, ..., 𝜋 ′

𝑁 ′ )

1 𝑎 = 1, 𝐼 = [1, 𝑛0]
2 for 𝑖 = 𝛼 + 1→ 𝑛0 − 𝛼 do sliding window

3 𝑌 = 0, 𝑛′ = 0

4 for 𝑘 = 1→ 𝑛1 do get sample
5 if 𝑐0

𝑖−𝛼 < 𝑐1
𝑘
< 𝑐0

𝑖
then 𝑌 += 1;

6 if 𝑐0
𝑖−𝛼 < 𝑐1

𝑘
< 𝑐0

𝑖+𝛼 then 𝑛′ += 1;

7 end

8 𝑝𝑟𝑜𝑖 = BinTest(𝑌, 𝑛′, 0.5)
9 if 𝑝𝑟𝑜𝑖 < 1

𝛾 then
10 if 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼] ≠ ∅ then intersect
11 𝐼 = 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼]
12 else
13 𝑜𝑟𝑑𝑒𝑟 = argmin

∀𝜃 ∈𝐼
𝑝𝑟𝑜𝜃

14 𝜋 ′𝑎 = 𝑜𝑟𝑑𝑒𝑟, 𝑎 += 1

15 𝐼 = [𝑖 − 𝛼, 𝑖 + 𝛼]
16 end
17 end
18 end

attack. The former costs 𝑂 (𝑛0 · 𝑛1) computation while the latter

requires 𝑂 (𝑛0) times binomial tests.

Attacking parameter (𝛼,𝛾). In the two attacks, 𝛼 is used to choose

ciphertexts as inputs for Fisher exact test and binomial test. 𝛾 is a

threshold for our verifications. It is also set large to promise low

false positive rate, i.e., ciphertexts that have the same underlying

plaintext are thought to have distinct underlying plaintexts with a

probability close to 1/𝛾 .

6 EXPERIMENTS
In this section, we evaluate our frequency-revealing attacks by

answering the following questions
4
:

1. How do our attacks choose suitable attacking parameters to

ensure effectiveness? (§ 6.2)

2. How many plaintext frequencies can our attacks reveal under

a small estimation error? (§ 6.3)

3. Is it possible to combine our attacks and existing inference

attacks? (§ 6.4)

6.1 Experimential Setup
Datasets. We use the following datasets:

• Births [1]. This is the US birth data during 2004-2014. We initially

encrypt birthdays in 2014 and then insert births in 2004-2013

yearly (∼ 45664K births for 366 different birthdays).

• PBN [1]. This is the US popular baby name data during 1971-

2020. We initially encrypt names during 2011-2020 and then

4
The code is available at https://github.com/XinleCao/Frequency-revealing-Attack

https://github.com/XinleCao/Frequency-revealing-Attack
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insert records according to decades (∼ 53239K births for 101

different birthdays)

• Apls [2]. This is the age and gender data of insurance applications
during 2016-2020 in California. We separately use the age and

gender attributes to encrypt records. We encrypt the records in

2020 and then insert other records according to years and the

other attribute (∼ 1125K for 2 genders and 7 age groups).

Datasets consisting of birthdays, names, age, and gender are

widely used in OPE [21, 25] and attacks against OPE [17, 20, 29].

In this context, we select Apls because age and gender are typi-

cal attributes that FH-OPE schemes aim to protect [21, 32]. We

also select Births and PBN as representative examples of dense

and low-density datasets, respectively. The concepts of dense and

low-density data are inherited from inference attacks [17, 28], as

discussed in § 2.1.

Metrics. Our attacks represent the first successful attempts to re-

cover plaintext frequency in FH-OPE schemes. They produce an

order vector 𝝅 ′ = (𝜋 ′
1
, ..., 𝜋 ′

𝑁 ′ ) as an estimate of the true order

vector 𝝅 = (𝜋1, ...𝜋𝑁 ), which exactly describes the plaintext fre-

quency. To evaluate the effectiveness of our attacks, we introduce

new metrics that measure the similarity between 𝝅 ′
and 𝝅 .

• Estimation error 𝜖 . For any 𝑖 ∈ [𝑁 ], we call 𝜋𝑖 is recovered if

there exists a 𝑗 ∈ [𝑁 ′] such that |𝜋𝑖 − 𝜋 ′
𝑗
| ≤ 𝜖 . We set 𝜖 as a

non-negative integer and its unit is 10.

• Accuracy.Denote the number of order 𝜋𝑖 recovered by our attacks

as 𝑁𝑟 , we define the accuracy as 𝑁𝑟 /𝑁 .

• False positive rate (FP). It represents the proportion of ciphertexts

that have the same underlying plaintext but are thought to have

distinct underlying plaintexts by our attacks. It is calculated as

(𝑁 ′ − 𝑁𝑟 )/𝑁 .

𝜖 serves as an indicator of the estimation error level in our attacks.

It is set small to promise a very small relative estimation error.

