
Compute, but Verify: Efficient Multiparty Computation over
Authenticated Inputs

Moumita Dutta1 , Chaya Ganesh1 , Sikhar Patranabis2 , and Nitin Singh2

1 Indian Institute of Science, Bangalore, India
{moumitadutta,chaya}@iisc.ac.in
2 IBM Research, Bangalore, India

sikhar.patranabis@ibm.com,nitisin1@in.ibm.com

Abstract. Traditional notions of secure multiparty computation (MPC) allow mutually distrusting
parties to jointly compute a function over their private inputs, but typically do not specify how these
inputs are chosen. Motivated by real-world applications where corrupt inputs could adversely impact
privacy and operational legitimacy, we consider a notion of authenticated MPC where the inputs are
authenticated (for instance, signed using a digital signature) by some certification authority. We propose
a generic and efficient compiler that transforms any linear secret sharing based honest-majority MPC
protocol into one with input authentication.

Our compiler achieves an ideal notion of authenticated MPC equipped with stronger and more desir-
able security guarantees than those considered in prior works, while incurring significantly lower com-
putational costs and competitive communication overheads when compared to existing solutions. In
particular, we entirely avoid the (potentially expensive) protocol-specific techniques and pre-processing
requirements that are inherent to these solutions. For certain corruption thresholds, our compiler addi-
tionally preserves the stronger identifiable abort security of the underlying MPC protocol. No existing
solution for authenticated MPC achieves this regardless of the corruption threshold.

Along the way, we make several technical contributions that are of independent interest. This includes
the notion of distributed proofs of knowledge and concrete realizations of the same for several relations
of interest, such as proving knowledge of many popularly used digital signature schemes, and proving
knowledge of opening of a Pedersen commitment.

https://orcid.org/0009-0009-5135-5091
https://orcid.org/0000-0002-2909-9177
https://orcid.org/0000-0002-2309-7939
https://orcid.org/0009-0009-7824-042X

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Technical Overview . 7
1.3 Related Work . 8
1.4 Resistance to Known Vulnerabilities . 10

2 Preliminaries . 11
2.1 Threshold Secret Sharing . 11
2.2 Proofs of Knowledge . 13
2.3 BBS+ Signatures and PoK for BBS. 13

3 Distributed Proof of Knowledge . 14
3.1 Defining a DPoK . 14
3.2 Robust Complete DPoK for Discrete Log . 16

4 DPoK for BBS+ Signatures over Secret-Shared Inputs . 20
5 Compiler for Authenticated MPC . 24

5.1 Our Compiler . 24
6 Implementation and Evaluation . 27
A Comparison with Anonymity Sets . 31
B Additional Preliminaries . 31

B.1 NIZK in the ROM . 31
B.2 Compressed Sigma Protocols . 32
B.3 PoK for BBS+ Signature Scheme . 33
B.4 Coding Theory . 33

C Generalization to Threshold Linear Secret Sharing Scheme . 33
Robust DPoK for Discrete Log for TLSS . 34
(Corollary) Distributed Proof of Knowledge using Replicated Secret Sharing 36

D Round Efficient Distributed Proof of Knowledge . 36
E PS Signatures and PoK for PS . 41

Proof of Knowledge . 41
Alternate Proof of Knowledge. 42

F DPoK for PS Signatures over Secret-Shared Inputs . 43

1 Introduction

Secure multiparty computation (MPC) [Yao82,Yao86,GMW87,Kil88,BGW88] allows two or more parties to
jointly compute a function of their private inputs, while ensuring input privacy and output correctness (even
in the presence of some corrupt parties). Traditional security notions for MPC ensure output correctness and
input privacy, that is, nothing is leaked about the parties’ private inputs beyond the (correct) output of the
computation. However, no assurance is given about how the parties choose their private inputs.

Unfortunately, certain applications of MPC could be sensitive to “ill-formed inputs”. Maliciously chosen
inputs could either corrupt the output or reveal the output on arbitrary inputs, thus violating the desired
real-world security guarantees of an MPC protocol. Such attacks are not captured by traditional MPC
security definitions.

Input Authenticity in MPC. There are several real-world applications of MPC where it is important to
ensure that the inputs used by parties are authentic. If a set of individuals on a job portal wish to compute
“industry average compensation” for their expertise and experience in a privacy preserving manner (e.g.,
services provided by glassdoor), one would want them to input payslips bearing their employers’ signature.
Similarly, in applications involving hospitals performing joint computations on patient data for treatment
efficacy, it is desirable to ensure that the data used is signed by a regulatory authority. Input validation
is also of practical relevance in applications of MPC in computation on genomic data [BB16]. For all of
these applications, the traditional MPC security guarantees are clearly inadequate. A natural question that
confronts us then is: how do we ensure that authentic inputs are used in MPC?

Authentication via Certification. In the real world, data authentication typically involves the data being
attested by a relevant certifying authority. In our work, we specifically consider applications where an input
bearing a signature is considered authentic and we can assume the existence of a relevant certifying authority
that provides the signature. For instance, employers can act as the certification authority to digitally sign
the payslips when parties wish to compute ‘industry average compensation’ using services like glassdoor,
a financial auditor can act as the certification authority to digitally sign the bills of sale when shipping
companies wish to compute aggregate statistics on private data, a regulatory authority (like WHO) act
as the certification authority to digitally sign the medical records when hospitals wish to perform joint
computation over sensitive patient data, and so on. Since the certifying authority cannot be omnipresent to
vouch for authenticity of the data, it is increasingly common for individuals to claim this attestation through
digital signatures that can be verified efficiently. In fact, there exist several digital signature schemes today
[CV02,BBS04,PS16] that allow establishing attestation by a certifying authority while requiring minimal
disclosure of attributes, and while maintaining unlinkability (several usages of the same credential cannot
be linked to the same individual). Unfortunately, such secure mechanisms for authenticating data in the
individual context do not translate when computing over data from multiple data owners using vanilla MPC
protocols (that do not consider input authentication).

Potential Approaches and Pitfalls. A näıve approach would be to incorporate input authentication as
part of the function to be computed. However, this is practically inefficient. For example, incorporating
signature verification as part of the function would entail performing expensive operations such as hashing
inside MPC (typically, most signature schemes hash the message), and would also require expressing the
algebraic operations underlying signature verification as arithmetic circuits. This significantly blows up the
size of the circuit, rendering the resulting MPC protocol practically inefficient.

A more efficient alternative is to have the certifying authority sign a commitment (e.g., a Pedersen
commitment [Ped92]) to each input, and then have the parties prove that their inputs are those contained
inside the public commitments (using customized zero-knowledge proofs). However, this fails to provide
unlinkability, which is an essential privacy requirement. In particular, one can use the signed commitment
to link different protocols where the same input is reused. The alternative would be to get the certifying
authority to sign a different commitment for each protocol execution, which again requires the authority to
be omnipresent, and is clearly impractical.

Certain prior works [ADEO21,BJ18] proposed using authenticated secret-sharing in order to certify inputs
to an MPC protocol. However, authenticated secret-sharing only provides stand-alone guarantees about the

3

shares themselves, and additional techniques would be needed to ensure that malicious parties actually use
these authenticated shares in the execution of the actual MPC protocol (the details of such techniques
are not specified completely in prior works [ADEO21,BJ18]). Ideally, we want a notion that ties input
authentication into the underlying MPC, thus preventing malicious parties from using inputs different from
the authenticated ones.

Our Goal. We aim to lift existing MPC protocols into authenticated ones that ensure that an additional
predicate is satisfied by each input (for instance, each input is signed by a common certifying authority). We
want to achieve such input authentication (i) without changing the underlying MPC protocol, (ii) without
representing the predicate as a circuit, (iii) incurring communication overhead that is succinct in the size of
the inputs (which are typically large for the applications we consider), and (iv) maintaining unlinkability.
These requirements immediately preclude prior approaches requiring the authentication relation to be ex-
pressed as a circuit [BBC+19,HVW22], as well as the natural approach based on signed public commitments
outlined above, which lacks unlinkability.

1.1 Our Contributions

In this work, we study authenticated MPC. We present the first generic compiler than efficiently augments
existing MPC protocols to additionally ensure that each input has a valid attestation (in the form of a digital
signature) from a relevant certifying authority, while retaining both practical efficiency and unlinkability.
We illustrate the compatibility of our proposed approach with popularly used privacy-preserving verifiable
attestation mechanisms based on digital signatures such as BBS+ [BBS04,ASM06] and PS [PS16]. Towards
this goal, we put forth a notion of distributed (zero-knowledge) proof of knowledge that is of independent
interest.

Distributed Proof of Knowledge (DPoK). In Section 3, we put forth a notion of a distributed proof of
knowledge (abbreviated as (DPoK)). A DPoK works in a setting with multiple provers and a single verifier,
where the witness is secret shared among the provers. Concretely, for a relation R and an instance-witness
pair (x,w) ∈ R, the verifier holds the (public) instance x, and each prover holds a share wi of the (secret)
witness w such that w = Reconstruct(w1, . . . , wn). We also assume a restricted communication model: (i)
the provers do not communicate with each other, and (ii) the verifier communicates only via a broadcast
channel and is public coin (this facilitates public verifiability, which is used crucially in our eventual solution
for authenticated MPC). Our definition of DPoK may thus be viewed a natural distributed analogue of
honest-verifier public coin protocols.

Robust Complete DPoK. Our basic DPoK definition does not prevent malicious provers from disrupting
protocol execution, and only provides security with abort. To tackle this, we introduce a stronger notion of
robust completeness for a DPoK, which additionally provides tolerance against abort in the presence of (a
potentially smaller number of) maliciously corrupt provers. Looking ahead, using robust complete DPoKs
allows us to achieve authenticated MPC protocols with stronger security guarantees.

DPoK for Discrete Log. In Section 3, we also construct a DPoK for the discrete logarithm relation, where the
witness (the discrete log of a publicly known group element) is secret-shared (using Shamir secret sharing)
across multiple provers. Notably, our construction achieves: (i) succinct communication (logarithmic in the
size of the witness), and (ii) robust completeness (which ensures that the protocol accepts even in the
presence of up to n/3 malicious provers, where provers only holds shares to the correct witness). For succinct
communication, we use techniques due to Attema et al. [AC20] to compress the communication complexity
of our protocol from linear to logarithmic in the size of the witness. We realize robust completeness via
error-correction in the exponents of group elements. To this end, we leverage results from low degree testing
used in prior works to construct efficient zkSNARKs (such as in [AHIV17,BCR+19]). While achieving robust
completeness is straightforward if we do not care about succinctness (and vice versa), the main technical
novelty of our construction is to achieve both properties simultaneously.

In Appendix C, we present a generalization of the above DPoK for discrete log that works with any
threshold linear secret sharing scheme. In this generalized version, we characterize the corruption threshold

4

for robust completeness in terms of the minimum distance of the linear code associated with the threshold
linear secret sharing scheme. As an example, we derive concrete bounds on the corruption threshold for the
popularly used replicated secret sharing scheme.

DPoKs for Algebraically Structured Signatures. Our DPoK for discrete log can be used to build a DPoK for any
digital signature scheme where the associated proof of knowledge of a signature can be modeled as a proof of
knowledge of the opening of a Pedersen commitment. We present specific instances of this general approach
for signature schemes that are algebraically compatible, namely BBS+ [BBS04,ASM06,CDL16]3 (detailed
in Section 4) and PS [PS16] (detailed in Appendix F). These signature schemes are popular candidates for
applications such as verifiable credentials for self-sovereign digital identity. While these signature schemes
natively support efficient (albeit non-distributed) zero-knowledge proofs of knowledge of a valid message-
signature pair, our work introduces the first practically efficient DPoKs for these signature schemes that are
both succinct and robust complete. Our techniques are modular, and we believe that they can be extended
to yield DPoKs for other algebraically structured signatures such as [CL01], as well as algebraic relations of
interest for other applications.

Round Efficient DPoKs in the ROM. The above definitions and constructions of DPoKs are in the standard
model. In Appendix D, we formally define round efficient DPoKs in the random oracle model (ROM). This
definition is based on the Fiat-Shamir heuristic [FS87], using which we transform a DPoK (with number
of rounds logarithmic in the size of the witness) into a round efficient DPoK (having constant number of
rounds). Under this definition, we present round efficient versions of our DPoK constructions for discrete log
and algebraically structured signatures; these protocols achieve the same robust completeness and succinct
communication guarantees as the original protocols, albeit in the ROM.

Authenticated MPC.We now expand upon our main contribution, namely authenticated MPC. Informally,
we consider a notion of input authenticity for MPC where each input is certified using a valid signature from a
certification authority. This is standard in applications where a publicly known certifying authority (external
to the MPC protocol) signs an input to certify that the input satisfies certain properties4. We build upon
our DPoKs for BBS+ and PS signatures to propose a generic compiler that transforms any (threshold
linear) secret-sharing based maliciously secure honest-majority MPC protocol into its authenticated MPC
version. Our compiler yields the first practically efficient MPC protocols that satisfy an ideal notion of
input authenticity while preserving practical efficiency and unlinkability. We prototype-implement a specific
instance of our compiler that achieves input authentication based on our proposed DPoK for BBS+ signatures.
Finally, we present experimental results to illustrate that our compiler incurs negligible communication
overhead over the original MPC protocol. For simplicity, our ideal functionality and subsequent protocols
are described assuming a common signature authority for all inputs. The more general case involving multiple
signing authorities also follows with minor modifications without incurring any loss of efficiency.

Ideal Functionality for Authenticated MPC. In Section 5, we formalize the above notion for authenticated
MPC via an ideal functionality Fauth

MPC that works as follows. The parties send their inputs xi and signature
σi on xi to Fauth

MPC for i ∈ [n]. The functionality Fauth
MPC then checks if σi is a valid signature on xi for all i ∈ [n].

For each j ∈ [n] such that σj is not a valid signature on xj , Fauth
MPC sends (abort, Pj) to all of the parties.

Otherwise it computes y = f(x1, . . . , xn) and outputs y to all of the parties.
We note that our ideal functionality ties input authentication into the underlying MPC, thus pre-

venting malicious parties from using different inputs as compared to the authenticated ones. The prior
works [ADEO21,BJ18] only provide stand-alone guarantees about the authenticated shares themselves, and
would require additional techniques to ensure that these authenticated shares are then used in the execution
of the actual MPC protocol which are currently not considered. We further note that our ideal function-
ality already captures unlinkability, since the adversary does not learn any additional information about

3 There are standardization efforts for using BBS+ signatures in verifiable credentials for Web 3.0, leading to a
recent RFC draft [LKWL22].

4 Our techniques extend to other notions of authenticity such as proving that the inputs open publicly known
commitments.

5

the authenticated input (beyond the function output) that might allow it to correlate the usage of the same
input-signature pair across multiple executions. This rules out solutions based on signing public commitments
to inputs, which trivially violate unlinkability.

Compiler for Authenticated MPC. In Section 5, we present a compiler that transforms any Shamir secret-
sharing based maliciously secure honest-majority MPC protocol Π into its authenticated MPC version Π′

that securely realizes the above ideal functionality Fauth
MPC, where each input is authenticated using a BBS+

signature. Our compiler builds upon our DPoK for BBS+ signatures from Section 4. In Appendix F, we
present an analogous compiler for input authentication using PS signatures, which builds upon our DPoK
for PS signatures. In both cases, the compiled protocol Π′ inherits the security of Π as long as the inputs are
authentic (by definition, we abort if this is not the case)5. If Π guarantees security with identifiable abort,
then the same holds for Π′. If Π achieves guaranteed output delivery, then so does Π′ (albeit for a corruption
threshold t < n/3) – this crucially uses the robust completeness property of the underlying DPoKs.

Generalization and Extensions. We note that our approach works in general for: (a) any (threshold lin-
ear) secret-sharing based MPC protocol, and (b) any signature scheme such that the associated proof of
knowledge can be modeled as a proof of knowledge of the opening of a Pedersen commitment (such as CL
signatures [CL01] and PS signatures [PS16]). Our DPoK-based approach also offers the flexibility of extend-
ing our compiler to support other notions of input authentication, beyond proving knowledge of signatures.
In particular, one can build upon our approach to prove a wider class of expressive predicates over secret-
shared inputs, thus catering to a wide range of applications with diverse proof requirements (e.g., federated
learning). For instance, each party can publish a commitment to its input at the beginning of the authen-
ticated MPC protocol, and then use our DPoK-based framework to prove the following simultaneously: (i)
the secret-shared input is signed by a certifying authority (this follows from the basic compiler), (ii) the
secret-shared input is a valid opening to the published commitment, and (iii) the opening to the commit-
ment satisfies a certain predicate. Note that, if a different application requires new/additional properties
to be checked, the aforementioned approach avoids the need to involve the certifying authority each time.
Similarly, it maintains unlinkability since a fresh commitment is used for each protocol execution, while the
DPoK allows keeping the signature from the certifying authority private.