Clearly, a great frequency-revealing attack should keep both a high
accuracy and a low FP under a small 𝜖 . In the experiments, 𝜖 in

density attack is the estimation error for revealing frequency in

𝐶 . For Fisher exact test attack and binomial test attack, 𝜖 is the

estimation error for revealing frequency in 𝐶0
, which greatly re-

flects the relative estimation error for revealing frequency in𝐶 (See

additional experimental results in Appendix).

Configuration. All experiments are conducted on a machine with

48 2.5GHz vCPU and 128GBmemory running Ubuntu Server 20.04.3.

We implement the three FH-OPE schemes and our attacks in Python

3.8.12. The Fisher exact test and binomial test functions are token
from Python scipy.stats library. We encrypt each dataset with the

three FH-OPE schemes. For Kerschbaum’s FH-OPE scheme, the

ciphertext space for OPE ciphertexts is set as 120 bits, which is

larger than that in [21]. The depth of the search tree in Apls, PBN
and Births are 44, 52 and 57, respectively. In some experiments,

we conduct this scheme on some subsets of these datasets, and the

minimal tree depth on the subsets is 32 (the corresponding subset

size is ∼ 196K).

6.2 Choosing Parameters for Attacks
Range and effect. There are two important attacking parameters

in our attacks (𝛼,𝛾). We have no predefined numerical ranges for 𝛼

and 𝛾 , except that they should be positive integers. This is because

there is no direct mathematical relationship between them and the

accuracy and FP of our attacks. Their effects on our attacks can be

briefly explained below:

• 𝛼 determines the number of ciphertexts in each test in our attacks.

It controls the impact of randomness in FH-OPE on our attacks.

When 𝛼 is small, a larger proportion of randomness affects the

test results, resulting in a higher FP. When 𝛼 is large, it leads to a

coarser granularity in selecting ciphertexts for the tests, causing

the loss of some frequency and resulting in lower accuracy.

• 𝛾 determines the threshold for the tests and the confidence for

the test results. A larger 𝛾 assigns a stricter threshold and higher

confidence, which can lead to lower accuracy and FP. Conversely,

a smaller𝛾 allows a more relaxed threshold and lower confidence,

which results in higher accuracy but also a higher FP.

We conclude that loose parameter values (i.e., small 𝛼 and 𝛾 )

can achieve high accuracy but result in an unacceptable FP (e.g.,

> 100%). Conversely, choosing excessively strict values sacrifices

accuracy to achieve a low FP.

Setting values. We develop a simple and effective method to find

suitable parameter values that achieve both high accuracy (> 90%)

and low FP (< 10%). The method begins by initializing the parame-

ters (𝛼,𝛾) with small values like (1, 1). We then gradually increase

these values until the results outputted by our attacks stabilize.

This approach is effective because the results consist of two types:

1) "incorrect results" caused by ciphertexts failing the tests due

to randomness, and 2) "correct results" caused by ciphertexts fail-

ing the tests due to having distinct underlying plaintexts. When

we increase 𝛼 and 𝛾 , the impact of randomness is smaller and the

threshold for the tests is stricter, allowing the ciphertexts that pre-

viously failed the tests due to randomness to pass the tests much

more easily. However, the ciphertexts failing due to having distinct

underlying plaintexts are less sensitive to the increase in 𝛼 and 𝛾 .

These enable us to filter out a majority of the incorrect results while

preserving most of the correct results. The stability of outputted

results under the increasing parameter values indicates that the

remaining results are mostly correct, and thus the impact of further

increasing 𝛼 and 𝛾 becomes less significant.

Although the minimal initial values of (𝛼,𝛾) can be (1, 1), there
are some optimizations for the initial values and values increasing

presented in Appdenix A.1 so we can efficiently find suitable values.

Besides, we also provide more experimental results in Appdenix A.1

to illustrate the effect and parameter selection process. Here we

show the results of the parameter selection process for the density

attack on the Births dataset in Figure 7-9. We fix one parameter

with a loose value (e.g., 10) and observe the change in the number of

indexes with the other parameter being stricter. Figure 7 shows that

the number of indexes becomes stable when 𝛼 and 𝛾 are larger than

14. Therefore, we choose (𝛼,𝛾) = (15, 15) for the density attack on

Births. Figure 8-9 show how accuracy and FP changes with 𝛼 and

𝛾 increasing. When 𝛼 and 𝛾 are larger than 15, the accuracy is still

close to 1 but FP decreases to 0. We use a similar approach to select

parameter values for all of our attacks on Births and other datasets.

The relation between 𝛾 and 𝜇. For the tests in Fisher exact test

attack and binomial test attack, 𝛾 determines the confidence for

the test results, while 𝜇 affects the probability of ciphertexts with
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Figure 7. With 𝛼 and 𝛾 increasing, the results outputted by the

density attack become stable. The number of the estimated index

(𝑁 ′) is close to the real index number (𝑁 ).
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Figure 8. With 𝛼 and 𝛾 increasing, the accuracy of the density

attack is always close to 1.
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Figure 9. With 𝛼 and 𝛾 increasing, the FP of the density attack

decreases and is finally close to 0%.

distinct underlying plaintexts failing the tests. To guarantee the test
results can be accepted with high confidence, we only need a large
𝛾 and have no requirement for 𝜇. Given different 𝛾 values, the test

results are accepted with different confidence levels. Under a larger

𝛾 and higher confidence level, it is harder for ciphertexts having

distinct plaintexts to fail the tests, which decreases the accuracy.
At that time, 𝜇 is required to be larger for increasing the accuracy.