Implementation and Experiments. In Section 6, we present a prototype implementation of our BBS+
based authenticated MPC protocol, and illustrate that our approach incurs very little computational and
communication overheads over and above the original MPC protocol. In particular, we implement the BBS+
based instance of our compiler and use it to transform an implementation of a native MPC (instantiated via
MP-SPDZ [DPSZ12,KSS13,Kel20]) into an authenticated MPC. We use this implementation to benchmark
an application of authenticated MPC, where n shipping companies with private datasets wish to securely
compute aggregate statistics on some subset of their combined data. Note that this is an application where
the number of inputs of each party is much larger than the number of parties involved in the protocol.
Specifically, we consider each dataset Di = (Ci, Si) to be partitioned into k categorical columns Ci and ℓ
numeric columns Di. A sample query specifies {(j, vj)}j∈J for J ⊂ [k]. The goal is to compute means of
numeric columns on the subset of rows satisfying the selection predicate C[j] = vj for j ∈ J , i.e the subset
of rows with specified values of some categorical features. We also assume an external certifying entity T
(e.g. a financial auditor) which independently verifies the correctness of sales data reported by different
organizations and issues a digital signature to attest the same (this entity does not participate in the MPC
protocol).

We conduct experiments to evaluate the computational and communication overheads incurred by our
protocol to achieve authentication on top of native MPC. The results are summarized in Table 1. For
comparison, we also show the: (i) the actual computational and communication overheads for the native
MPC protocol, and (ii) the computational and communication overheads incurred by an alternative approach
of authenticating the inputs that shows the consistency of the input shares with a public digest of the input
and proves knowledge of a BBS+ signature on this public digest by expressing the verification algorithm as

5 In some applications, it is acceptable to continue computation on default inputs instead of aborting when authen-
tication fails.

6

an arithmetic circuit and evaluating it inside the MPC protocol. As demonstrated by the results in Table 1,
the overheads for this alternative approach are substantial even when an MPC-friendly hash function like
MiMC is used to hash the input. In comparison, the overheads for our DPoK-based approach are significantly
smaller, and effectively minor when compared to the overheads for the base MPC protocol.

Table 1: Comparison of our DPoK-based approach for MPC input authentication with the näıve approach
of validating BBS+ signatures inside MPC (which involves computing MiMC hashes inside MPC). These
results correspond to datasets of size 500 × 10 in the KPI application.

Parties Vanilla MPC Auth MPC with MiMC Hash DPoK Overhead

3 33s/8437 MB 273s/13979 MB 5.7s/14.4 KB

5 125s/43823 MB 1369s/14498 MB 6.2s/30 KB

7 386.2s/127057 MB 3645.33s/207427 MB 8.2s/52 KB

1.2 Technical Overview

In this section, we provide a brief overview of our techniques. We begin by outlining ideas to distribute a
well-known protocol for proving knowledge of discrete logarithm of a public group element. This relation will
be at the core of expressive algebraic relations that we will consider later.

Proof of Knowledge of Discrete Log. Let G be a group of prime order p. Given x ∈ G, recall Schnorr’s
protocol [Sch90,Sch91] for proving knowledge of discrete logarithm w such that x = gw for some generator
g (here (g, x) is public and w is the secret witness). Let (P1,P2,V) be the protocol where we denote by P1

and P2 the algorithms that compute, the prover’s first message a = gα for random α ∈ Fp, and the prover’s
last message (response) z = α + cw, respectively, where c is the challenge from the space {0, 1}l for some
length l. Let V be the algorithm that takes x, transcript τ = (a, c, z) and accepts iff gz = axc.

DPoK for Discrete Log. In order to distribute the above protocol, we begin by assuming n provers Pi who
each hold a share wi such that w = w1 + · · ·+ wn (mod p). Now, each prover runs Σ with their respective
shares in parallel6. That is, Pi runs P1, broadcasts ai = gαi , receives challenge c from V, and runs P2 and
broadcasts zi. The transcript is τ = (a1, . . . , an, c, z1, . . . , zn), and the verifier accepts iff gΣzi =

∏
aix

c =∏
i aix

c. This holds since gΣzi = gΣ(αi+cwi) =
∏

i aix
c.

This idea generalizes to any linear secret sharing scheme, and also extends to other relations. For instance,
to prove knowledge of representation of a vector of discrete logarithms with respect to public generators. In
our final construction we use additional ideas like randomization of the first message of each Pi via a sharing
of 0 in order to ensure zero-knowledge. This DPoK has communication complexity linear in the size of the
witness. To achieve succinctness, we instead use as a starting point a compressed sigma protocol [AC20]
in order to achieve a distributed protocol with logarithmic communication complexity (see Section 3.2 for
details).

Robust Completeness. While the ideas described above result in protocols that are zero-knowledge and
sound against a malicious adversary controlling up to t parties, completeness is guaranteed only if all the

6 This is a simplified description; in our actual protocol Πdlog (Section 3.2), there are no parallel sessions, each
instance uses a random share, ensuring that we do not reuse the shares, and in the FS-compiled version ΠFS

dlog

(Appendix D), parties send non-interactive proofs instead of sending the first-messages separately in parallel. We
note that ROS attacks [BLL+21] in the context of concurrent signatures are therefore inapplicable in our setting.
See also Section 1.4 for a more detailed discussion.

7

provers follow the protocol. However, in the distributed setting, a stronger, but natural notion is a robust
completeness property where completeness holds as long as the shares reconstruct a valid witness, even if
some provers are malicious. The main technical challenge in achieving robust completeness for a distributed
proof is to retain succinctness. Our key technical novelty is to achieve both robustness and succinctness
simultaneously via ideas from low-degree testing. We achieve this by identifying and discarding corrupt
shares. At a high level, the provers commit to their shares and then reveal a certain linear form determined
by the challenge over their shares. Given a challenge c ∈ Fm

p , each Pi broadcasts zi = ⟨c,wi⟩. In the honest
case, these opened linear forms are expected to be a sharing of the same linear form on the reconstructed
witness: z = (z1, . . . , zn) recombine to z where z = ⟨c,w⟩. The verifier error-corrects the received z′ to the
nearest codeword, and identifies the erroneous positions. By assumption our corruption threshold is smaller
than half the minimum distance of the code, so the erroneous positions clearly come from corrupt provers.
Can some corrupt provers strategically introduce errors in individual shares so that they “cancel out” in
the inner product with c? We lean on coding theoretic result (Lemma 2) for linear codes to claim that such
a prover only succeeds with negligible probability. Finally, having identified the corrupt messages, we can
reconstruct the claimed commitment in the exponent using commitments of honest shares (now identified).
We need more details around this core idea to ensure the protocol is zero-knowledge (see Section 3.2 for a
complete treatment).

DPoKs for Algebraically Structured Signatures. It turns out that the above approach can be naturally
generalized to obtain a DPoK for the opening of a Pedersen commitment [Ped91]. We use this observation as a
starting point to realize DPoKs for algebraically structured signatures such as BBS+ [BBS04,ASM06,CDL16]
and PS [PS16], which naturally admit proofs of knowledge that can be cast as proving knowledge of openings
of Pedersen commitments. As a core technical contribution, we introduce a modified proof of knowledge for
the BBS+ signature scheme, which leads to a vastly more efficient DPoK as compared to the straightforward
approach of distributing prior proofs of knowledge for BBS+ signatures. We refer to Section 4 for details.
Analogous DPoK for PS signatures is presented in Appendix F.

Compiler for Authenticated MPC. In order to construct an authenticated MPC protocol, we build
upon the above DPoKs for BBS+ and PS signatures. Our compiler reuses the input sharing that is already
done as part of an honest-majority MPC protocol. Before proceeding with computation on the shares, the
distributed zero-knowledge proof is invoked to verify authenticity, and then the rest of the MPC protocol
proceeds. Since the shares of the witness come from a party in the MPC protocol, our robustness property
guarantees that if the dealer is honest (that is, a valid witness was shared), then even if some parties acting
as provers are dishonest, the authenticity proof goes through (see Section 5 for details).

We also note that, while we rely on broadcast for our protocols, all relevant related work on FLPCP [BBC+19]
and previous works on authenticated MPC [BJ18,ADEO21,HVW22] also make use of a broadcast channel.
A broadcast channel is not a limitation, and can be implemented using point-to-point channels. In the set-
ting where the number of parties is not too large (as in the applications we consider), the communication
overhead to realize broadcast is not prohibitive.

1.3 Related Work

We summarize some relevant related work, and compare our compiler with prior approaches for authenticated
MPC. We refer to Appendix A for some additional discussions.

Certified Inputs. The earlier works of [Bau16,KMW16,ZBB17] achieve input validation for the spe-
cial case of two-party computation using garbled circuit (GC) based techniques. Another work [BJ18]
constructs MPC with certified inputs, albeit using techniques that are specific to certain MPC proto-
cols [DKL+13,DN07]. A recent work [ADEO21] develops techniques for computing bilinear pairings over se-
cret shared data, which aims to enable signature verification inside MPC for the PS signature scheme [PS16].
Both works [ADEO21,BJ18] emulate a functionality similar to authenticated secret-sharing protocol, where
shares of an input certified by some certification authority are provided at the end of the protocol execution.
While the goal of authenticated MPC has been studied, these works would require additional consistency

8

checks to ensure the consistency of shares used across the protocols for authentication of shares and the
underlying MPC execution. Although the explicit details are not provided in the protocol description, we
expect the requirement of some consistency check on the MACs to ensure the usage of same shares during
authentication protocol and original MPC for function computation. In our work, we formalize this notion of
authenticated MPC as an ideal functionality which incorporates the consistency checks, and prove that the
proposed constructions realize this. For instance, consider the scenario where a malicious party receives the
shares of a certified input held by an honest party, which is done via an authenticated secret-sharing protocol,
however while running the MPC itself it chooses to not use the shares received during the previously run
authenticated secret-sharing protocol and uses an arbitrarily chosen share instead. The current definitions
in [ADEO21,BJ18] fails to safeguard against such an attack and would require additional assumptions to
ensure the consistency of shares.

To be precise, the current protocol description of ΠCertInput in [ADEO21] (Section 5.1) emulates the
authenticated secret-sharing, such that at the end of the protocol, if an input corresponds to a valid signature,
the shares of that input is available to every party. This protocol first secret-shares the input, then using
the shares held by everyone as input invokes another protocol ΠVerify to ascertain if the shares obtained in
the previous phase corresponds to an input for which there is a valid signature. However, note that only
Step 3 of ΠVerify considers the shares of the input, which need not be the shares used for running the MPC,
unless additional consistency checks using the MACs on the shares are in place. Such details do not explicitly
appear in the protocols presented in [ADEO21].

The protocols in [BJ18] also follow a similar template based on authenticated secret-sharing. Their
techniques consider two specific MPC protocols [DN07,DKL+13] for input certification. Concretely, Theorem
8 for input certification in [BJ18] ensures that a malicious prover cannot feed an input which does not
correspond to the valid signature. While it is not explicitly specified in [BJ18] that the commitments to the
inputs used for the batch verification of signatures are consistent with the inputs used for the remaining
proof of knowledge statements, we assume that this is indeed the case.

In this paper, we recognize the benefits of having a formal definition to capture the consistency of shares
of input used in authentication and the MPC. To this end, we explicitly provide an ideal functionality
ensuring the same, and then present a construction satisfying this ideal functionality. We also avoid the
possibility of using different inputs for certification and MPC by enforcing that the honest party shares must
completely determine the reconstructed input which is being authenticated. While this observation has not
been specified in either of the works, this specific restriction would also ensure that the consistency of shares
holds for constructions in [ADEO21,BJ18] as well.

We use efficient compressed DPoKs for signature verification instead of verifying signatures inside the
MPC protocol, hence differing from both [ADEO21] and [BJ18] in terms of techniques used and proper-
ties achieved. In particular, our compiler is modular, fully generic (works in a plug-and-play manner with
any threshold linear secret sharing based MPC protocol), and avoids the (potentially expensive) protocol-
specific techniques and pre-processing requirements that are inherent to [ADEO21,BJ18]. Our compiler also
enables stronger security guarantees as compared to abort security, namely identifiable abort (and even full
security/guaranteed output delivery in certain cases), which neither [ADEO21] nor [BJ18] achieves.

Distributed Zero-knowledge. Various notions of distributed zero-knowledge have appeared in literature.
The notion of distributed interactive proofs appeared in [Ped91], in the context of relations describing the
verification of signatures, where the signature is public and the secret key is shared. The notion in [WZC+18]
considers a distributed prover in order to improve prover efficiency, but the witness is still held by one entity.
In Feta [BJO+22], the distributed notion is a generalization of designated verifier to the threshold setting
where a set of verifiers jointly verify the correctness of the proof. Prio [CB17] proposes secret shared non-
interactive proofs where again, there is a single prover and many verifiers.

Our formulation of DPoKs also differs from recent works on distributed zkSNARKs [SVdV16,OB21,DPP+22],
where the focus is on jointly computing a non-interactive publicly verifiable proof (with specific focus on
Groth16 [Gro16], Plonk [GWC19] and Marlin [CHM+20]). Their constructions require additional interac-
tion among the workers over private channels. On the other hand, we consider DPoKs where all interaction
with the verifier takes place over a public broadcast channel. We also study the notion of robust complete-

9

ness that guarantees completion even in the presence of malicious behavior while ensuring succinct proof
size, which was not achieved in prior works. Note that distributed zkSNARKs fundamentally differ in their
objective. DPOKs prove that the given shares (e.g., the one used for MPC) reconstruct a valid witness,
whereas distributed zkSNARKs do not certify a given sharing.

A recent work on distributed zkSNARKs, called zkSaaS [GGJ+23], considers a monolithic prover that
aims outsources proof generation to (untrusted) servers in a privacy-preserving manner for increased effi-
ciency. However, we target applications that require proving (algebraically structured) relations involving an
already secret-shared witness. Plugging it naively does not work as a replacement for our proposed compiler
since it would not ensure that the same input shares are used consistently in the authentication protocol and
the core MPC. Additionally, similar to the distributed proofs with multiple verifier, [GGJ+23] also requires
expressing the algebraically structured relations as circuits, which is inefficient for the algebraic relations
considered in our work.

Proofs on Secret-shared Data. Notions of zero-knowledge proofs on distributed data is explored in recent
works [BBC+19,HVW22,BJO+22]. The former work proposes the abstraction of a fully linear PCP (FLPCP)
where each verifier only has access to a share of the statement, and the latter work is based on MPC-in-the-
head paradigm. The techniques of distributed verification [BBC+19,HVW22,BJO+22] assumes the relations
to be represented as an arithmetic circuit, whereas our DPoKs consider algebraic relations whose circuit
respresentation is prohibitively expensive. Additionally, distributed verifier paradigm considers a designated
prover who knows entire witness to create a proof oracle, which is verified in distributed fashion, while DPoKs
do not require a prover which knows the entire witness. For example for proof of gxhy = C wheres x and y
belongs to different parties, a DPoK will succeed as long as provers have valid shares of x and y.

Our observation is that algebraic relations like discrete log is naturally distributed witness relation.
A public statement and shared witness is better suited for algebraic relations, and our distributed zero-
knowledge definition captures such natural relations. Since the focus of our work is on concrete efficiency
(prover overhead, communication overhead), we take advantage of the algebraic nature of the relation to
design concretely efficient DPoKs by modeling the witness as being distributed and statement being public.
In this approach, we expect rich classes of protocols (compressed sigma protocols, Bulletproofs etc that avoid
circuit representation for several useful relations) to be amenable to be distributed under our definition. In
addition, [BBC+19] provides sublinear communication only for special circuits (like degree 2) and the circuits
of interest for us are unlikely to have this structure.

We also note that [BBC+19] does not consider the robustness property. We put forth the robustness
notion that guarantees that the protocol runs to completion even in the presence of malicious parties (when
the prover is honest). This property is indeed important for our applications, as this means that the compiled
authenticated MPC protocol can identify malicious parties in the authentication stage. The distributed com-
pleteness guarantees of [BJO+22] considers robustness, however its protocol execution incurs communication
cost linear in the size of the circuit in the offline phase. However, [BJO+22] does not allow aggregation of
multiple instances of authentication of input into one execution of the underlying distributed protocol, which
we support efficiently.

Finally, the motivating application for [BBC+19] is compiling passive security to active security, and
therefore the statements that show up – like the next message function of the protocol -– have a low degree
circuit representation. We consider the authenticated input application where our relations of interest are
algebraic in nature (e.g. verification of an algebraic signature scheme) and admit efficient sigma protocols.

1.4 Resistance to Known Vulnerabilities

Here, we present a discussion on why our proposed DPoK protocols and our compiler for authenticated MPC
resist some known attacks and insecurities of ZKP protocols in practice.