However, there are no specific requirements for the value of 𝜇 since

the desired value is affected by the plaintext distribution in real-

world scenarios. In our experiments, as we choose the value of 𝛾

in an adaptive manner instead of imposing a very high threshold

directly, our attacks can achieve accuracy over 90% with 𝜇 ≤ 10.
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Figure 10. Attacking time of frequency-revealing attacks (𝜇 = 1).

#Batch (𝜇)
Fisher Binomial Density

Min (%) Ave (%) Min (%) Ave (%) Min (%)

2 18.6 24.1 58.4 62.2 97.7

3 51.6 55.1 72.2 75.3 97.7

4 77.7 80.0 84.6 86.6 97.7

5 85.7 87.2 87.9 91.4 96.6

6 89.8 91.3 86.8 90.8 98.8

7 92.3 94.7 86.8 91.4 97.7

8 97.8 98.8 86.8 93.0 96.6

9 97.8 99.1 86.8 93.0 96.6

10 97.8 99.1 86.8 93.0 97.7

Total (𝜇 = 10) 98.4 92.6 99.5

Table 1. Accuracy of frequency-revealing attacks on the Births
dataset under different 𝜇 (𝜖 = 100).Min andAve separately indicate
the minimum and average accuracy on the four subsets.

6.3 Revealing plaintext frequency
Time usage. To demonstrate the efficiency of our attacks, we con-

duct experiments to measure the time required to execute each of

the three attacks using a fixed number of records. We select a sub-

set of Births consisting of 10
6
records in each batch and attack the

setup batch with 2-10 insertion batches to observe the time usage

under different dataset sizes. Our results, presented in Figure 10,

show that the time usage of the density attack and Fisher exact test

attack scales linearly with the dataset size. The density attack is

the most efficient, taking no more than 10s to attack 10
7
records.

On the other hand, the binomial test attack is the most expensive,

as it is designed for one insertion batch, and when applied with 𝜇

insertion batches, it has to be repeated 𝜇 times. However, its cost

is still acceptable. To attack a dataset with 10
7
records, it takes no

more than 5 × 104s, which is approximately 14 hours.

Parallelism. All of our attacks operate by traversing ordered ci-

phertexts in ascending order. As a result, they can be run in parallel

by diving the ciphertexts of the entire dataset into multiple subsets

based on their order. Once the attacks on the subsets are completed,

we combine their outputs to obtain the frequency of the entire

dataset. This approach allows us to leverage the computational re-

sources available in a parallel processing environment and speed up

the attack process. Combing results on subsets needs some checking

work. For example, it is unknown if the maximal ciphertext in the

first subset and the minimal ciphertext in the second subset have
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Figure 11. False positive rate of frequency-revealing attacks on

Births (𝜇 = 11).
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(a) Accuracy on PBN
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Figure 12. Performance of frequency-revealing attacks on PBN.

the same underlying plaintext. Therefore, suppose in the first subset

our attacks think the largest 𝑖1 ciphertexts have the same underly-

ing plaintext and in the second subset the smallest 𝑖2 ciphertexts

have the same underlying plaintext. Then we conduct our attacks

on the 𝑖1 + 𝑖2 ciphertexts to reveal possible frequency information

between these ciphertexts. In this way, the works conducted in

parallelism are identical to those in one process.

Performance with varying 𝜇. We evaluate the performance of

our frequency-revealing attacks with different numbers of insertion

batches (𝜇) on the Births dataset. Our attacks apply 2-10 insertion

batches and the results are shown in Table 1. To show the stability of

our attacks, we partition the dataset into four nearly equal subsets

and attack each one separately. The results on subsets are presented

in rows 2-10. We also attack the overall dataset. We conduct the

attacks in parallel by encrypting the overall dataset, dividing the

ciphertexts into four equal subsets, attacking each ciphertext subset,

and combing attack results with some checking processes. The last

row shows the attack accuracy on the overall dataset.

We observe that the accuracy of both the Fisher exact test and bi-

nomial test attacks generally increases with more insertion batches.

When 𝜇 > 6, both attacks achieve more than 90% accuracy in most

cases. In contrast, the accuracy of the density attack is independent

of 𝜇, and it consistently achieves an accuracy of no less than 96.6%.

We also show FP on Births in Figure 11. With 𝜇 = 10 and 𝜖 = 100,

we observe that the FP is no more than 5%. Especially, the density

attack and Fisher exact test attack achieve a FP of 0%.

Performance with varying 𝜖. We evaluate our attacks under dif-

ferent values of 𝜖 on the PBN dataset. We attack this dataset with

4 insertion batches and plot the experimental results in Figure 12.

Data Distinct (𝑁 ) Density (%) Fisher (%) Binomial (%)

Gender 2 99.99 99.19 99.84

Age 7 99.98 98.40 99.85

January 31 99.99 99.82 99.80

Table 2. The recovery rate of combined attack.
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Figure 13. Cumulative plaintext distributions recovered by our

attacks and real plaintext distribution on PBN. We give a vertical

shift to each line for comparing them.