Resistance to ROS Attacks. In [BLL+21], the authors presented an algorithm for solving ROS (Random
inhomogeneities in a Overdetermined Solvable system of linear equations) mod p in polynomial time for
ℓ > log p dimensions, which leads to the ROS attack on certain advanced families of digital signatures which
involve computations over secret shares. However, the ROS attack does not apply to our proposed DPoK

10

protocols. In particular, note that the ROS attack only works when: (i) there are more than log p parallel
sessions for the same shares, (ii) the adversary chooses its first message after seeing all of the other first
messages from the honest parties, (iii) the adversary chooses the challenge.

The ROS attack is not applicable for our protocols as: (i) there are no parallel sessions in our protocols,
(ii) each protocol is instantiated using the output of (the randomized) Share algorithm of the underlying
secret sharing scheme (Share,Reconstruct), thereby ensuring that we do not reuse the shares across sessions,
and in the round-efficient versions of our proposed protocols: (iii) the parties send non-interactive proofs
instead of sending the first-messages separately (see ΠFS

dlog in Appendix D), and finally (iv) the challenge is
not chosen by the adversary (verifier); it is determined by performing a hash of the available public transcript.

Resistance to OSNARK-related Vulnerabilities. In [FN16], the authors provide a study of when
SNARKs are insecure in the presence of certain oracles (in particular, the knowledge soundness guarantees
do not hold in such settings since the extraction fails). As defined in [FN16], an OSNARK is a SNARK that
guarantees extraction even in presence of an oracle for the prover. We note here that the negative result for
the existence of OSNARKs, as outlined in [FN16], does not provide a general impossibility result, since it only
applies either to SNARKs where the prover has access to oracles with secret states (such that the extractor
does not have access to these states), and for standard-model SNARKs. We note that the attack does not
apply: (i) to SNARKs in the ROM, and (ii) when the extractor is black-box in the adversary. Fiat-Shamir
transformed Sigma protocols are also known to satisfy black-box simulation-extractability, i.e., knowledge
soundness holds even in the presence of proof oracles [GKK+21,GOP+23]. Analogously, our Fiat-Shamir
transformed round-efficient proofs of knowledge are simulation-extractable in the random oracle model, as
we establish through formal proofs of security. In particular, there are no other oracles with secret states in
our setting. We emphasize that signatures are already independently obtained by the parties on their inputs,
and signing or signature-oracles are not included as part of our authenticated MPC protocols.

2 Preliminaries

In this section, we introduce notations and present preliminary background material. We refer to Appen-
dices B.1, B.2, and B.3 for additional preliminaries.

Notation. We write x ←R χ to represent that an element x is sampled uniformly at random from a
set/distribution X . The output x of a deterministic algorithm A is denoted by x = A and the output x′ of a
randomized algorithm A′ is denoted by x′ ←R A′. For n ∈ N, let [n] denote the set {1, . . . , n}. For a, b ∈ N
such that a, b ≥ 1, we denote by [a, b] the set of integers lying between a and b (both inclusive). We refer
to λ ∈ N as the security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified) polynomial
function and negligible function in λ, respectively. A function f : N → N is said to be negligible in λ if for
every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large.

Let G be a group and Fp denote the field of prime order p. We use boldface to denote vectors. Let
g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn

p , then gx is defined by gx = gx1
1 · · · gxn

n . For g =
(g1, . . . , gn) ∈ Gn and h = (h1, . . . , hn) ∈ Gn, g◦h denotes component-wise multiplication, and is defined by
g ◦ h = (g1h1, . . . , gnhn). For g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn

p , gL (similarly, xL) denotes
the left half of the vector g(x) and gR(xR) denotes the right half, such that g = gL∥gR and x = xL∥xR.

2.1 Threshold Secret Sharing

For ease of exposition we define a special case of threshold linear secret sharing scheme below. For concrete-
ness, the reader may assume a (t, n) Shamir Secret Sharing. The more general definition appears in Appendix
C.

Definition 1 (Threshold Secret Sharing). A (t, n) threshold secret sharing over finite field F consists
of algorithms (Share,Reconstruct) as described below:

11

– Share is a randomized algorithm that on input s ∈ F samples a vector (s1, . . . , sn) ∈ Fn, which we denote
as (s1, . . . , sn)←R Share(s).

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|) and outputs
s = Reconstruct((s1, . . . , s|I|), I) ∈ F. We will often omit the argument I when it is clear from the context.

A threshold secret sharing scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn) ←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q > t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with q ≤ t,
the tuple (si1 , . . . , siq) is information-theoretically independent of s.

A concrete (t, n) sharing scheme over a finite field F, known as the Shamir Secret Sharing is realized by
choosing a set of distinct points η = {η1, . . . , ηn} in F\{0}. Then given s ∈ F, the Share algorithm uniformly
samples a polynomial p of degree at most t such that p(0) = s and outputs (p(η1), . . . , p(ηn)) as the shares.
The Reconstruct algorithm essentially reconstructs the value s = p(0) using Lagrangian interpolation. We
canonically extend the Share and Reconstruct algorithms to vectors by applying them component-wise.

Definition 2 (Linear Code). An [n, k, d]-linear code L over field F is a k-dimensional subspace of Fn such
that d = min{∆(x,y) : x,y ∈ L,x ̸= y}. Here ∆ denotes the hamming distance between two vectors.

We say that an m × n matrix P ∈ Lm if each row of P is a vector in L. We also overload the distance
function ∆ over matrices; for matrices P,Q ∈ Fm×n, we define ∆(P,Q) to be the number of columns in
which P and Q differ. For a matrix P ∈ Fm×n and an [n, k, d] linear code L over F, we define ∆(P,Lm) to
be minimum value of ∆(P,Q) where Q ∈ Lm.

Definition 3 (Reed Solomon code). For any finite field F, any n-length vector η = (η1, . . . , ηn) ∈ Fn of
distinct elements of F and integer k < n, the Reed Solomon Code RSn,k,η is an [n, k, n− k + 1] linear code
consisting of vectors

(
p(η1), . . . , p(ηn)

)
where p is a polynomial of degree at most k − 1 over F.

We note that shares output by (t, n) Shamir secret sharing are vectors in [n, t+ 1, n− t] Reed Solomon
code. We can leverage tests for membership of a vector in a linear code (based on parity-check matrix) to
check if a set of shares {si}i∈H for H ⊆ [n] and |H| > t uniquely determine a shared value s for Shamir
Secret Sharing scheme. Below, we formalise the notion of consistent shares and state a lemma to check such
shares. In the interest of space, we directly state the results for general m ∈ N, i.e. when vectors s ∈ Fm are
shared.

Definition 4 (Consistent Shares). Let L be the linear code determined by a (t, n) Shamir secret sharing
scheme over finite field F. For m ∈ N, we call a set of shares {si}i∈H for H ⊆ [n] with |H| ≥ t + 1
to be Lm-consistent if there exists (v1, . . . ,vn) ∈ Lm such that si = vi for i ∈ H. In this case s =
Reconstruct(v1, . . . ,vn) ∈ Fm is the unique shared value determined by the shares {si}i∈H.

We define the predicate Consistent : FH+1 → {0, 1} as

Consistent({si}i∈H, s) =

1, |H| ≤ t

1, |H| > t ∧ {si}i∈H is Lm-consistent∧
Reconstruct({si}i∈H) = s

0, otherwise.

We use this Consistent(.) predicate to determine if a vector s can be a possible candidate which could
have been used to generate the set of shares held by the honest parties {si}i∈H.

Lemma 1. Let L be the linear code determined by a (t, n) Shamir secret sharing scheme over finite field F.
Then for m ∈ N and all H ⊆ [n] with q = |H| ≥ t+1, there exists q× (n− t) matrix HHH over F such that
shares {si}i∈H are Lm-consistent and determine the value s ∈ Fm if and only if XHH = (s,0n−t−1) where
X = (x1, . . . ,xq) is some canonical ordering of {si}i∈H.

12

Proof. We sketch the proof. For a matrix P ∈ Lm, we have PH = 0n−t−1 where H is the parity check
matrix for the [n, t + 1, n − t] code L. Now for H ⊆ [n] with |H| ≥ t + 1, and matrix X determined by
Lm-consistent shares (si)i∈H, there exists a matrix TH such that XTH ∈ Lm, and hence XTHH = 0n−t−1.
Thus for HH = [k,THH] where k is the column of reconstruction coefficients for the set H, we have
XHH = (s,0n−t−1).

2.2 Proofs of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {x : ∃ w such that (x,w) ∈ R}.
Here, x is called an instance or statement and w is called a witness. An interactive proof system consists of
a pair of PPT algorithms (P,V). P, known as the prover algorithm, takes as input an instance x ∈ L and
its corresponding witness w, and V, known as the verifier algorithm, takes as input an instance x. Given
a public instance x, the prover P, convinces the verifier V, that x ∈ L. At the end of the protocol, based
on whether the verifier is convinced by the prover’s claim, V outputs a decision bit. A stronger proof of
knowledge (PoK)7 property says that if the verifier is convinced, then the prover knows a witness w such
that (x,w) ∈ R. In this paper, we consider POKs that satisfy two security properties, namely, honest-verifier
zero-knowledge (HVZK) and special-soundness.

A protocol is said to be honest-verifier zero-knowledge (HVZK) if the transcript of messages resulting from
a run of the protocol can be simulated by an efficient algorithm without knowledge of the witness. A protocol
is said to have k-special-soundness, if given k accepting transcripts, an extractor algorithm can output a w′

such that (x,w′) ∈ R. Furthermore, a protocol is said to have (k1, . . . , kµ)-special-soundness [BCC+16], if
given a tree of

∏µ
i=1 ki accepting transcripts, the extractor can extract a valid witness. Here, each vertex

in the tree of
∏µ

i=1 ki accepting transcripts corresponds to the prover’s messages and each edge in the tree
corresponds the verifier’s challenge, and each root-to-leaf path is a transcript. An interactive protocol is
said to be public-coin if the verifier’s messages are uniformly random strings. Public-coin protocols can be
transformed into non-interactive arguments using the Fiat-Shamir [FS87] heuristic by deriving the verifier’s
messages as the output of a Random Oracle. In this work, we consider public-coin protocols.

We refer to Appendix B.1 for a detailed treatment of non-interactive zero-knowledge (NIZK) proof sys-
tems.

2.3 BBS+ Signatures and PoK for BBS

In this section, we recall the BBS+ signature scheme [BBS04,LKWL22,CDL16], and its proof of knowledge.
We use the variant of BBS+ signatures and the proof of knowledge from [CDL16], which is the currently
adopted variant in the IETF standard for verifiable crendentials [LKWL22]. Later, we also describe a slight
variant of the BBS+ proof of knowledge from [CDL16], which leads to corresponding distributed proofs with
better amortized complexity (i.e, when several DPoKs are required at a time).

Definition 5 (BBS+ Signature Scheme [BBS04,LKWL22]). The BBS+ signature scheme to sign a
message of the form m = (m1, . . . ,mℓ) ∈ Fℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify)
described as follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime order p, with
an efficient bilinear map e : G1 × G2 → GT as part of the public parameters pp, along with g1 and g2,
which are the generators of groups G1 and G2 respectively.

– KeyGen(pp) : This algorithm samples (h0, . . . , hℓ) ←R Gℓ+1
1 and x ←R F∗

p, computes w = gx2 and outputs
(sk, pk), where sk = x and pk = (g1, w, h0, . . . , hℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples β, s←R Fp, computes A =
(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

and outputs

σ = (A, β, s).

7 Throughout this paper, we use proof and argument interchangeably, but we are only concerned with arguments
(proofs with computational soundness) in this paper.

13

– Verify(pk, (m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2, σ3), and checks

e (σ1, wg
σ2
2) = e

(
g1h

σ3
0

ℓ∏
i=1

hmi
i , g2

)
.

If yes, it outputs 1, and outputs 0 otherwise.

PoK for BBS+ Signature Scheme.We present a modified proof of knowledge (PoK) for BBS+ signatures,
building on the PoK originally proposed in [CDL16] (summarized in Appendix B.3), wherein we split the

relation d−r3hs′

0

∏ℓ
i=1 h

mi
i = g−1

1 by requiring the prover to equivalently show:

d−r3hs′−η
0 = C ∧ hη

0

ℓ∏
i=1

hmi
i = D ∧ C ·D = g−1

1

The above decomposition has advantage that the (long) message m appears only with public generators
which leads to better aggregation of DPoKs over several messages. The complete modified protocol appears
below.

– Common Input: Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

1. P samples r1 ←R F∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)
−β · br1 , where b = g1h

s
0

∏ℓ
i=1 h

mi
i .

3. P samples r2 ←R Fp and computes d = br1 · h−r2
0 and s′ = s− r2 · r3

4. P samples η ←R Fp and sets C = d−vhs′−η
0 , and D = hη

0

∏ℓ
i=1 h

mi
i .

5. P sends (A′, Ā, d, C,D) to V.
6. P and V run a ZKPoK for the discrete-logarithm relation:

(A′)
−β

hr2
0 = Ā/d ∧ d−r3hs′−η

0 = C ∧ hη
0

ℓ∏
i=1

hmi
i = D

where (m, r2, r3, β, s
′, η) is the witness.

7. V checks that A′ ̸= 1G1
, C ·D = g−1

1 , e (A′, w) = e
(
Ā, g2

)
, verifies the ZKPoK proof and outputs 1 if

all the checks pass, and 0 otherwise.

3 Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK) in which multiple provers,
each having a share of the witness engage in an interactive protocol with a verifier to convince it that their
shares determine a valid witness. The provers do not directly interact with each other, and all the interaction
with the verifier takes place over a public broadcast channel.

3.1 Defining a DPoK

Definition 6 (Distributed Proof of Knowledge). We define n-party distributed proof of knowledge for
relation generator RGen and a secret-sharing scheme SSS = (Share,Reconstruct) by the tuple DPoKSSS,RGen =
(Setup,Π) where Setup is a PPT algorithm and Π is an interactive protocol between PPT algorithms P
(prover), V (verifier) and W1, . . . ,Wn (workers) defined as follows:

14

– Setup Phase: For relation R ←R RGen(1λ), Setup(R) outputs public parameters pp as pp ←R

Setup(R). The setup phase is required to be executed only once for a given relation R. We assume
R consists of pairs (x,w) where w is parsed as (s, t)) with s ∈ Fm. Looking ahead, we partition the
witness as (s, t) to explicitly specify which parts of the witness later needs to be shared 8.

– Input Phase: The prover P receives (x, (s, t)) ∈ R as input, while the worker Wi, i ∈ [n] receives
(x, si) as input, where (s1, . . . , sn)←R Share(s). All parties receive x as input.

– Preprocessing Phase: This is (an optional) phase where the prover P sends some auxiliary information
auxi to worker Wi using secure private channels.

– Interactive Phase: In this phase, the parties interact using a public broadcast channel according to
the protocol Π. The protocol Π is a k-round protocol for some k ∈ N, with (pp,x, s, t) as P’s input,
(pp,x, si, auxi) as the input of Wi and (pp,x) as the input of V. The verifier’s message in each round
j ∈ [k] consists of a uniformly sampled challenge cj ∈ Fℓj for ℓj ∈ N. In each round j ∈ [k], the worker
Wi (resp. the prover P) broadcasts a message mij (resp., mi) which depends on it’s random coins and
the messages received in prior rounds (including pre-processing phase).

– Output Phase: At the conclusion of k rounds, verifier outputs a bit b ∈ {0, 1} indicating accept (1) or
reject (0).

A distributed proof of knowledge DPoKSSS,RGen as described above is said to be t-private, ℓ-robust if the
following hold:

– Completeness: We say that completeness holds if for all R ←R RGen(1λ) and (x, s) ∈ R, the honest
execution of all the phases results in 1 being output in the output phase with probability 1.

– Knowledge-Soundness: We say that knowledge soundness holds if for any PPT adversary A =
(A1,A2), where A2 corrupts the prover P and subset of workers {Wi}i∈C for some C ⊆ [n], there
exists an extractor Ext with oracle access to A2 (recall that the prover and the set of corrupt Wi are
controlled by A2) such the following probability is negligible.

Pr

 VA,Π(pp,x) = 1 ∧
((x, (s, t)) ̸∈ R ∨

Consistent({si}i ̸∈C, s) = 0)

R ←R RGen(λ)
pp←R Setup(R)

(x, {si}i ̸∈C)←R A1(pp)

(s, t)←R ExtA2(pp,x, {si}i̸∈C)

In the above, VA,Π(pp,x) denotes the verifier’s output in the protocol Π with its input as (pp,x) and
A being the adversary. The extractor takes as input the shares of the honest parties specified by the
adversary A1, and with all but negligible probability extracts a valid witness.

– Honest Verifier Zero-Knowledge: We say that a DPoK is honest verifier zero-knowledge if for all
R ←R RGen(1λ), (x, s) ∈ R and any PPT adversary A corrupting a set of workers {Wi}i∈C, where
|C| ≤ t, there exists a PPT simulator Sim such that ViewA,Π(pp,x) is indistinguishable from Sim(pp,x)
for pp ←R Setup(R). Here, the view is given by ViewA,Π = {r, (Mi)i∈C} where r denotes the internal
randomness of A and Mi is the set of all messages received by Wi in Π. We remark that we define
honest-verifier zero-knowledge as is standard for public-coin interactive protocols. After Fiat-Shamir
compilation into a non-interactive proof, we get full zero-knowledge against a malicious verifier.

– Robust-Completeness: We say that robust-completeness holds if for all R ←R RGen(1λ), (x, s) ∈ R
and any PPT adversary A corrupting a set of workers {Wi}i∈C, where |C| ≤ ℓ, VA,Π(pp,x) = 1 with
overwhelming probability where pp←R Setup(R).

Remark 1. Robust completeness is a stronger notion of completeness in the sense that it holds even if some
corrupt workers deviate maliciously from the protocol, as opposed to the standard notion of completeness
which only holds if all the workers follow the protocol. Looking ahead, we use robust complete DPoKs

8 We specify s ∈ Fm since our secret sharing works over a finite field. The witness component t need not, in general,
be a field element. In fact, in our application, the witness is a message signature pair where the message is in Fm

and the signature is a group element. This group element is not secret shared, yet, the DPOK guarantees extraction
of a valid signature message pair.

15

to design authenticated MPC protocols that preserve the underlying protocol’s resilience against malicious
behavior.

Remark 2. We assume that the sharing phase is executed before the onset of DPoK, hence the knowledge
soundness extractor of DPoK expects honest party shares in order to extract the witness. Since knowledge
soundness is supposed to hold against a corrupt prover and some corrupt workers, it is meaningful to say that
the adversary breaks knowledge soundness if no extractor can construct corrupt party shares that together
with the honest party shares determine a valid witness. Note that extractor is required to produce shares
of corrupt parties which “explain” the successful outcome of the protocol in conjunction with the shares used
by honest parties. Hence, DPoK enables us to certify a given sharing.

Remark 3. We assume an honest verifier V for ease of exposition. In Appendix D, we relax this assumption
by transforming any DPoKSSS,RGen protocol that uses only public coins and communication over broadcast
channels between the workers and the verifier (with no communication among the workers), into a round-
efficient version RE-DPoKSSS,RGen in the random oracle model, wherein the verifier’s challenge is computed
using the Fiat-Shamir heuristic [FS87].

3.2 Robust Complete DPoK for Discrete Log

In this section, we provide a DPoKSSS,DlogGen for the discrete log relation based on Shamir Secret Sharing
(SSS) [Sha79]. Let DlogGen be a relation generator that on input (1λ, 1ℓ) outputs (G,g, p) where p is a λ-bit
prime, G is a cyclic group of order p and g = (g1, . . . , gℓ) ←R Gℓ is a uniformly sampled set of generators.
The associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let SSS = (Share,Reconstruct) denote
(t, n) Shamir secret sharing over Fp. Our protocol Πdlog realizing DPoKSSS,DlogGen is as below. However, for
ease of exposition, we first explain a simpler non-robust version of the protocol, before explaining the robust
version. We use an instantiation of compressed sigma protocols (CSP) due to Attema et al. [AC20] as a
black-box (see Appendix B.2 for details). We run CSP protocol instances over a broadcast channel, meaning
that each worker Wi (playing the role of the prover of that instance) broadcasts its messages as part of the
CSP protocol, and the verifier broadcasts all challenges as well.

Warm-up: Non-robust DPoK for DLOG. We begin by describing a simpler, non-robust version of Πdlog

outlined above, which we call Πnr-dlog. Let us consider the scenario where the parties Wi, i ∈ [n], holds the
shares si for a secret s such that (z, s) ∈ RDL, i.e. z = gs. Now note that since (s1, . . . , sn)←R s, there exists
some publicly known ki such that

∑
i kisi = s. In particular, the protocol Πnr-dlog executes the following

steps:

– Input Phase: The prover holds (z, s) and each worker Wi (i ∈ [n]) holds (z, si), where si are shares of
s i.e. (s1, . . . , sn)←R Share(s).

Interactive Phase

– Each worker Wi (i ∈ [n]) broadcasts a commitment Ai = gsi to their shares si, along with a proof of
knowledge πi of its exponent si with respect to the associated commitment Ai.

– Thereafter, the verifier checks the following:
· The proofs πi (with respect to the broadcast commitment Ai) are valid for all i ∈ [n] .
· The broadcast Ai and the publicly known z satisfies the relation z =

∏
i A

ki
i for the publicly known

reconstruction coefficients {ki : i ∈ [n]}.

Robust DPoK for DLOG. Note that the previously described protocol Πnr-dlog achieves completeness
only if all of the parties participating to produce the proof are honest. To achieve completeness even in
the presence of corrupt parties, known as the stronger guarantee of robust completeness, we require error-
correction. However the shares that requires error-correction are in the exponent of a publicly known group
element and it is known from [Pei06] that error correction is not possible in the exponent. To ensure that
error correction is possible in the exponent, we leverage the coding theoretic lemma that states that a random
linear combination of a set of error-correcting codes (e.g., Reed-Solomon code) retains the position of errors
as long as the number of errors are ‘small’. In particular, the protocol Πdlog executes the following steps:

16

– Input Phase: The prover holds (z, s) and each worker Wi (i ∈ [n]) holds (z, si), where si are shares of
s i.e. (s1, . . . , sn)←R Share(s).

– Pre-processing:We need an additional preprocessing step for providing robustness. In this phase, before
the onset of the interactive phase of the protocol, the prover samples r ←R Fp, computes (r1, . . . , rn)←R

Share(r) and sends the share ri to the worker Wi.

Interactive Phase

– Commit to Shares: In the interactive phase, each worker Wi (i ∈ [n]) first commit to their respective
shares by

· broadcasting Ai = gsi and running its associated proof of knowledge CSP{(Ai, si) : g
si = Ai} over

broadcast to obtain πi1.

· broadcasting Bi = hri
1 hωi

2 for ωi ←R Fp and running its its associated proofs of knowledge
CSP{(Bi, (ri, ωi)) : h

ri
1 hωi

2 = Bi} over broadcast to obtain πi2.

– Reveal Linear Form over Shares: The verifier samples a challenge γ ←R Fℓ
p and broadcasts it.

Thereafter, the workers broadcast the linear form vi = ⟨γ, si⟩ + ri. Recall that, we know that random
linear combination of a codeword is also a codeword (recalled in Lemma 2). Using Lemma 2, since
{(si, ri) : i ∈ [n]} are codewords respectively, the linear combination of those codewords (v1, . . . , vn)
using the randomly sampled γ is also a codeword.

Additionally, to ensure that corrupt workers use si, ri consistent with earlier commitments Ai, Bi we
additionally require them to run the following proof of knowledge CSP over broadcast to obtain πi3:

πi3 = CSP{((AiBi,γ∥1∥0, vi), (si, ri, ωi)) : g
sihri

1 hωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}.

– Verifier Determines Honest Commitments: Let v = (v1, . . . , vn), defined by vi = ⟨γ, si⟩ + ri, be
the vector of honestly computed values, and v′ = (v′1, . . . , v

′
n) be the respective broadcast values received

by the workers in the previous step. If one of the proofs πi1, πi2 or πi3 is invalid, the verifier set bi = 0
else it sets bi = 1. Since ∆(v′,v) ≤ d < (n− t)/2, V can compute v from v′ by decoding algorithm (e.g.
Berlekamp-Welch) for Reed-Solomon codes. Set C = {i ∈ [n] : vi ̸= v′i ∨ bi = 0} and let HQ = (hjk)
denote the matrix guaranteed by Lemma 1 for Q = [n]\C = {i1, . . . , iq} for q ∈ N.
Informally, C is the set consisting of the position of ‘errors’ noted by the verifier and the new reconstruc-
tion coefficient k′i is computed for the set [n] \ C = {i1, . . . , iq}. Thereafter the verifier proceeds with
the final check with the non-error positions in {i1, . . . , iq} by using the new reconstruction coefficients
and the corresponding commitments sent in the previous round. Also, we rely on the fact that we use
shares of a codeword (s, r) in the proof of knowledge πi3 to ensure that the received values (v1, . . . , vn),
if correctly computed, would also be a codeword and error-correction can be used on the new codeword
(v1, . . . , vn).

– Output using Honest Messages: V outputs (1,C) if
(∏

j∈[q] A
hjk

ij

)
k=1,...,n−t

= (z,0n−t−1), and

(0, {P}) otherwise.

This is achieved via the additional steps (4b) through (6) in Πdlog outlined in the figure above. We
subsequently present a formal proof that Πdlog achieves d-robust completeness for d < dist/2, where dist =
(n− t) is the minimum distance of the Reed-Solomon code induced by (t, n)-SSS.

Remark 4. The final step of protocol Πdlog checks (n− t) equations over exponents and not just the recon-
struction equation. This is to ensure that we extract the witness consistent with honest party shares of the
witness. This is crucial in the security proof of our compiler for honest majority protocols where honest party
shares determine a unique consistent witness, and this ensures that corrupt parties use the same inputs in
both the DPoK protocol and the associated MPC protocol.

17

Protocol Πdlog

1. Public Parameters: Let (G,g, p)←R DlogGen(1λ, 1ℓ). Let RDL denote the relation consisting of
pairs (z, s) such that gs = z. Let (h1, h2)←R Setup(RDL) be two independent generators of G.

2. Input Phase: The prover gets (z, s) while workers Wi, i ∈ [n] are given (z, si) where
(s1, . . . , sn)←R Share(s). 9

3. Pre-processing: Prover samples r ←R Fp, computes (r1, . . . , rn)←R Share(r) and sends ri to Wi

for i ∈ [n].
4. Commit to Shares: In the interactive phase, each worker Wi, for i ∈ [n], does the following.

(a) Wi broadcasts Ai = gsi and runs its associated proofs of knowledge CSP{(Ai, si) : g
si = Ai}

over broadcast to obtain πi1.
(b) Wi broadcasts Bi = hri

1 hωi
2 for ωi ←R Fp and runs its associated proofs of knowledge

CSP{(Bi, (ri, ωi)) : h
ri
1 hωi

2 = Bi} over broadcast to obtain πi2.
5. Reveal Linear Form over Shares:

(a) V samples γ ←R Fℓ
p and broacasts it.

(b) For all i ∈ [n], Wi computes vi = ⟨γ, si⟩+ ri and broadcasts vi.
(c) For all i ∈ [n], Wi also runs the associated proof of knowledge to obtain πi3, i.e.

πi3 = CSP{((AiBi,γ∥1∥0, vi), (si, ri, ωi)) : g
sihri

1 hωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}.

6. Verifier Determines Honest Commitments:
(a) Let v′ = (v′1, . . . , v

′
n) be the received values in the previous step by the workers, instead of the

honestly computed valyes (v1, . . . , vn).
(b) If one of the proofs πi1, πi2 or πi3 is invalid, the verifier set bi = 0 else it sets bi = 1.
(c) Since ∆(v′,v) ≤ d < (n− t)/2 from assumption, V computes v from v′ by decoding algorithm

(e.g. Berlekamp-Welch) for Reed-Solomon codes. Set C = {i ∈ [n] : vi ̸= v′i ∨ bi = 0} and let
HQ = (hjk) denote the matrix guaranteed by Lemma 1 for Q = [n]\C = {i1, . . . , iq} for q ∈ N.

7. Output using Honest Messages: V outputs (1,C) if
(∏

j∈[q] A
hjk

ij

)
k=1,...,n−t

= (z,0n−t−1), and

(0, {P}) otherwise.

Theorem 1. Assuming that CSP satisfies completeness, knowledge-soundness and zero-knowledge with O(log ℓ)-
communication overhead, Πdlog is a DPoKSSS,DlogGen (as per definition 6) for relation generator DlogGen and
(t, n)-SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum distance of the
Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communication over broad-
cast channels.

Proof. We provide the proof of security and efficiency below.

Proof of Security. In order to prove security, we prove robust completeness, knowledge-soundness and zero-
knowledge.

Robust Completeness. We show that when the prover is honest, and has a correct witness s, the verifier
outputs 1 and identifies the corrupt workers with overwhelming probability. Let A be an adversary corrupting
set C′ of workers with |C′| = d < (n − t)/2. Let S denote the matrix with ith column as (si, ri) for i ∈ [n].
Clearly S ∈ Lm for m = ℓ+ 1. We construct a matrix S′ as follows: for i ∈ C′ where the adversary’s proofs

9 Note that here the witness is s ∈ Fℓ
p, and we do not have any component t which is not being secret-shared.

18

πi1, πi2 and πi3 are valid, we extract s′i and ri from the proofs πi1 and πi2 respectively, and set (s′i, r
′
i) as

the ith column of S′. For i ∈ C′ where one of the proofs is not valid, we set ith column of S′ as (s′i, r
′
i)

for s′i, r
′
i sampled uniformly. Finally for i ̸∈ C′, we set the ith column of S′ as (si, ri) (i.e. it is identical to

the corresponding column in S). Intuitively, the matrix S′ is the corrupted version of honest matrix S in
which columns corresponding to corrupt provers consist of shares (s′i, r

′
i) the adversary had in its “head”.

Looking ahead, we force the adversary to reveal a linear combination over the shares in its “head”, and if
they are inconsistent with S, the resulting message v′i will differ from honestly computed vi (Lemma 2),
which will identify the corrupt messages. We now proceed with the formal proof. Let E denote the set of
column indices where S and S′ differ. Let v′ = (v′1, . . . , v

′
n) be the vector where v′i is sent by Wi in Step

(5). Clearly, as ∆(v′,L) ≤ |C′| < (n− t)/2, we can decode v′ to vector v = (v1, . . . , vn) ∈ L. By uniqueness
of decoding, we must have v′i = vi for i ̸∈ C′. We will prove that with overwhelming probability we must
have (s′i, r

′
i) = (si, ri) for all i ∈ Q, which from Lemma 1 will imply that verifier outputs 1 (this is because

verifier simply checks matrix relation in Lemma 1 over exponents). For sake of contradiction, assume that
(s′i, r

′
i) ̸= (si, ri) for i ∈ H. We can assume that the proofs πi1, . . . , πi3 were valid, for otherwise bi = 0,

which would imply i ̸∈ H, a contradiciton. Now from soundness of the proofs and binding property of the
pedersen commitments, with overwhelming probability we must have v′i = ⟨γ, s′i⟩ + r′i. By assumption we
have i ∈ E and thus from Lemma 2, with overwhelming probability we have v′i ̸= vi. Thus i ̸∈ H, which is
again a contradiction. This proves that s′i = si for i ∈ H, and thus the vector (s′i)i∈H is Lm-consistent. From
Lemma 1, we conclude that the verifier outputs 1.

Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext which is provided
the shares si, i ̸∈ C with C denoting the indices of workers corrupted by adversary A. The extractor Ext runs
the adversary A. When A succeeds, for each j ∈ [q] in Step (6) the extractor Ext sets s′ij = sij if ij ̸∈ C;
otherwise it invokes the extractor for CSP, which has oracle access to the worker Wij acting as the prover

for the instantiation of CSP{(Ai, si) : g
si = Ai}, to extract s′ij satisfying g

s′ij = Aij . The verification check

in Step (7) implies that the tuple
(
s′ij
)
j∈[q]

is Lℓ-consistent. The extractor outputs the witness s, which

is reconstructed from the columns of the unique matrix S ∈ Lℓ determined by the tuple
(
s′ij
)
j∈[q]

This

completes the proof of knowledge-soundness for Πdlog.

Zero-Knowledge. For proving zero-knowledge, we describe the simulator as follows. Without loss of gen-
eraltiy, let us assume that C = {1, . . . , ϵ} for ϵ ≤ t. The simulator Sim runs the adversary as follows:

– Sim receives {Ai, Bi}i∈C from the adversary.
– Sim simulates messages {Ai, Bi, πi1, πi2}i/∈C of the honest parties as follows:

· Sim chooses A′
i ←R G for 1 ≤ i ≤ t, and sets a = (z,A′

1, . . . , A
′
t).

· Sim setsA′
t+j = atj where tj ∈ Ft+1

p is the interpolation vector such that f(t+j) = ⟨(f(0), . . . , f(t)), tj⟩
for all polynomials f(x) of degree≤ t, i.e. tj = {λ0(t+j), λ1(t+j), . . . , λt(t+j)} where λ0(x), . . . , λt(x)
are lagrange polynomials with respect to the set {0, . . . , t}.

· Sim picks B′
i, i > ϵ uniformly at random from G.