As 𝜖 increases, the accuracy of our attacks increases, and the FP de-

creases. This indicates that our attacks are successful in identifying

the majority of indexes in 𝝅 with some estimation errors. When we

set 𝜖 = 430, all of our attacks achieve an accuracy of over 90% and

a FP of no more than 5%. Considering that the minimum frequency

is 17124 (i.e., |𝜋𝑖+1 − 𝜋𝑖 | ≥ 17124 for any 𝑖 ∈ [𝑁 − 1]), the value of
𝜖 = 430 corresponds to a very small relative error of only 2.5% for

estimating any 𝜋𝑖 . Notably, the density attack and Fisher exact test

attack achieve a FP of 0% when 𝜖 = 210 which indicates a relative

estimation error of only 1.2%.

6.4 Combing Inference Attacks
We have shown plaintext frequency in any existing FH-OPE scheme

is recoverable. Next, we explore what information our attacks can

provide to inference attacks. Recall in § 2.1 we introduce two types

of inference attacks: the sorting attack and frequency-analyzing at-

tacks. To conduct them, the sorting attack requires that the dataset

is dense and the plaintext space M is known while frequency-

analyzing attacks require an estimation of plaintext distribution

from auxiliary public information. These attacks were considered

useless to FH-OPE schemes with plaintext frequency hidden.

Sorting attack. Our attacks demonstrate that sorting attacks can

still be used in FH-OPE schemes. If plaintexts encrypted by FH-OPE

schemes are dense and M is public, we can apply our frequency-

revealing attacks to recover plaintext frequency and then use sort-

ing attacks. We conducted a combined attack on the Apls and Births
datasets, recovering the gender and age attributes of records for the

former, and the birthdays of records in January for the latter. The

experimental results, shown in Table 2, demonstrate that we are

able to recover almost 100% of plaintexts protected by all existing

FH-OPE schemes. These results highlight that FH-OPE schemes
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are ineffective in protecting gender and age datasets, which are

precisely the types of datasets that FH-OPE was designed to protect.

Frequency-analyzing attacks. Our attacks can be used to re-

veal real plaintext distribution and provide a starting point for

frequency-analyzing attacks. We show the cumulative plaintext

distribution that our attacks recovered, which is almost identical to

the real plaintext distribution, in Figure 13. This finding suggests

that frequency-analyzing attacks can potentially be applied to the

results obtained from our attacks.

However, the combination of frequency-revealing attacks and

inference attacks is not a trivial task. For sorting attacks, our attacks

may not find exact |M| distinct underlying plaintexts when |M| >
50. Therefore, we only conducted sorting attacks on the birthdays in

January in Table 2. For frequency-analyzing attacks, it is important

to standardize the adversarial power since all existing inference

attacks adopt a single-snapshot attacker.

7 DISCUSSION
7.1 Secure Scenarios.
Our attacks show that all existing FH-OPE schemes are unable to

prevent the frequency leakage. However, as FH-OPE is a clearly

valuable direction of OPE, we discuss the scenarios where existing

FH-OPE schemes may be secure, i.e., there is no leakage of plaintext

frequency. Recall our attacks apply insertion patterns (the distri-

bution of inserted ciphertexts) to recover frequency in POPE and

the FH-OPE scheme in VLDB ’21. We explore the requisitions for

insertion patterns that are free from our attacks.

• Stable. In POPE, the proportion of ciphertexts inserted between

any two ciphertexts has to be constant, e.g., if there are 10%

ciphertexts in insertion batch 1 inserted between two ciphertexts

𝑐1 and 𝑐2, then there are still 10% ciphertexts inserted between

them in any batch.

• Uniform. In the scheme in VLDB ’21, if the difference between

orders of two ciphertexts is 𝑑 and there are total 𝑛 ciphertexts,

then the next inserted ciphertext is inserted between the two

ciphertexts with the probability of |𝑑 |/(𝑛 + 1).
Both of the two insertion patterns above indicate that the plain-

text distribution must be identical in each insertion batch. Moreover,

the multi-snapshot attacker can arbitrarily determine the setup and

insertion batches since it can access the server at any point dur-

ing the scheme execution. So the plaintext distribution has to be

identical in each individual insertion. Therefore, to defend against

our attacks, each plaintext in the database has to be independently

sampled from the same distribution. This strict condition is only

feasible in very limited real-world scenarios. Notably, Kerschbaum’s

FH-OPE scheme still cannot protect frequency even under this strict

condition mentioned above because the ciphertext distribution in

this scheme is still non-uniform and leak plaintext frequency.