· Sim invokes the simulator for the CSP to obtain πi1 = CSP{(Ai, si) : g
si = Ai},

πi2 = CSP{(Bi, (ri, ωi)) : h
ri
1 hωi

2 = Bi}.
· Then Sim sends the messages {A′

i, B
′
i, πi1, πi2}i>ϵ to A.

– Sim simulates the challenge by sampling γ ←R Fℓ
p.

– Sim receives {vi}i<ϵ from A, along with the proofs {πi3}i<ϵ.
– Sim sets v′ ←R Fp and computes (v′1, . . . , v

′
n) ←R Share(v′), computes simulated CSP proof πi3 =

CSP{((AiBi,γ, vi), (si, ri, ωi)) : g
sihri

1 hωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}, and sends {vi, πi3}i>ϵ.

– Sim sends (v′i, πi3)i>ϵ to the adversary A.

To ensure indistinguishability of transcripts, we only need to provide argument for correctness of honest-
party’s first messages {Aj}i/∈C provided by the simulator, since the other messages are sampled according
to the protocol specification. We argue correctness of simulation of honest-party first messages {Aj}i/∈C as
follows. In real execution of the protocol, the vector of shares for party j is of the form (f1(j), . . . , fℓ(j)),
where fi : i ∈ [ℓ] are the polynomials used to share the values si : i ∈ [ℓ] respectively. Let f = (f1, . . . , fℓ)

19

denote the vector of sharing polynomials and let f(j) to denote the vector (f1(j), . . . , fℓ(j)). Then for
j > ϵ in the real protocol, (Aj)j>ϵ are distributed as (gf(j))j>ϵ, subject to constraint that gf(0) = z. Sam-
pling such a polynomials fi, i ∈ [ℓ] corresponds to choosing fi(1), . . . , fi(t) uniformly and then determining
fi(t + j) = ⟨(fi(0), . . . , fi(t)), tj⟩ using the interpolation vector tj . Thus f(t + j) is a tj-linear combination
of f(0), . . . , f(t), which dictates simulator’s computation of At+j from vector a. The simulated transcript is
an accepting transcript as gf(0) = z and gf(i) = Ai for all i /∈ C, and the verification check is satisfied since a
known linear combination of {f(i)}i/∈C in the exponent yields the desired value f(0) in the exponent. Addi-
tionally, since {f(i)}i/∈C are implicitly set as the honest-party shares, it is identical to the correct distribution
of secret shares. This completes the proof of zero-knowledge for Πdlog.

Proof of Efficiency/Succinctness. Assuming that CSP has O(log ℓ)-communication overhead [AC20], it fol-
lows by inspection that Πdlog incurs O(n) communication over point-to-point channels (where the prover
distributes additional randomness to the workers) and O(n log ℓ) communication over broadcast channels
(for n instances of CSP). This completes the proof of efficiency/succinctness for Πdlog, and hence the proof
of Theorem 1. ⊓⊔

The following corollary of Theorem 1 follows immediately and yields the concrete bounds on the corrup-
tion threshold tolerated by Πdlog.

Corollary 1. Setting d = t < n/3, Πdlog is n/3-private and n/3-robust.

Finally, the following corollary also follows immediately from the proof of Theorem 1, and formally captures
the properties of the non-robust protocol Πnr-dlog.

Corollary 2. Assuming that CSP satisfies completeness, knowledge-soundness and zero-knowledge with O(log ℓ)-
communication overhead, Πnr-dlog is a DPoKSSS,DlogGen for relation generator DlogGen and (t, n)-SSS that sat-
isfies completeness and t-privacy, and incurs O(n) communication over point-to-point channels and O(n log ℓ)
communication over broadcast channels.

Note that Πnr-dlog retains all properties of its robust counterpart apart from d-robustness as stated in Theorem
1.

Generalization to Threshold Linear Secret Sharing. We can generalize the above protocol to work
with any threshold linear secret sharing (TLSS) scheme. In the generalized version, the corruption threshold
for robust completeness depends on the exact distance of the linear code induced by the TLSS scheme.
As a corollary, we derive concrete bounds on the corruption threshold for robust completeness when using
replicated secret sharing. The relevant technical details appear in Appendix C.

Round Efficient DPoK for Discrete Log. In Appendix D, we describe a round-efficient version of Πdlog

in the random oracle model (obtained using the Fiat-Shamir heuristic), which we call ΠFS
dlog. We highlight

here that, while Πdlog requires a logarithmic (in the size of the witness) number of rounds of interaction, the
round-efficient version ΠFS

dlog only requires a constant number of rounds of interaction. Apart from this, ΠFS
dlog

satisfies the same robust completeness, knowledge soundness and zero-knowledge properties as Πdlog, albeit
in the random oracle model.

4 DPoK for BBS+ Signatures over Secret-Shared Inputs

In this section, we build upon our (publicly verifiable) DPoK for the discrete log relation to design a protocol
that allows a prover P to prove knowledge of a BBS+ (or PS) signature on a secret-shared input. Concretely,
suppose that the prover P holds a BBS+ (or PS) signature σ on a message m under a public key pk, where
m is secret-shared across n parties W1, . . . ,Wn (i.e. each worker Wi holds a share mi). The goal of the
protocol is to allow the prover P to convince a designated verifier V that σ is a valid signature on m under
pk, without revealing σ in the clear (this helps realize the desired property of signature unlinkability, as
explained subsequently). We also present similar PoK protocols for PS signatures [PS16] over secret-shared

20

inputs in Appendix F. Looking ahead, we use these protocols as building blocks to design our compiler for
upgrading any secret-sharing based MPC protocol into an authenticated version of the same protocol, where
the (secret-shared) inputs are authenticated using BBS+(or PS) signatures as above.

We start by defining the relation for BBS+ signature verification.

Definition 7 (BBS+ Relation). Let BBSGen denote the relation generator, such that BBSGen(1λ, ℓ) out-
puts a bilinear group (G1,G2,GT , g1, g2, e, p) ←R BBS.Setup(1λ). The corresponding relation Rbbs is de-
fined by (x, (m, t)) ∈ Rbbs for x = pk = (g1, w, h0, . . . , hℓ) ∈ G1 × G2 × Gℓ

1, m = (m1, . . . ,mℓ) ∈ Fℓ
p and

t = σ = (A, β, s) ∈ G1 × F2
p if e(A,wgβ2) = e(g1h

s
0

∏ℓ
i=1 h

mi
i , g2).

Protocol Πbbs+

– Public Key pk = (w, h0, . . . , hℓ)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Fℓ

p and signature σ = (A, β, s) on m, with A =(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

, such that (pk, (m, σ)) ∈ Rbbs

– Wi’s inputs : Wi possesses the ith share mi of the message vector m, such that
Reconstruct(m1, . . . ,mn) = m

– Pre-processing : P samples u ←R F∗
p, r ←R Fp, η ←R Fp, and computes d = bu · h−r

0 and t =

s− r · v where v = u−1, b = g1h
s
0

∏ℓ
i=1 h

mi
i . P computes (r1, . . . , rn)←R Share(r), (v1, . . . , vn)←R

Share(v), (β1, . . . , βn) ←R Share(β), (t1, . . . , tn) ←R Share(t), (η1, . . . , ηn) ←R Share(η). P sends
the shares (ri, vi, βi, ti, ηi) to Wi, for all i ∈ [n].
In other words, each Wi locally holds the i-th share si = (mi, ri, vi, βi, ti, ηi) such that

s = (m, r, v, β, t) = Reconstruct
(
{si}i∈[n]

)
.

– Interactive Protocol:
1. P computes A′ = Au, Ā = (A′)

−β · bu(= (A′)x), where b = g1h
s
0

∏ℓ
i=1 h

mi
i and d = bu · h−r

0 . P
sets C = d−vht−η

0 , D = hη
0

∏ℓ
i=1 h

mi
i , and broadcasts (A′, Ā, d, C,D) to each Wi and V.

2. The workers Wi, i ∈ [n] and V run the DPoK Πdlog for the relation D = hη
0

∏ℓ
i=1 h

mi
i , where

(η,m1, . . . ,mℓ) are secret-shared across the workers; and g = (h0, . . . , hℓ), z = D is available
to all parties.

3. Simultaneously, the workers Wi, i ∈ [n] and V run the DPoK Πdlog for the relation C =

d−vht−η
0 ∧ Ā

d = (A′)
−β

hr
0, where (v, η) and (β, r) are secret-shared; and g = ((d, h0), (A

′, h0)),

z = (C, Ā
d) is available to all parties.

4. V accepts if C ·D = g−1
1 , and e (A′, w) = e

(
Ā, g2

)
, and both instances of Πdlog accept.

Our DPoK Protocol Πbbs+. We build upon the robust complete DPoK Πdlog for discrete log to propose
a DPoK achieving robust completeness for BBS+ signatures, which allows a designated prover P, to show
knowledge of a BBS+ signature (A, β, s) over the message m ∈ Fℓ

p that is secret-shared amongst the workers
W1, . . . ,Wn. Recall that this PoK involved the following steps: (i) the prover randomly chooses some auxiliary
inputs, and combines them with the signature to output a randomized first message (this randomization
ensures unlinkability), and then (ii) the prover shows knowledge of these auxiliary inputs and components
of the signature satisfying discrete-log relations determined by the first message. Our BBS+ DPoK over
secret-shared inputs follows a similar blueprint, where the prover similarly randomizes the first message
using certain auxiliary inputs. In our case, the prover: (i) secret-shares the auxiliary inputs to the workers
using point-to-point channels (this step is unique to our protocol and is designed to facilitate distributed
proving in the subsequent steps), and (ii) broadcasts the first message to the workers and the verifier (this

21

step uses broadcast channels and is conceptually similar to the PoK over non-distributed inputs). At this
point, the problem reduces to a DPoK for the discrete log relation. We handle this using our robust complete
DPoK Πdlog for discrete log.

We prove the Πbbs+ to be a DPoK for the relation generator BBSGen in the following theorem.

Theorem 2. Assuming that Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and (t, n)-SSS, Πbbs+

is a DPoK for the relation generator BBSGen and (t, n)-SSS with:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum distance of the
Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communication over broad-
cast channels.

Proof. We provide the proof of security and efficiency below. In order to prove security, we prove robust
completeness, soundness, and zero-knowledge.

Robust Completeness. Robust completeness follows from direct calculation using the robust completeness
of the underlying subprotocols DPoK Πdlog for DlogGen, used in step (3) and (4).

Knowledge Soundness. Consider an adversary that corrupts a t-sized subset of the workers in Πbbs+. By
inspection, for t < n/3, an honest verifier detects the corrupt subset of workers, since the underlying protocol
Πdlog satisfies d-robust completeness for d < n/3.

Consider an adversary A = (A1,A2) which corrupts P and Wi, i ∈ C. We show that, given an extractor
Ext for Πdlog, it is possible to design an extraction algorithm Ext′ that given {mi}i ̸∈C, where mi is the share
of m provided to Wi, extracts a signature σ on m. First Ext runs the adversary A to obtain the messages
(ri, vi, βi, ti, ηi) for i ̸∈ C. The extractor Ext′ also obtains the message (A′, Ā, d, C,D) from A. Next it sets
s′i = (ηi,mi) and s′′i = (vi, yi, βi, ri) for i ̸∈ C where yi = ti − ηi for i ̸∈ C. It then invokes the extractor Ext
for DPoK sub-protocol Πdlog in steps (2) and (3) respectively and computes the extracted witness as follows:

(s′)i∈C = (η,m)i∈C ←R ExtA({s′i}i̸∈C)

(s′′)i∈C = (v, y, β, r)i∈C ←R ExtA({s′′i }i̸∈C)

where

η = Reconstruct(η1, . . . , ηn), m = Reconstruct(m1, . . . ,mn)

v = Reconstruct(v1, . . . , vn), y = Reconstruct(y1, . . . , yn)

β = Reconstruct(β1, . . . , βn), r = Reconstruct(r1, . . . , rn)

Using the message (A′, Ā, d, C,D) obtained from the adversary A and the outputs η,m, v, y, β, r obtained
from the extractor Ext for DPoK sub-protocol Πdlog, extracted witness is computed as (m, t), where t =
(A′v, β, y + η + vr).

Here, we parse the extracted witness m as m = (m1, . . . ,mℓ). From knowledge-soundness of the DPoK

sub-protocol Πdlog and verifier’s checks, with overwhelming probability we have: D = hη
0

∏ℓ
i=1 h

mi
i , C =

d−vhy
0, (A

′)−βhr
0 = Ā/d, C ·D = g−1

1 and Ā = (A′)x. We first note that v ̸= 0, otherwise substituting C,D
in the relation C · D = g−1

1 yields a non-trivial discrete-log relation between the generators g1, h0, . . . , hℓ.
From the preceding equations, we can derive:

(A′v)β+x = g1h
y+η+vr
0

ℓ∏
i=1

hmi
i

which shows that (A′v, β, y + η + vr) is a valid signature on m. Hence, the extractor Ext′ has computed a
valid witness for the BBSGen relation. This completes the proof of knowledge soundness for Πbbs+.

Honest Verifier Zero-Knowledge. Finally, consider an adversary A that corrupts workersWi,i ∈ C where
|C| ≤ t. We show that, given a ZK-simulator Simzk

1 for Πdlog and a ZK-simulator Simzk
2 for the single-prover

22

proof of knowledge for BBS+ signatures from [CDL16], we construct a simulation algorithm Sim′ that output
a simulated view of an honest verifier in the protocol Πbbs+ without the knowledge of the witness (m, σ).
Using the simulator Simzk

2 , the simulator Sim′ generates the message (A′, Ā, d, C,D). As the statements
for the DPoKs in steps (2) and (3) depend entirely on the public parameters and the preceding message,
the simulation follows by invoking simulator Simzk

1 to simulate the transcript for respective DPoKs on the
statements derived from the simulated first message. Looking ahead, in the formal proof of security for our
compiled MPC protocol, we use this simulation algorithm Sim′ to simulate proofs of knowledge of BBS+
signatures on the inputs of the honest parties. This completes the proof of zero-knowledge soundness for
Πbbs+.

Proof of Efficiency/Succinctness. Recall that Πdlog has O(n) communication over point-to-point channels
and O(n log ℓ)-communication overhead over broadcast channel. It follows by inspection that Πbbs+ also
inherit the same communication overheads from Πdlog. This completes the proof of efficiency for Πbbs+, and
hence the proof of Theorem 2. ⊓⊔

Protocol Πbbs-auth-opt

– Public Parameters: (G1,G2,GT , g1, g2, e, p) ←R BBSGen(1λ) defining BBS+ relation Rbbs. Let
pk = (g1, w = gx2 , h0, . . . , hℓ) be a known public key for secret key sk = x←R Fp.

– Pi’s inputs:
• Message mi ∈ Fℓ

p and signature σi = (Ai, βi, si) on mi under pk.

• ith share of the message mj of Pj .
– Pre-processing: Pi samples ui ←R F∗

p, ri ←R Fp, ηi ←R Fp, and computes di = bui
i · h

−ri
0 and

ti = si − ri · vi where vi = u−1
i , bi = g1h

si
0

∏ℓ
i=1 h

mi
i . and secret shares ri, vi, ti, ηi, βi among

P1, . . . , Pn. All parties set g = (h0, . . . , hℓ).
– Interactive Protocol

1. Pi, i ∈ [n] computes A′
i = Aui

i , Āi = (A′
i)

−β ·bui (= (A′
i)

x). P sets Ci = d−vi
i hti−ηi

0 , Di = gηi,mi ,
and broadcasts (A′

i, Āi, di, Ci, Di).
2. The verifier samples a challenge γ ←R Fℓ

p and broacasts it. Each Pi then computes yi =∑
j∈[n] γ

j(ηij ,mij), where ηij ,mij denotes Pi’s share of Pj ’s inputs mj , ηij .

3. All parties compute D =
∏

j∈[n] D
γj

j .

Parties hold shares yi of y satisfying gy = D

4. Parties run the interactive phase of the protocol Πnr-dlog on statement D with g as the
generator. They run the interactive phase of the protocol Πnr-dlog on statements Ci =

d−vi
i hti−ηi

0 ∧ Āi

di
= (A′

i)
−βi hri

0 , for each i ∈ [n] with generators (di, h0) and (A′
i, h0) respectively.

5. Parties also check that e (
∏n

i=1 A
′
i, w) = e

(∏n
i=1 Āi, g2

)
holds.

– Output: Pj outputs bj = 1 if all the above protocols lead to accept.

Efficiently Batching BBS+ PoKs. We now present the protocol Πbbs-auth-opt which efficiently batches
n parallel instances of the protocol Πbbs+ with the party Pi acting as the prover in the ith instance of the
protocol. The optimization exploits the fact that each party needs to prove a linear (in exponents) relation
over large part of its witness (the message vector), which can be reduced via a random challenge to proving
a linear relation over the linearly combined messages. However we lose robustness: we can no longer identify
the corrupt parties or a corrupt prover using error-correction as in Πbbs+, as the combined witness cannot be
attributed to a specific party. Thus, we simply abort if one of the checks in the underlying protocol Πnr-dlog
fails.

23

Round Efficient DPoK for BBS+ Signatures. Finally, note that by replacing Πdlog with its round
efficient version ΠFS

dlog in the random oracle model (obtained using the Fiat-Shamir heuristic, presented in
Appendix D) in steps (2) and (3) of the Interactive Phase, we obtain a round efficient version of the protocol,
which we call ΠFS

bbs+. Observe that ΠFS
bbs+ requires constant rounds of interaction, as compared to logarithmic

(in the size of the message) rounds of interaction for Πbbs+, and satisfies the same robust completeness,
knowledge soundness and zero-knowledge properties as Πbbs+, albeit in the random oracle model.

5 Compiler for Authenticated MPC

In this section we present our compiler for MPC with input authentication that outputs an MPC protocol
where each input is authenticated using a BBS+ signature under a common (public) verification key. In
Appendix F, we outline a similar compiler based on PS signatures.

Class of MPC Protocols. Our compiler takes advantage of the observation that a large class of secret-
sharing based MPC protocols share the following template. (i) There is an input sharing phase where parties
secret-share their inputs, and (ii) when using secret sharing schemes with certain thresholds (tsh < |H|), the
input of parties is completely determined at the end of the input sharing phase. This means that using inputs
inconsistent with this sharing is considered deviating, against which the protocol is secure. This is precisely
where our compiler performs well: verification of authenticity (or any other predicate) on the inputs can be
done fully outside the MPC by running a DPoK on the shares. (iii) For an MPC protocol of this template,
there exists a simulator Sim = (Simsh,Simon), where Simsh deterministically extracts the inputs of corrupt
parties, and Simon simulates the protocol view.

Features of Our Compiler.Our compiler allows identification of all (malicious) parties with non-authenticated
inputs (this is a consequence of the robust completeness property of Πdlog used inside Πbbs+). We further
note that our robust protocol Πdlog tolerates a maximum corruption threshold of t < n/3 (assuming that the
secret-sharing used is Shamir’s secret sharing). Hence, our compiled MPC protocol also tolerates a maxi-
mum corruption threshold of t < n/3. Using the non-robust version will result in a non-robust compiler that
retains the t < n/2 threshold of the underlying MPC.

The Desired Ideal Functionality. We define below the desired ideal functionality Fauthid
MPC for MPC with

input authentication.

Functionality Fauth
MPC

Inputs
The ideal functionality receives from each party Pi an input-signature pair of the form (xi, σi) under
the public verification key pk.

Verify Authenticity

1. If Ver(pk, xi, σi) ̸= 1 for some party Pi, then output a set of corrupted parties C and abort.
2. Otherwise, proceed to computation.

Computation
Invoke the ideal functionality FMPC for Πmpc on inputs (x1, . . . ,xn).

5.1 Our Compiler

We now present a formal description of our compiler. Let Πmpc = (Πsh,Πon) be a secret-sharing based MPC
protocol that guarantees security with abort against malicious corruptions of a dishonest majority of the
parties {P1, . . . , Pn}, where:

24

– Πsh denotes the secret-sharing phase of Πmpc and consists of the steps used by each party Pi for i ∈ [n]
to secret-share its input xi ∈ Fℓ

p to all of the other parties (throughout, we assume that this sharing is
done using a linear secret-sharing scheme (Share,Reconstruct).

– Πon denotes the remaining steps of the protocol Πmpc where the parties interact to compute y =
f(x1, . . . ,xn).

Protocol Πampc = (Πsh,Πon)

– Inputs: All parties hold public parameters and the verification key pk of a BBS+ signature scheme.
Party Pi has input xi ∈ Fℓ

p, together with a signature σi, such that (pk, (xi, σi)) ∈ Rbbs.

– Πsh: This phase is identical to Πsh, i.e., each party Pi shares its input xi to all other parties exactly
as in Πsh.

– Πon: In this phase, the parties do the following:

• For each j = 1, . . . , n, the parties execute an instance of Πbbs+ for (pk, (xj , σj)) ∈ Rbbs with
Pj acting as the Prover, P1, . . . ,Pn constituting the workers and Pi, i ̸= j acting as verifiers, .
If any party outputs 0 at the end of this phase, the protocol aborts.

• Otherwise, the parties jointly execute Πon.

In the description of our compiler, we assume that each party Pi holds a BBS+ signature σi on its
input xi with respect to a common public verification key pk. The compiler runs n instances of Πbbs+,
where for instance i, party Pi acts as the prover and all other parties Pj for j ̸= i act as verifiers. Given
Πmpc = (Πsh,Πon), our robust compiler outputs an authenticated MPC protocol Πampc = (Πsh,Πon). The
compiler Πampc is described above.

Theorem 3 (Security of Πampc). Assuming that: (a) the MPC protocol Πmpc securely emulates the ideal
functionality FMPC, and (b) Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and (t, n)-SSS our
compiled MPC protocol with input authentication Πampc securely emulates the ideal functionality Fauth

MPC for
the same corruption threshold of t < n/3.

Proof. We construct a simulator for the Πampc protocol, and prove indistinguishability of the simulation
from a real-world execution of Πampc. The underlying MPC protocol Πmpc secure emulates FMPC, and let
Sim = (Simsh,Simon) be the corresponding simulator.

Simulator for Πampc. We now describe the simulator Sim for the authenticated MPC protocol Πampc =(
Πsh,Πon

)
. Let H ⊆ [n] and C ⊂ [n] denote the set of honest and corrupt parties, respectively. The simulator

Sim proceeds as follows:

1. Simulate the sharing phase Πsh of the underlying MPC Πmpc by invoking Simsh (note that Simsh does not

expect any inputs). Sim receives the ith share {sji}i∈H from the adversary (invoked by Simsh) corresponding
to the input sj of each corrupt party Pj , j ∈ C.

2. For each Pj s.t. j ∈ C, let (Πbbs+)j denote the instance of the protocol Πbbs+ used by the parties where Pj

acts as the prover, and all of the remaining parties acting as both workers and verifiers. The simulation of
the online phase proceeds as follows.

(a) First, the simulator of the online phase invokes the simulator of the underlying DPoK Πbbs+ to simulate
the proofs of knowledge of BBS+ signatures on the inputs of the honest parties.

(b) For each instance Πbbs+, where a corrupt party Pj , j ∈ C is acting as the prover, invoke the extractor

Ext′ of the DPoK Πbbs+ on the shares of the honest parties (sji)i∈H corresponding to the corrupt party
Pj ’s input to extract the witness (xj , σj) from Pj . Note that since we assume honest-majority, the

shares {sji}i∈H given as input to the extractor Ext′ completely determines the respective inputs of

each corrupt party Pj , j ∈ C. Hence, the compiler aborts if Consistent(xj , {sji}i∈H) = 0.

25

(c) Invoke Simon to simulate the online phase of the underlying MPC Πmpc.

3. Send {(xj , σj)}j∈C to Fauth
MPC. If Fauth

MPC aborts by identifying some subset of corrupt parties, abort while
identifying the same subset of corrupt parties; otherwise output whatever Fauth

MPC outputs.

Completing the Security Proof. We now prove the security of Πampc by using a sequence of hybrids
described as follows (for simplicity of exposition, we assume w.l.o.g. that parties P1, . . . , P|C| are corrupt and
parties P|C|+1, . . . , Pn are honest):

– Hyb0: This hybrid is identical to the real-world execution of Πampc.

– Hyb1: This hybrid is identical to Hyb0 except that we simulate the sharing phase Πsh of the underlying
Πmpc protocol by invoking Simsh. Receive from Simsh the set of shares {sji}i∈H corresponding to the
input sj of each corrupt party Pj , j ∈ C.

– {Hyb2,j}j∈[0,n−|C|]: Hybrid Hyb2,0 is identical to hybrid Hyb1, and for each j ∈ [1, n−|C|], hybrid Hyb2,j
is identical to Hyb2,(j−1) except that proof of knowledge corresponding to the input of honest party

P|C|+j is simulated using Sim′ as described in Step 2(a) of the simulator. More concretely, for each
honest party P|C|+j , instead of using the real input x|C|+j and the real BBS+ signature σ|C|+j , proof of
knowledge of a BBS+ signature is simulated instead of running an instance of the protocol Πbbs+ where
party P|C|+j is the prover.

– {Hyb3,j}j∈[0,|C|]: The first of these hybrids, i.e., Hybrid Hyb3,0 is identical to hybrid Hyb2,n−|C|. Next,
for each j ∈ [1, |C|], hybrid Hyb3,j is identical to Hyb3,(j−1) except that we abort if the following bad
event occurs: for the instance of Πbbs+ where the corrupt party Pj is the prover, invoke the extractor
Ext′ (as mentioned in Step 2(b) of the simulator and described in the proof overview) on the shares of
the honest parties (sji)i∈H corresponding to the corrupt party Pj ’s input to extract the witness (xj , σj)

from Pj . If (pk, (xj , σj)) ̸∈ Rbbs or Consistent(xj , {sji}i∈H) = 0, then abort.
– Hyb4: This hybrid is identical to Hyb3,|C| except for the following: invoke Simon of the underlying Πmpc

protocol to simulate the online phase Πon, and output whatever Simon outputs.
– Hyb5: This hybrid is identical to Hyb4 except that after invoking Simon to simulate Πon, we query Fauth

MPC

with the extracted inputs {(xj , σj)}j∈C .

Hyb0 ≈c Hyb1. This follows from the security of the underlying Πmpc protocol. Suppose that there exists
a PPT adversary A that can distinguish between Hyb0 and Hyb1. It is easy to use A to construct a PPT
adversary A′ that can distinguish between a real and simulated execution of Πsh, thus breaking security of
the underlying Πmpc protocol.

Hyb2,j−1 ≈c Hyb2,j. This follows from the ZK property of Πdlog and the PoK for single-prover version of
BBS+ signatures. In particular, suppose that there exists a PPT adversary A that can distinguish between
Hyb2,(j−1) and Hyb2,j for some j ∈ [1, n − |C|]. Then A can be used to construct one of the following

algorithms: (a) either an adversary A′ that breaks the ZK property of the Πdlog protocol, or (b) an adversary
A′′ that breaks the ZK property of the PoK for single-prover version of BBS+ signatures.

Hyb3,j−1 ≈c Hyb3,j. This follows from knowledge soundness of Πdlog. The two hybrids differ only when

the bad event occurs, i.e., the extractor Ext′ in Step 2(b) of the simulator fails to output a valid witness
(m, σ) where m is consistent with the honest party shares. However, as described in the proof overview,
assuming the knowledge-soundness of Πdlog, the extractor Ext′ outputs a valid witness. Hence, assuming
knowledge-soundness of Πdlog, the probability of the bad event occurring must be negligible.

Hyb4 ≈c Hyb3,|C|. This follows from the security of the underlying Πmpc protocol. At the end of Πsh, if abort

did not occur, then for each i ∈ [n], all honest parties hold shares ⟨x′
j⟩j∈H of some x′

i ∈ Fℓ. In Hyb3,|C|, the

extractor succeeds in outputting a valid witness xi, and this is the unique x′
i determined at the end of Πsh.

Suppose that there exists a PPT adversary A that can distinguish between Hyb4 and Hyb3,|C|. It is easy to

26

Table 2: Benchmarks for the secure KPI application with 3 and 5 parties. The second column titled “Rows”
indicates the number of rows in each party’s dataset (the number of columns is fixed to 10).

Parties # Rows
Vanilla MPC DPoK Overhead

Comm(MB) Time (s) Comm.(KB) Time (s)

3

100 1733 6.67 13 0.519
1000 16754 64 15 18
2000 33398 129 15.3 65
4000 66502 260 15.8 246

5

100 8838 26 28 0.643
1000 87747 265 31 20
2000 175671 521 32 76
4000 350658 958 33 312

use A to construct a PPT adversary A′ that can distinguish between a real and simulated execution of Πon,
thus breaking the security of the underlying Πmpc protocol.

Hyb5 ≡ Hyb4. Hyb5 and Hyb4 are identical. In Hyb4, the output of is given by the output of Simon and in
Hyb5, the output is given by the output of Simsh, which are idential by the security of the underlying Πmpc.
We also note that Hyb5 is identical to Sim.

This completes the proof of Theorem 3. ⊓⊔

Round Efficient Compiler for Authenticated MPC. Finally, it is easy to see that invoking the round
efficient DPoK ΠFS

bbs+ protocol instead of the DPoK Πbbs+ protocol enables us to obtain a round efficient
version of our compiler. The round efficient version achieves the same security guarantees as the compiler
presented above, albeit in the random oracle model.

6 Implementation and Evaluation

In this section, we present a prototype implementation of our compiler using Πbbs-auth-opt for BBS+ signatures.
We test and benchmark our implementation on a 16GB system with Intel Core i5-9400 CPU clocked at
2.9GHz and running Ubuntu Linux 20.04. All the benchmarks use single execution thread. We use the
implementation of BN128 elliptic curve from the library libff [SL23] to implement Πbbs-auth-opt with (t, 2t+1)-
Shamir secret sharing10. We then integrate our implementation of Πbbs-auth-opt with a maliciously secure
implementation of Shamir-secret sharing-based MPC from the well-known MP-SPDZ library [Kel20] to obtain
an implementation of authenticated MPC11.

Evaluation and Discussion. We benchmark both Πbbs-auth-opt (in a standalone manner) and the final
authenticated MPC protocol (obtained by integrating Πbbs-auth-opt with MP-SPDZ [Kel20] as specified in
our compiler) in the setting of the industry KPI application outlined in the introduction. We consider two
instances of the KPI application, with 3 and 5 parties, where each party’s dataset has 10 columns and
variable number of rows (betwern 100 and 4000). We summarize the overheads for vanilla unauthenticated
computation using MP-SPDZ, as well as the additional overheads incurred by the compiled authenticated
MPC, in Table 2. It is readily apparent that the communication overhead of input authentication over vanilla
MPC are minimal. The computational overhead grows with input size, which is unavoidable to an extent, as
BBS+ signature verification involves algebraic operations that grow with the size of the input. The major
contributor to the computational overheads are the instances of NIPK, which may be parallelized for large
input sizes. We leave such optimized implementations as interesting future work.

10 We do not implement broadcast functionality cryptographically. To obtain the benchmarks we implement a server
acting as a broadcast hub. Efficient broadcast can be implemented for our setting based on [GP16].

11 An anonymized version of our code repository is available here: https://anonymous.4open.science/r/

authenticatedMPC-476E/CMakeLists.txt.

27

https://anonymous.4open.science/r/authenticatedMPC-476E/CMakeLists.txt
https://anonymous.4open.science/r/authenticatedMPC-476E/CMakeLists.txt

References

AC20. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug &
play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513–543. Springer, Cham, August 2020.

ADEO21. Diego F. Aranha, Anders P. K. Dalskov, Daniel Escudero, and Claudio Orlandi. Improved threshold
signatures, proactive secret sharing, and input certification from LSS isomorphisms. In Patrick Longa and
Carla Ràfols, editors, LATINCRYPT 2021, volume 12912, pages 382–404, 2021.

AFK23. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat–shamir transformation of multi-round interactive
proofs (extended version). J. Cryptol., 36(4), aug 2023.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, October / November
2017.

ASM06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Roberto De Prisco and Moti
Yung, editors, SCN 06, volume 4116 of LNCS, pages 111–125. Springer, Berlin, Heidelberg, September
2006.

Bau16. Carsten Baum. On garbling schemes with and without privacy. In Vassilis Zikas and Roberto De Prisco,
editors, SCN 16, volume 9841 of LNCS, pages 468–485. Springer, Cham, August / September 2016.

BB16. Marina Blanton and Fattaneh Bayatbabolghani. Efficient server-aided secure two-party function evaluation
with applications to genomic computation. PoPETs, 2016(4):144–164, October 2016.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67–97. Springer, Cham, August 2019.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Berlin, Heidelberg, August 2004.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer,
Berlin, Heidelberg, May 2016.

BCI+20. Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for
reed-solomon codes. In 61st FOCS, pages 900–909. IEEE Computer Society Press, November 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Cham, May 2019.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press,
May 1988.

BJ18. Marina Blanton and Myoungin Jeong. Improved signature schemes for secure multi-party computation
with certified inputs. In Javier López, Jianying Zhou, and Miguel Soriano, editors, ESORICS 2018, Part II,
volume 11099 of LNCS, pages 438–460. Springer, Cham, September 2018.

BJO+22. Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. Feta: Efficient
threshold designated-verifier zero-knowledge proofs. Cryptology ePrint Archive, Paper 2022/082, 2022.
https://eprint.iacr.org/2022/082.

BLL+21. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33–53. Springer, Cham, October 2021.