Limited insertion. Although the security model in FH-OPE leaks

the exact insertion order of each ciphertext, it is practical to con-

sider the scenario where the multi-snapshot attacker observes only

limited insertions in a large database. Unfortunately, we discovered

that all three FH-OPE schemes can still leak plaintext frequency

in such scenarios. A common and dangerous case is when new

distinct plaintexts are inserted into the database. For instance, if we

consider an encrypted database with ciphertexts of plaintexts 7 and

9, each having a frequency of 10
7
, and we insert 10 ciphertexts of

value 8, they will all be inserted between the same two ciphertexts:

the maximum ciphertext of 7 and the minimum ciphertext of 9. This

insertion pattern is highly specific, as there are a total of 2× 107 + 1
positions available for each insertion, yet only one specific position

is chosen for all the newly inserted ciphertexts. As a result, the

attacker can infer the insertion of new distinct plaintexts based on

this distinctive insertion pattern.

7.2 Enhanced Security.
Fake queries. Fake queries [16, 27] is a technique in encrypted

databases to hide range and access query distributions. It potentially

can be used to indeed achieve frequency-hiding in OPE. Denote the

(dynamic) real query distribution as 𝐹0. Then the client may hope to

hide 𝐹0 bymaking the distribution observed by the attacker be 𝐹 . For

example, Grubbs et al. hide the real access distribution by making

the attacker always observe a uniform access query distribution. To

achieve that, the client calculates a query distribution 𝐹1 such that

𝐹 = 𝐹0+𝐹1. Then the client performs both real queries sampled from

𝐹0 and fake queries sampled from 𝐹1 at the same time to hide 𝐹0.

This idea can be used in FH-OPE: to hide the real insertion patterns,

the client can perform both real insertions and fake insertions,

making the total insertion patterns seem uniform and cannot be

used by our attacks. However, there are some inherent shortages

in the technique, limiting its deployment. First, it requires that the

client knows 𝐹0 in advance, which can be out of reality. Second, it

can result in unacceptable costs to simulate 𝐹 with 𝐹0 and 𝐹1.

We note our attacks show that in FH-OPE the frequency leakage

is somehow inherent. FH-OPE tries to randomize ciphertexts of

repeated plaintexts with predefined algorithms, which makes the

order relations between these ciphertexts predictable. However, the
order relations between inserted ciphertexts of distinct plaintexts

highly depend on plaintext distribution, which cannot be exactly
predicted. The inconsistency makes the attacker possibly distin-

guish the two cases. Removing the gaps between the two cases is

very challenging since plaintext distribution can be arbitrary and

in plenty of scenarios cannot be known in advance. A well-known

technique that can work under arbitrary unknown plaintext distri-

butions is oblivious RAM (ORAM) [15, 34]. However, ciphertexts in

ORAM cannot preserve plaintext order, losing the utility of OPE.

Differential privacy.We introduce the notable work by Chowd-

hury et al. [33], which integrates FH-OPE with differential privacy
(DP). They relax the order-preserving property to improve the se-

curity. Roughly speaking, given two plaintexts 𝑣1 and 𝑣2 (𝑣1 < 𝑣2),
the probability that the ciphertext of 𝑣1 is smaller than the cipher-

text of 𝑣2 is less than 1. This probability is calculated using the

DP algorithms, and it increases as 𝑣2 − 𝑣1 becomes larger. In this

way, the adversary cannot distinguish the ciphertexts of 𝑣1 and 𝑣2
when 𝑣2−𝑣1 is small enough. For example, for two age values 𝑣1, 𝑣2,

under a suitable parameter value for DP, this work guarantees the

ciphertexts of 𝑣1 and 𝑣2 are indistinguishable when 𝑣2 − 𝑣1 ≤ 8.

We use a simple example to illustrate the intuition of the work

and its relation with our attacks. Consider a dataset consisting of

plaintexts {1, 2, 3}. There are three plaintext groups {𝑜1, 𝑜2, 𝑜3} for
dividing the plaintexts. For any 𝑖 and 𝑗 in {1, 2, 3}, we use 𝑝𝑖, 𝑗 to
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denote the probability of plaintext 𝑖 falling into the group 𝑜 𝑗 . The

probabilities depend on the difference |𝑖 − 𝑗 |, e.g., plaintext 1 may

fall into {𝑜1, 𝑜2, 𝑜3} with probabilities {70%, 20%, 10%}. To encrypt

this dataset with FH-OPE, there are two steps:

(1) Division. For each plaintext 𝑣 , the client determines the group

that 𝑣 falls into. If 𝑣 falls into group 𝑜 𝑗 , the client treats 𝑣 as

plaintext 𝑗 in the encryption algorithm of FH-OPE even if 𝑣 ≠ 𝑗 .

(2) Encryption. The client uses FH-OPE to encrypt plaintexts in the

dataset and gets three ciphertext groups denoted as {𝑐𝑔1, 𝑐𝑔2, 𝑐𝑔3}
corresponding to the ciphertext set of {𝑜1, 𝑜2, 𝑜3}. Note FH-OPE
guarantees the ciphertexts in the same ciphertext group are

distinct to hide the frequency of each ciphertext group.