CB17. Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In NSDI 2017, pages 259–282. USENIX Association, 2017.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using the strong diffie hellman
assumption revisited. In TRUST 2016, volume 9824, pages 1–20. Springer, 2016.

CDN15. Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Cham, May 2020.

28

https://eprint.iacr.org/2022/082

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 93–118. Springer, Berlin, Heidelberg, May 2001.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous credential
system. In Vijayalakshmi Atluri, editor, ACM CCS 2002, pages 21–30. ACM Press, November 2002.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer, Berlin,
Heidelberg, September 2013.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation. In
Advances in Cryptology - CRYPTO, pages 572–590, 2007.

DPP+22. Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran Vinayagamurthy. How to prove
any NP statement jointly? efficient distributed-prover zero-knowledge protocols. Proc. Priv. Enhancing
Technol., 2022(2):517–556, 2022.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Berlin, Heidelberg, August 2012.

Esc22. Daniel Escudero. An introduction to secret-sharing-based secure multiparty computation. Cryptology
ePrint Archive, Report 2022/062, 2022.

FN16. Dario Fiore and Anca Nitulescu. On the insecurity of snarks in the presence of oracles. In Proceedings,
Part I, of the 14th International Conference on Theory of Cryptography - Volume 9985, page 108–138,
Berlin, Heidelberg, 2016. Springer-Verlag.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Berlin, Heidelberg, August 1987.

GGJ+23. Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi Sekar. zkSaaS: Zero-
Knowledge SNARKs as a service. In 32nd USENIX Security Symposium (USENIX Security 23), pages
4427–4444, Anaheim, CA, August 2023. USENIX Association.

GKK+21. Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nitulescu, and Michal Zajac. What
makes fiat–shamir zksnarks (updatable srs) simulation extractable? Cryptology ePrint Archive, Paper
2021/511, 2021. https://eprint.iacr.org/2021/511.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

GOP+23. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi. Fiat-shamir
bulletproofs are non-malleable (in the random oracle model). Cryptology ePrint Archive, Paper 2023/147,
2023. https://eprint.iacr.org/2023/147.

GP16. Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and round complexity.
In George Giakkoupis, editor, 35th ACM PODC, pages 371–380. ACM, July 2016.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Berlin,
Heidelberg, May 2016.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019.

HVW22. Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. Your reputation’s safe with
me: Framing-free distributed zero-knowledge proofs. Cryptology ePrint Archive, Paper 2022/1523, 2022.
https://eprint.iacr.org/2022/1523.

Kel20. Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1575–1590. ACM Press, November
2020.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM Press,
May 1988.

KMW16. Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing input validity in secure two-
party computation. Cryptology ePrint Archive, Report 2016/184, 2016. https://ia.cr/2016/184.

KSS13. Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively secure MPC with
dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 549–560. ACM Press, November 2013.

29

https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2022/1523
https://ia.cr/2016/184

LKWL22. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The bbs signature
scheme. Internet Engineering Task Force, 2022. https://identity.foundation/bbs-signature/

draft-irtf-cfrg-bbs-signatures.html.
OB21. Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-SNARKs: Zero-knowledge proofs for

distributed secrets. Cryptology ePrint Archive, Report 2021/1530, 2021.
Ped91. Torben Pryds Pedersen. Distributed provers with applications to undeniable signatures. In Donald W.

Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 221–242. Springer, Berlin, Heidelberg, April
1991.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Berlin, Heidelberg,
August 1992.

Pei06. Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 167–183. Springer, Berlin, Heidelberg, March 2006.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor, CT-
RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Cham, February / March 2016.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, New York, August 1990.

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
January 1991.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

SL23. MIT SCIPR Lab. libff: C++ library for finite fields and elliptic curves. https://github.com/scipr-lab/libff,
2023. https://github.com/scipr-lab/libff.

SVdV16. Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving outsourcing
by distributed verifiable computation. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16International Conference on Applied Cryptography and Network Security, volume 9696
of LNCS, pages 346–366. Springer, Cham, June 2016.

WZC+18. Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. DIZK: A distributed
zero knowledge proof system. In William Enck and Adrienne Porter Felt, editors, USENIX Security 2018,
pages 675–692. USENIX Association, August 2018.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160–164. IEEE Computer Society Press, November 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

ZBB17. Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani. Enforcing input correctness via certifi-
cation in garbled circuit evaluation. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
ESORICS 2017, Part II, volume 10493 of LNCS, pages 552–569. Springer, Cham, September 2017.

30

https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://github.com/scipr-lab/libff

A Comparison with Anonymity Sets

In this section, we present some additional discussion on the comparison of our DPoK-based approach with
the approach of signing public commitments. Previously we discussed an alternative approach for achieving
authenticated MPC based on having the certifying authority sign commitments to the private inputs of the
parties, and then having the parties prove during the MPC protocol that their inputs indeed open the public
commitments. As discussed earlier, this approach trivially violates the desired property of unlinkability, since
one can link the usage of the same input across different protocol executions from the public commitments. A
possible fix is to use anonymity sets: all commitments to the inputs are made publicly available, and instead
of explicitly identifying which commitment is linked with each input, the party provides a zero knowledge
proof of knowledge of an opening of one of the several signed commitments, along with a proof of membership
of the commitment in the public set.

While this is a plausible solution, we believe that full unlinkability (as modeled implicitly by our ideal
functionality and realized by our proposed solution) is a better solution that anonymity. First of all, the
anonymity set needs to be large enough for any reasonable notion of unlinkability to hold; however, this
is an issue as the size of the statement to prove increases with the size of the set, leading to additional
overheads for the proof of knowledge. Additionally, one has to prove that a commitment used is a member
of the accumulated set, requiring additional proofs of membership. Finally, in practical applications, it is
unclear which entity will create and maintain this set accumulator: for instance, if a new data set to be used
as input for a computation is signed by an authority, it must be added to the accumulator. This leads to
additional overheads for accumulator maintenance.

B Additional Preliminaries

B.1 NIZK in the ROM

The Fiat-Shamir heuristic [FS87] transforms a public-coin interactive proof into an non-interactive version
in the random oracle model. Given a public coin proof system Π = (P,V) with r rounds and Chi is the
challenge space for the ith round. The corresponding non-interactive proof system ΠFS = (SetupFS,PFS,VFS)
is defined as follows.

– H ←R SetupFS(1
λ) The setup algorithm for i ∈ [1, r] samples a function Hi uniformly from a set of all

functions that map {0, 1}∗ to Chi. Note that this is equivalent to instantiating Hi from a single random
oracle via domain separation. We denote by H the set {Hi}i∈[1,r].

– π ←R PFS
H(x,w) The prover produces a proof string π on input statement x, and witness w. For each

round i ∈ [1, r], PFS
H invokes the next message function of the interactive prover P(x,w) on prior chal-

lenge ci−1 to get ai, and obtains the ith round challenge by computing ci = Hi(x, a1, c1, . . . , ai−1, ci−1, ai).
Then PFS

H outputs π = (a1, c1, . . . , ar, cr, ar+1).
– b ←R VFSH(x, π) The verifier on input statement x, and proof string π, outputs a decision bit. VFSH

outputs b = 1, meaning the verifier accepts the proof, iff V(x, π) = 1 and ci = Hi(x, a1, c1, . . . , ci−1, ai)
for all i ∈ [1, r].

Definition 8 (Knowledge soundness in the ROM). Consider a non-interactive proof system ΠFS =
(SetupFS,PFS,VFS) for relation R. ΠFS is extractable with knowledge error κ : N×N→ [0, 1] in the random
oracle model, if there exists an extractor Ext and some polynomial poly, such that for any PPT adversary P
that makes at most q queries to H, it holds that

ext(P,Ext) ≥ acc(P)− κ(λ, q)

poly(λ)

and Ext halts in an expected number of steps that is polynomial in λ and q, where the probabilities acc and
ext are defined as follows.

acc(P) = Pr

 b = 1
H←R SetupFS(1

λ);
(x, π)←R PH(ρ);

b←R VFSH(x, π)

31

ext(P,Ext) = Pr

 b = 1∧
(x,w) ∈ R

H←R SetupFS(1
λ);

(x, π)←R PH(ρ);

b←R VFSH(x, π);
w ←R ExtP(x, π, ρ,Q1)

where Q1 = {Q1,i}i∈[1,r] is the set consisting of pairs corresponding to queries to the random oracle H with
index i, and the response. In the experiment ext, Ext has oracle access to the next-message function of P.

Zero-knowledge for non-interactive proofs is defined in the explicitly programmable random oracle model
where the simulator is allowed to program the random oracle. The zero-knowledge simulator SFS is modeled
as a stateful algorithm that operates in two modes. In the first mode, (ci, st

′) ← SFS(1, st, x, i) handles
random oracle calls to Hi on input x. In the second mode, (π̃, st′) ← SFS(2, st, x) simulates a valid proof
string. We define stateful wrapper oracles.

– S1(t, i) denotes the oracle that returns the first output of SFS(1, st, t, i);
– S2(x,w) returns the first output of SFS(2, st, x) if (pp, x, w) ∈ R and ⊥ otherwise; (This is because ZK

is defined only for true statements.)

Definition 9 (Non-interactive Zero Knowledge). A NIZK ΠFS = (SetupFS,PFS
H,VFSH) for relation R

is non-interactive zero knowledge in the random oracle model, if there exists a PPT simulator SFS = (S1,S2)
such that for all PPT distinguisher D, the following is negligible in λ∣∣Pr [DH,PFS

H

(1λ) = 1 : H←R SetupFS(1
λ)
]
− Pr

[
DS1,S2(1λ) = 1 : H←R SetupFS(1

λ)
] ∣∣

where both PFS
H(x,w) and S2 return ⊥ if (x,w) ̸∈ R.

Additionally, given a HVZK simulator S for Π, we can construct a NIZK simulator SFS for ΠFS as follows.

– On query (x, i) with mode 1, SFS(1, st, x, i) lazily samples a lookup table Q1,i maintained in state st. It
checks whether Q1,i[x] is already defined; if yes, it returns the previously assigned value; otherwise it
returns and sets a fresh random value ci sampled from Chi.

– On query x with mode 2, SFS(2, st, x) calls the HVZK simulator S of Π to obtain a simulated transcript
π̃ = (a1, c1, . . . , ar, cr, ar+1). Then, it programs the tables such thatQ1,1[x, a1] := c1, . . . ,Q1,r[x, a1, c1, . . . , ar] :=
cr. If any of the table entries has been already defined SFS aborts, which happens with negligible proba-
bility under the assumption that a1 has high min-entropy.

B.2 Compressed Sigma Protocols

We recall the sigma protocol for vectors, for proving knowledge of discrete log s ∈ Fℓ
p of a vector of group

elements g, such that gs = z. Here, a prover P with knowledge of the secret vector s, samples a random
vector of scalars r ←R Fℓ

p, and sends α = gr to the verifier V. V then samples a challenge c ←R Fp and
sends it to P and in the next round P replies with x = cs + r where V checks if gx = zcα. Here, the size
of the last message of P is linear in input size, and hence it makes the proof size linear. We note that, for
the proof to be succeed, it suffices to convince the verifier V that P knows x such that gx = zcα. Here, we
recall the log2 m− 1 round protocol using the split and fold technique [AC20], which has logarithmic proof
size, for proving knowledge of x ∈ Fℓ

p such that gx = y where y = zcα :

– Common input : g ∈ Gm, z ∈ G
– P’s input : x ∈ Fℓ

p

1. P computes A = gxL

R , B = gxR

L and sends them to V.
2. V samples c←R Fp and sends it to P.
3. P comutes x′ = xL + cxR.
4. P and V independently computes g′ = gc

L ◦ gR ∈ Gℓ/2 and z′ = AycBc2 .

32

5. If size(g′) = 2, P sends x′ to V, else P and V repeat the protocol from step 1 with x = x′, g = g′ and
y = z′.

where for a vector s, sL denotes the left half of the vector and sR denote the right half.

The underlying sigma protocol has perfect completeness, special honest-verifier zero-knowledge (SHVZK)
and 2-special soundness, and the later protocol has perfect completeness and 3-special soundness at each
step of the recursion. Hence, the overall protocol CSP{(z,x) : gx = z} has perfect completeness, SHVZK
which comes from the underlying sigma protocol and (2, k1, . . . , k(log2 ℓ−1))-special soundness, where ki = 3
∀i ∈ [log2 ℓ − 1]. The protocol can be compiled into a non-interactive argument of knowledge using Fiat-
Shamir heuristic [FS87] in the random oracle model, which we denote by NIPK.PRO

FS {(z,x) : gx = z} for the
random oracle RO.

B.3 PoK for BBS+ Signature Scheme

Here, we recall the proof of knowledge for BBS+ signatures, which was originally proposed in [CDL16].We
present a modified version of the same in Section 2.3.

– Common Input: Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

1. P samples r1 ←R F∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)
−β · br1 , where b = g1h

s
0

∏ℓ
i=1 h

mi
i .

3. P samples r2 ←R Fp and computes d = br1 · h−r2
0 and s′ = s− r2 · r3

4. P sends (A′, Ā, d) to V, and they run a ZKPoK for the relation:

(A′)
−β

hr2
0 = Ā/d ∧ d−r3hs′

0

ℓ∏
i=1

hmi
i = g−1

1

where (m, r2, r3, β, s
′) is the witness.

5. V checks that A′ ̸= 1G1
, e (A′, w) = e

(
Ā, g2

)
, verifies the ZKPoK proof and outputs 1 if all the checks

pass, and 0 otherwise.

B.4 Coding Theory

The following coding theoretic result is used to identify malicious behaviour in the distributed proof of
knowledge protocol in Section 3.2. It has been previously used in construction of zero knowledge proofs
in the interactive oracle setting (e.g [AHIV17,BCR+19]), to check that the oracle represents “low degree
polynomials”.

Lemma 2 ([BCI+20], Theorem 1.2). Let L be an [n, k, d]-linear code over finite field F and let S be an
m× n matrix over F. Let e = ∆(S,Lm) be such that e < d/2. Then for any codeword r ∈ L, and γ sampled
uniformly from Fm, we have ∆(r+γTS,L) = e with probability at least 1−n/|F|. Furthermore, if E denotes
the column indices where S differs from the nearest matrix Q in Lm, with probability 1− n/|F| over choice
of γ, the vector r+ γTS differs from the closest codeword v ∈ L at precisely the positions in E.

C Generalization to Threshold Linear Secret Sharing Scheme

In this section, we provide generalization of our technique shown for Shamir Secret Sharing [Sha79] to any
Threshold Linear Secret Sharing Scheme. Here we present the definition of Threshold Linear Secret Sharing
(TLSS) Scheme, which is a restriction of the definition of Linear Secret Sharing Scheme provided in [CDN15,
Chapter 6] to the case when each party receives same number of shares.

33

Definition 10 (Threshold Linear Secret Sharing Scheme). A (t, n, r) threshold linear secret-sharing
(TLSS) scheme over a finite field F consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that is defined by a m×(t+1) matrix M (for some m ≥ n) and a labeling
function ϕ : [m]→ [n] such that |ϕ−1(i)| = r for all i ∈ [n]. On input s ∈ F, Share samples r1, . . . , rt ←R

F uniformly and independently and sets rs = (s, r1, . . . , rt). It sets si = {(Mrs)j : ϕ(j) = i} as the ith

share for all i ∈ [n]. We denote the output as (s1, . . . , sn)←R Share(s), where si ∈ Fr is the share sent
to ith party.

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| > t, a vector of shares (s1, . . . , s|I|)
and outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F. Specifically, for all sets I ⊆ [n] with |I| > t, there
exists a vector kI = (k11, . . . , knr) ∈ Fnr such that s =

∑n
i=1

∑r
j=1 kijsij. Here si = (si1, . . . , sir) for

i ∈ [n].

A TLSS scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q > t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn) ←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q ≤ t, the tuple (si1 , . . . , siq) is information-theoretically independent of s.

Remark 5. We focus on Threshold Linear Secret Sharing schemes in this section, and we denote it as TLSS. As
before we can extend a TLSS scheme to secret-share vectors s ∈ Fℓ by applying Share,Reconstruct algorithms
component-wise.

Robust DPoK for Discrete Log for TLSS In this section we generalize the construction of robust
complete protocol for discrete-log relation presented in Section 3.2 to the case when (Share,Reconstruct)
can be an arbitrary TLSS scheme. We also characterize the robustness threshold for the same in terms of
minimum distance of linear code associated with the TLSS scheme. The proof of robust completeness now
depends on Lemma 3 (below), which generalizes Lemma 2 to the case when linear code is over an extension
field Fpr ∼= Fr

p of the field F = Fp.