As shown above, the work adds a division step to mix plaintexts

but the encryption step is identical to the encryption process in FH-

OPE. Therefore, our frequency-revealing attacks still work against

the encryption step. This implies our attacks can reveal the three

ciphertext groups {𝑐𝑔1, 𝑐𝑔2, 𝑐𝑔3} but cannot ensure the exact un-
derlying plaintext of ciphertexts in each ciphertext group. In short,

our attacks have no impact on the security provided by DP but still

break the security provided by FH-OPE. So our attacks potentially

reduce the security level of this work to that of a combination of

deterministic OPE and DP. But the inclusion of DP indeed limits

the accuracy of inference attacks on individual ciphertexts and

enhances the security of OPE.

8 RELATEDWORK
After Kerschbaum [21] presented the notion of IND-FAOCPA and

the first FH-OPE scheme, there has been much discussion on FH-

OPE [7, 17, 18, 21, 25, 32].

Kerschbaum’s FH-OPE scheme. As the first FH-OPE scheme,

Kerschbaum’s FH-OPE scheme has been studied a lot. Maffei et

al. [26] analyze the security of Kerschbaum’s FH-OPE scheme. They

notice a contradiction between RandomCoin() and IND-FAOCPA.

They present an attack that shows an adversary in the scheme may

win the IND-FAOCPA security game with non-negligible probabil-

ity. They are the first to claim Kerschbaum’s FH-OPE cannot hide

plaintext frequency. However, their attack cannot recover plaintext

frequency, which makes the security of the scheme still unclear.

At the same time, Bogatov et al. [8] point out that Kerschbaum’s

FH-OPE scheme leaks insertion orders of ciphertexts even under

a snapshot attacker. They claim some attacks based on insertion

order may exist in the future.

Binomial attack. The best known published attack against FH-

OPE schemes is the binomial attack [17] proposed by Grubbs et

al. It uses only the leakage of plaintext order to recover plaintexts.

Roughly speaking, let sorted ciphertexts be 𝒄 = (𝑐1, ..., 𝑐𝑛). To
recover a distinct plaintext 𝑣𝑖 , the attacker gets the lower and upper

bound order of 𝑣𝑖 by calculating 𝜙 ′
𝑖
= 𝑛 · Pr(𝑣 < 𝑣𝑖 ) + 1 and 𝜋 ′

𝑖
=

𝑛 · Pr(𝑣 ≤ 𝑣𝑖 ). Then the attacker regards the underlying plaintext

of (𝑐𝜙 ′
𝑖
, ..., 𝑐𝜋 ′

𝑖
) as 𝑣𝑖 .

Based on only plaintext order, the binomial attack can be ap-

plied to any OPE scheme. However, it requires auxiliary public

information about plaintexts: Pr(𝑣 < 𝑣𝑖 ) and Pr(𝑣 ≤ 𝑣𝑖 ) but our
attacks do not. Besides, it performs poorly in real-world datasets,

i.e., in [17], it recovers no more than 30% plaintexts protected by

Kerschbaum’s FH-OPE scheme. Therefore, Grubbs et al. still sug-

gest deploying FH-OPE schemes in reality as a countermeasure of

inference attacks.

Attacks based on queries. There are also some attacks [13, 20,

23, 24] based on the leakages of queries: access pattern and com-

munication volume. Access pattern indicates which records satisfy

queries and communication volume indicates how many records

satisfy queries. Kellaris et al. [20] prove OPE schemes cannot defend

reconstruction attacks based on the two leakages of range queries.

Kornaropoulos et al. [23] present new reconstruction attacks with

range queries and k-nearest-neighbor (k-NN) queries. These con-

struction attacks are effective to any generic encrypted database

including those using OPE [5, 31, 36] and FH-OPE [21, 25, 32].

However, these attacks require plenty of range queries or k-NN

queries for recovering plaintexts. Besides, these attacks assume the

persistent attacker to get the leakages of queries.

Comparison. Compared with the attack against Kerschbaum’s FH-

OPE scheme and the binomial attack, our density attack is the first

to recover plaintext frequency in Kerschbaum’s FH-OPE scheme

and does not require any auxiliary information. Our work clari-

fies that the security of Kerschbaum’s FH-OPE scheme is greatly

overestimated as the scheme provides little protection for plaintext

frequency even under a single-snapshot attacker.

Compared with attacks based on queries, all of our attacks

assume a snapshot attacker. We limit the number of snapshots

obtained by a multi-snapshot attacker to 11, making our attack-

ers much weaker than the persistent attacker. Additionally, at-

tacks based on queries require observing at least𝑂 (𝑁 log𝑁 ) range
queries [24] that are under some specific known distributions, such

as uniform distribution. In contrast, our attacks require only cipher-

texts and their partial insertion orders, making them effective even

without any range queries observed."

Our work provides a starting point for future inference attacks

on FH-OPE schemes. While the binomial attack actually shows that

it is challenging to break FH-OPE schemes with only the leakage

of plaintext order, we aim to explore other leakages in FH-OPE

schemes that could provide more sensitive information for infer-

ence attacks. We exploit the leakages of non-uniform ciphertext

distribution and ciphertext insertion orders, highlighting the signif-

icance of avoiding them, even if the leakage of ciphertext insertion

orders is often disregarded in OPE [21, 22].

9 CONCLUSION
In this paper, we provide a comprehensive analysis of the secu-

rity of all existing FH-OPE schemes. Our observations lead to the

conclusion that these schemes leak plaintext frequency, which moti-

vated us to present three frequency-revealing attacks against them.

We evaluate the effectiveness of our attacks on three real-world

datasets and show that we can recover over 90% of plaintext fre-

quency in FH-OPE schemes. Moreover, we discuss the potentiality

of applying inference attacks on existing FH-OPE schemes. Our

work demonstrates that avoiding the leakages of non-uniform ci-

phertext distribution and ciphertext insertion orders is essential for

achieving frequency-hiding.
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Figure 17. Strict values of 𝛼 and 𝛾 in the binomial test attack make

the estimated index number (𝑁 ′) stable. It is not close to the real

index number (𝑁 ) as we only use one insertion batch (𝜇 = 1).
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Figure 18.With 𝛼 and 𝛾 increasing, the accuracy of the binomial

test attack first increases and then decreases.
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Figure 19. With 𝛼 and 𝛾 increasing, the FP of the binomial test

attack decreases (𝜇 = 1).

A.1 Choosing attacking parameters
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Figure 14. Strict values of 𝛼 and 𝛾 in Fisher exact test attack make

the estimated index number (𝑁 ′) stable and close to the real index

number (𝑁 ) under 𝜇 = 10.
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Figure 15. With 𝛼 and 𝛾 increasing, the accuracy of the Fisher

exact test attack first increases and then decreases a little under

𝜇 = 10.
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Figure 16. With 𝛼 and 𝛾 increasing, the FP of the Fisher exact test

attack decreases and finally is close to 0% under 𝜇 = 10.

We introduce some optimizations for the initial values and values

increasing about the attacking parameters (𝛼,𝛾) as follows:
• Initial values. In Fisher exact test attack and binomial test attack,

1/𝛾 can be described as the probability of ciphertexts having the

same underlying plaintext failing in the tests. So if we require

that this probability is less than some values like 0.1%, then we

should initiate 𝛾 with a value no more than 1000.

• Traverse with a fixed parameter. In general, as we initiate 𝛾 with

a value like 1000, we fix 𝛾 and increase 𝛼 from 1 to a value 𝛼 ′

such that the results outputted are stable. Finally, we fix 𝛼 with

𝛼 ′ and increase 𝛾 until the results outputted are stable. This is

much more efficient than traversing each non-negative integer

pair although the latter definitely works and possibly can find

more suitable values.

• Adaptive jump.We traverse the integer pairs for (𝛼,𝛾) in differ-

ent step sizes to quickly choose suitable parameter values. For

example, we initiate 𝛼 = 1 and then adds it with 𝑠𝑡𝑒𝑝 = 1000,

which means 𝛼 := 𝛼 + 𝑠𝑡𝑒𝑝 . If we find the values deserved are

in an interval like [1, 1001]. Then we traverse this interval with

𝑠𝑡𝑒𝑝 = 100. In this way, we can find the suitable values much

faster than traversing each integer.

Besides, we also provide more experimental results here to il-

lustrate the effect and parameter selection process in Figure 14-19.

To show as many groups of experiments as possible, we randomly
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select a subset of the Births dataset to conduct experiments. In

Figure 14-19, the unit of 𝛼 is 10, and the 𝛾 scales by multiplying

by 10. These figures show, with 𝛼 and 𝛾 increasing, the results out-

putted by attacks become stable, the accuracy increases and the FP

decreases. We explain some details:

(1) In Figure 7-9, as the density attack is more robust, we can find

values for (𝛼,𝛾) at the same time. So we just fix one parameter

with 10 and increase another parameter until the attack results

become stable.

(2) In Figure 14-19, Fisher exact test attack and binomial test attack

are more sensitive to the parameter values, so they have to

find parameter values one by one. They first fix 𝛾 = 1000 to

guarantee a relatively strict threshold, i.e., ciphertexts having

the same underlying plaintext fail the test with a probability

of nearly 99.9%. Then they increase 𝛼 until the attack results

become stable (𝛼 = 300 in Fisher exact test attack and 𝛼 = 500

in binomial test attack). Finally, with 𝛼 fixed, they increase 𝛾

until the attack results become stable (𝛾 = 10
5
in both the two

attacks).

(3) In Figure 17-19, as we only apply one insertion batch for the

binomial test attack, the accuracy is not close to 100%. With

more insertion batches, the accuracy will increase and finally

is more than 90% in our experiments.

(4) Except for the density attack, the results of the other two attacks

show that too larger values for 𝛼 and 𝛾 incur some loss in

accuracy. That’s why in Figure 14-19, with 𝛼 and 𝛾 continually

increasing the stable results are reduced again and the accuracy

decreases a little. In reality, we choose the value at the first

stable stage to guarantee the values for 𝛼 and 𝛾 will not be too

large. On the contrary, it is clear that too small values of (𝛼,𝛾)
result in unacceptable FP.

Here we note that the experimental results in Figure 14-19 are

based on a subset of Birth because we want to show results under as

much different parameter values as possible but the Fisher exact test

and Binomial test attacks are relatively expensive and the dataset

size is very large. Plaintexts in the subset are uniformly chosen

from the whole dataset. The subset size is 1/10 of the whole dataset
size. We believe results on the subset are still sufficient for showing

the effect of parameter values and the parameter-chosen process.

In reality, we actually only conduct a small number of parameter

values to find suitable parameter values as the parameter chosen

process only relies on a rough trend instead of the detailed results

under different parameter values (which implies the unit of 𝛼 and

𝛾 can be larger). Therefore, the parameter-chosen process cannot

be used for defending against our attacks.

B INSERTION OF NEW DISTINCT
PLAINTEXTS

Our discussion in § 7.1 presents the insertion of new distinct plain-

texts is too dangerous for protecting plaintext frequency. Even if

there are only a few distinct plaintexts inserted, the frequency of

plaintexts can be directly revealed. Specifically, the insertion of new

distinct plaintexts enables another very simple and efficient attack

under the multi-snapshot attacker: The attacker can notice the in-

sertion and reveal frequency by observing if there are significant

ciphertexts inserted between two neighboring ciphertexts. Here

we give additional experiments to illustrate and verify this simple

attack. This attack does not belong to the main contributions of

this paper but should be paid attention to.

For each of the three FH-OPE scheme, we pick the PBN dataset

and insert the insertion batch 𝐶1
to the setup batch 𝐶0

. We calcu-

late the number of ciphertexts inserted between two neighboring

ciphertexts in 𝐶0
and show the results in Figure 20. For each non-

negative integer 𝑖 , we calculate the number of pairs of neighboring

ciphertexts between which there are no less than 𝑖 ciphertexts in𝐶1

inserted. The results show for any pair of neighboring ciphertexts

in𝐶0
, there are at most 60 ciphertexts in𝐶1

inserted between them

even if the size of𝐶1
is very large (|𝐶0 | ≈ 5591K and |𝐶1 | ≈ 9199K).

Therefore, if some new distinct plaintexts with a frequency of over

60 (e.g., 100) are encrypted and inserted when inserting 𝐶1
into

𝐶0
, the multi-snapshot attacker observes a significant number of

ciphertexts inserted between some pairs of neighboring ciphertexts

and guess the insertion of new distinct plaintexts happens. Then the

frequency of ciphertexts belonging to the new distinct plaintexts

and some ciphertexts in 𝐶0
and 𝐶1

can be both directly revealed.
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Figure 20. The insertion of ciphertexts without those of new dis-

tinct plaintexts. For each non-negative integer 𝑖 , we show the num-

ber of pairs of neighboring ciphertexts in 𝐶0
between them there

are no less than 𝑖 ciphertexts in 𝐶1
inserted between them.

C RELATIVE ESTIMATION ERROR
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Figure 21. Performance of frequency-revealing attacks on 𝐶0
of

Births.
In this paper, we use an absolute error 𝜖 to evaluate the estima-

tion error and set 𝜖 as a small value to guarantee a small relative

estimation error. Here we give more direct results about the rela-

tive estimation error for further understanding the proportion of
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Figure 22. Performance of frequency-revealing attacks on 𝐶 of

Births.

ciphertexts in FH-OPE affected and threaten by our attacks. We

define the relative estimation error as

𝑟𝑝 =
𝜖

min

∀𝑖∈[𝑁 ]
{𝜋𝑖 − 𝜙𝑖 }.

Here 𝑟𝑝 is a strict upper bound of relative estimation error as

it picks the smallest frequency to calculate the relative error. If

the order range [𝜙𝑖 , 𝜋𝑖 ] of plaintext 𝑣𝑖 is revealed under a relative

estimation error 𝑟𝑝 , then at least 1 − 2𝑟𝑝 of ciphertexts of 𝑣𝑖 are

founded correctly. The attacker knows these ciphertexts have the

same underlying plaintext although it may not know the value of

𝑣𝑖 . For example, under 𝑟𝑝 = 3%, the attacker finds at least 94% of

ciphertexts of 𝑣𝑖 .

Here we show the performance of our attacks under different

relative errors on revealing frequency in both𝐶0
and𝐶 as the Fisher

exact test attack and binomial test attack adopt a multi-snapshot

attacker. We note when the attacker reveals the frequency of 𝑣𝑖

in 𝐶0
under a relative estimation error 𝑟𝑝 , then it also reveals the

frequency of 𝑣𝑖 in 𝐶 under a similar relative estimation error 𝑟𝑝 .

This is because the ciphertexts of 𝑣𝑖 in insertion batches are inserted

proportionally, e.g., suppose the attacker finds ciphertexts 𝑐𝜙𝑖
and

𝑐𝜋𝑖 in 𝐶0
where 96% of ciphertexts of 𝑣𝑖 in 𝐶0

are between them,

then in each insertion batch, there are also around 96% ciphertexts of

𝑣𝑖 inserted between the two ciphertexts. We show the accuracy and

FP under different relative estimation error in Births in Figure 21

and Figure 22. The results show under 𝑟𝑝 = 5% (corresponding to

90% ciphertexts of distinct plaintexts), our attacks still can achieve

over 90% accuracy and a FP less than 1%.
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