Let DlogGen be a relation generator that on input (1λ,m) outputs (G,g, p) where p is a λ-bit prime, G is a
cyclic group of order p and g = (g1, . . . , gm)←R Gm is a uniformly sampled set of generators. The associated
relation RDL is defined by (z, s) ∈ RDL if gs = z. Let TLSS = (Share,Reconstruct) denote (t, n, r) threshold
linear secret sharing over finite field of order p F = Fp. We follow the framework presented for DlogGen;
namely Πdlog (Figure 3.2), that is t-private, d-robust and incurs O(n) communication over point-to-point
channels and O(n log ℓ) communication over broadcast channels. We present our generalized protocol with
the similar guarantees.

Additional Preliminaries and Notation. We setup some useful notation and preliminaries specific to
this section to ease the presentation. For s ∈ F, we will view the output (s1, . . . , sn)←R Share(s) to consist
of n-shares each over Fpr , i.e. we view si ∈ Fr as an element of Fpr . Applying the sharing component-wise,
for a vector s ∈ Fℓ, we view the output (s1, . . . , sn)←R Share(s) to consist of n-shares, each in (Fpr)ℓ, i.e an
ℓ-length vector over Fpr . We also veiw a vector s = (s1, . . . , sℓ) ∈ (Fpr)ℓ as ℓ × r matrix over F, where ith

row of the matrix corresponds to si ∈ Fpr viewed as a vector in Fr. We also introduce the linear code LTLSS,
which is induced by the sharings under the TLSS scheme.

Definition 11 (TLSS induced code). For an (n, t, r)-TLSS scheme over F given by algorithms (Share,Reconstruct),
we define linear code LTLSS over the field Fpr as

LTLSS = {(s1, . . . , sn) : Pr [(s1, . . . , sn)←R Share(s), s←R F] > 0},

consisting of all possible sharings output by the Share algorithm.

We now state the generalization of Lemma 2 to fields of the form Fpr . The lemma is proved in [DPP+22][Lemma
A.5]. We recall that for an [n, k, ∗] linear code L over F, Lm denotes the set of m× n matrices over F whose
rows are codewords in L.

34

Lemma 3. Let L be an [n, k, d]-linear code over finite field Fpk and let S be an m× n matrix over Fpk . Let
e = ∆(S,Lm) be such that e < d/3. Then for any codeword r ∈ L, and γ sampled uniformly from Fm, we
have ∆(r + γTS,L) = e with probability at least 1 − d/|F|. Furthermore, if E denotes the column indices
where S differs from the nearest matrix Q in Lm, with probability 1 − d/|F| over choice of γ, the vector
r+ γTS differs from the closest codeword v ∈ L at precisely the positions in E.

We now proceed with the description of the generalised protocol, where we highlight key differences from
the protocol Πdlog for the case of Shamir Secret Sharing.

1. Public Parameters: The public parameters, as before consists of (G,g, p)←R DlogGen(1λ, ℓ). Addition-
ally we have h1, h2 ←R G. The relation RDL consists of (z, s) satisfying gs = z.

2. Input Phase: The prover gets (z, s) while workers Wi,i ∈ [n] are given (z, si) where (s1, . . . , sn) ←R

Share(s).
3. Pre-processing: The prover sends δi to Wi for i ∈ [n] where (δ1, . . . , δn)←R Share(δ) for δ ←R Fpr .
4. Commit to Shares: In the interactive phase, the worker Wi proceeds as follows: The worker veiws the

share si as ℓ × r matrix Mi over F. Then for each j ∈ [r], it computes Aij = gMi[j], where Mi[j]
denotes the jth column of the matrix. Similarly it views the input δi as vector (δi1, . . . , δir) over F.
It then computes commitments Bij for j ∈ [r] as Bij = h

δij
1 h

ωj

2 for ωj ←R F. Finally Wi broadcasts
Ai = (Ai1, . . . , Air) and Bi = (Bi1, . . . , Bir).

5. Reveal Linear Form over Shares: The verifier sends a challenge vector γ ←R Fℓ, and the workers
broadcast the linear form vi = ⟨γ, si⟩+ δi. In the preceding inner-product, we consider si as a vector
over Fpr and vi, δi are considered as elements in the field Fpr . To ensure that corrupt workers use si, δi
consistent with earlier commitments Ai,Bi we additionally require them to provide proofs by running
the proof of knowledge CSP for the following relations (viewing si as ℓ× r matrix Mi over F):

πi1 = CSP(Mi) : g
Mi[j] = Aij ∀ j ∈ [r],

πi2 = CSP(δi, ω1, . . . , ωr) : h
δij
1 h

ωj

2 = Bij ∀ j ∈ [r],

πi3 = CSP
{
(Mi, δi, ω1, . . . , ωr) : g

Mi[j]h
δij
1 h

ωj

2 = AijBij ∧ ⟨γ,Mi[j]⟩+ δij = vij ∀ j ∈ [r]
}
.

The NIPK used above can be instantiated with O(log ℓ) communication complexity using compressed
sigma protocols (CSPs) of Attema et al. [AC20], made non-interactive using Fiat-Shamir transformation.
We observe that each proof asserts r constraints, which can be reduced to one constraint each using a
random challenge. We skip the details here.

6. Verifier Determines Honest Commitments: Let v′ = (v′1, . . . , v
′
n) be the purported values of (v1, . . . , vn)

received in the previous step. If one of the proofs πi1, πi2 or πi3 is invalid, he verifier sets v′i ←R Fpr

(randomly). Here we use v = (v1, . . . , vn) defined by vi = ⟨γ, si⟩ + ri to denote the vector of honestly
computed values. We recall that we consider v to be a vector over Fn

pr . Since ∆(v′,v) ≤ d < dist/2, with
dist being the minimum distance of the code induced by the TLSS, V can compute v from v′ by using
error correction. Let C denote indices of corrupt workers (who actually deviate from the protocol). From
Lemma 3 we conclude C = {i ∈ [n] : vi ̸= v′i} with overwhelming probability. Let k′1, . . . , k

′
q denote the

reconstruction coefficients for the set [n]\C where each k′i = (k′i1, . . . , k
′
ir) ∈ Fr for each i.

7. Output using honest messages: V outputs (1,C) if
∏

j∈[q],t∈[r] A
k′
jt

ij ,t
= z, and (0, {P}) otherwise.

Theorem 4 (Robust Distributed Proof of Knowledge for Discrete Log for TLSS). Assuming that
the discrete log assumption holds over the group G, the above protocol is a DPoKTLSS,DlogGen for relation
generator DlogGen and (t, n, r)-TLSS scheme which satisfies t-privacy and d-robustness, for d < dist/3,
where dist is the minimum distance the linear code induced by the TLSS scheme. Moreover the protocol
incurs O(rn) communication over point-to-point channels and O(rn + log ℓ) communication over broadcast
channels.

The proof of the above theorem is similar to that for the protocol Πdlog, except that we use Lemma 3 instead
of Lemma 2 to identify corrupt messages, and appropriately omit them from the verification check. We now
discuss implications of the above theorem for specific threshold secret sharing schemes.

35

(Corollary) Distributed Proof of Knowledge using Replicated Secret Sharing Our earlier results
obtained for Shamir Secret Sharing [Sha79] in Theorem 1 can be seen as special case of Theorem 4 for r = 1
and dist = (n − t). Here we additionally specialise Theorem 4 to the case of replicated secret sharing. We
recall the definition of Replicated Secret Sharing (RSS) Scheme provided in [Esc22].

Definition 12 (Replicated Secret Sharing Scheme). A (t, n,
(
n−1
t

)
) replicated linear secret-sharing

(RSS) scheme over a finite field F consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that on input s ∈ F, samples sA ∈ F for all A ∈ [n], |A| = t, such
that

∑
A sA = s, and sets si = {sA : i /∈ A}. We denote the output as (s1, . . . , sn) ←R Share(s), where

sj ∈ F(
n−1

t) is the share sent to party Pj.

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|) and
outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F.

A RSS scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q ≥ t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn) ←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q < t, the tuple (si1 , . . . , siq) is information-theoretically independent of s.

Remark 6. We note that RSS scheme is a specific instance of TLSS scheme discussed in the prior section.

Let DlogGen be a relation generator that on input (1λ,m) outputs (G,g, p) where p is a λ-bit prime,
G is a cyclic group of order p and g = (g1, . . . , gm) ←R Gm is a uniformly sampled set of generators.
The associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let RSS = (Share,Reconstruct) denote
(t, n,

(
n−1
t

)
) replicated secret sharing over Fp. In this section, we state the theorems and the threshold bounds

for RSS as a specific case of TLSS (Theorem 4).

Theorem 5 (Robust Distributed Proof of Knowledge for Discrete Log for Replicated Secret
Sharing). Assuming that the discrete log assumption holds over the group G, protocol Πrob-rss is a DPoKRSS,DlogGen

for relation generator DlogGen and (t, n,
(
n−1
t

)
)-RSS scheme which satisfies t-privacy and d-robustness, for

d = t < dist/3, where dist = (n−t) is the minimum distance of two valid codewords of the linear code induced
by the TLSS scheme.

Remark 7. We note that the corruption threshold of t < n/3 attainable for Shamir Secret Sharing (SSS)
Scheme and Replicated Secret Sharing (RSS) Scheme follows from the fact that the underlying linear code
defined by both sharing schemes attain a minimum distance of dist = n− t between any two valid codewords.
We note that the linear codes considered for SSS scheme lies in Fp (Reed-Solomon Codes), whereas the linear
codes considered for RSS lies in Fpk .

D Round Efficient Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK) in the random oracle
model (ROM) which multiple provers, each having a share of the witness engage in an interactive protocol
with a verifier to convince it that their shares determine a valid witness. The provers do not directly interact
with each other, and all the interaction with the verifier takes place over a public broadcast channel.

We define a round efficient DPoK by building upon our original definition for DPoK from Section 3. Our
definition is based on the Fiat-Shamir heuristic [FS87], using which we transform a DPoK (with number
of rounds logarithmic in the size of the message) into a round efficient DPoK (having constant number of
rounds).

36

Definition 13 (Round Efficient DPoK in the ROM). Let DPoKSSS,RGen = (Setup,Π) be a DPoK as
in Definition 6 for relation generator RGen and a secret-sharing scheme SSS = (Share,Reconstruct), where
Setup is a PPT algorithm, and Π is a k-round interactive protocol between PPT algorithms P (prover),
V (interactive verifier) and W1, . . . ,Wn (workers), such that all of the interaction with the verifier takes
place over a public broadcast channel, and where in each round j ∈ [k], the verifier V broadcasts a challenge
sampled uniformly from the challenge set Chj . We define the corresponding round efficient DPoK for the same
(RGen,SSS) pair as a tuple of the form RE-DPoKSSS,RGen = (SetupFS, ΠFS,VFS), where SetupFS is a PPT setup
algorithm, ΠFS is an interactive protocol between PPT algorithms PFS (prover) and (WRO

FS)1, . . . , (WRO
FS)n

(workers), and VFS is PPT verification algorithm. These are defined as follows:

– Setup [(pp,RO) ←R SetupFS(R, 1λ)]: The setup algorithm takes as input a relation R ←R RGen(1λ)
and outputs a tuple of the form (pp,RO), where pp ←R Setup(R), and RO = {ROi}i∈[1,r], with each
ROi being a random function sampled uniformly from the set of all functions that maps {0, 1}∗ to the
challenge set Chi. As in our general definition of DPoK, the setup phase is required to be executed
only once for a given relation R. We again assume that R consists of pairs (x,w) where w is parsed as
(s, t)) with s ∈ Fm; looking ahead, we partition the witness as (s, t) to explicitly specify which parts of
the witness later needs to be shared. Also, note that sampling each ROi independently is equivalent to
instantiating ROi from a single random oracle via domain separation.

– Interactive Protocol ΠFS: executed jointly by the prover PRO
FS and the workers (WRO

FS)1, . . . , (WRO
FS)n

in the following phases:

• Input Phase: The prover PRO
FS receives (pp,x, (s, t)) ∈ R as input, while each worker (WRO

FS)i,
i ∈ [n] receives (x, si) as input, where (pp, s1, . . . , sn)←R Share(s).

• Preprocessing Phase: This is (an optional) phase where the prover PRO
FS sends some auxiliary

information auxi to worker (WRO
FS)i using secure private channels. This phase is identical to the

preprocessing phase (if any) in the underlying DPoK scheme, with the prover PRO
FS invoking the

prover P of DPoK to obtain its output in the preprocessing phase, and sending the same to the
workers (WRO

FS)1, . . . , (WRO
FS)n.

• Interactive Phase: In this phase, the prover and the workers interact using a public broadcast
channel as follows, where all algorithm presented with FS subscript have access to the random oracle
RO:

∗ The prover PRO
FS (resp. each worker (WRO

FS)i) invokes the prover P (resp. the corresponding worker
Wi of) of DPoK to produce the same round message as in the protocol Π.

∗ Suppose that in round j of the protocol Π (for j ∈ [k]), the verifier V of the underlying DPoK
outputs a challenge cj ←R Chj . In ΠFS, each worker (WRO

FS)i computes cj locally as

cj = ROj

(
x, {{mi,ℓ}i∈[n], cℓ}ℓ∈[j−1]

)
,

where mi,ℓ is the prior message of Wi in round ℓ, and cℓ is prior challenge in round ℓ.

Let π =
(
x, {{mi,ℓ}i∈[n], cℓ}ℓ∈[k]

)
denote the transcript of protocol ΠFS at the conclusion of k

rounds.

– Verification: [b←R VRO
FS (pp,x, π)]: The verifier VRO

FS takes as input (pp,x, π) and outputs a decision bit
b ∈ {0, 1}. It outputs 1 if and only if both of the following hold: (i) V(pp,x, π) = 1 (V being the verifier
of DPoK), and (ii) for each j ∈ [k], cj = ROj

(
x, {{mi,ℓ}i∈[n], cℓ}ℓ∈[j−1]

)
. Otherwise, the verifier VRO

FS

outputs 0.

A distributed proof of knowledge RE-DPoKSSS,RGen as described above is said to be t-private, ℓ-robust if
the following hold:

– Completeness: We say that completeness holds if for anyR ←R RGen(1λ), for (pp,RO)←R SetupFS(R, 1λ, 1k),
and for any (x, s) ∈ R, if π denotes the transcript of an honest execution of the protocol ΠFS, then we
have

Pr[VRO
FS (pp,x, π) = 1] = 1

37

– Knowledge Soundness: We say that knowledge soundness holds if for any security parameter λ and
any PPT adversary A = (A1,A2) that makes at most Q = poly(λ) queries to RO, where A2 corrupts the
prover PRO

FS and subset of workers {(WRO
FS)i}i∈C for some C ⊆ [n], there exists an extractor Ext with oracle

access to A2 (which controls PRO
FS and the set of corrupt (WRO

FS)i) such that for any R ←R RGen(λ), the
following probability is negligible,

Pr

VRO
FS (pp,x, π) = 1 ∧
((x, (s, t)) ̸∈ R ∨

Consistent({si}i̸∈C, s) = 0)

(pp,RO)←R SetupFS(R)
(x, {si, auxi}i ̸∈C)←R A1(pp)

π :=
ΠFS

(
A2(ρ), {(WRO

FS)i(αi)i/∈C}
)

(s, t)←R

ExtA2 (pp,x, {si}i ̸∈C, π,Q)

where π denotes the transcript of an execution of the protocol ΠFS between the adversary A2 (which
controls PRO

FS and the set of corrupt (WRO
FS)i), and the honest workers.

– Zero-Knowledge: Zero-knowledge for publicly verifiable DPoKs is defined in the explicitly programmable
random oracle model where the simulator is allowed to program the random oracle. The zero-knowledge
simulator SFS is modeled as a stateful algorithm that operates in two modes. In the first mode, (ci, st

′)←
SFS(1, st,x, i) handles random oracle calls to ROi on input x. In the second mode, (π̃, st′)← SFS(2, st,x)
simulates a valid proof string. We define stateful wrapper oracles.
• S1(t, i) denotes the oracle that returns the first output of SFS(1, st, t, i);
• S2(x,w) returns the first output of SFS(2, st,x) if (pp,x, s) ∈ R and ⊥ otherwise; (This is because
ZK is defined only for true statements.)

We say that a DPoK is zero-knowledge in the random oracle model if for all R ←R RGen(1λ), (x, s) ∈ R
and any PPT adversary A corrupting a set of workers {(WRO

FS)i}i∈C, where |C| ≤ t, there exists a PPT
simulator SFS such that ViewA,RO,ΠFS

(pp,x) is indistinguishable from SFS(pp,x) for pp←R SetupFS(R).
Here, the view is given by ViewA,RO,ΠFS

= {r, (Mi)i∈C} where r denotes the internal randomness of A
and Mi is the set of all messages received by (WRO

FS)i in ΠFS.
– Robust-Completeness: We say that robust-completeness holds if for all R ←R RGen(1λ), (x, s) ∈ R

and any PPT adversaryA corrupting a set of workers {(WRO
FS)i}i∈C, where |C| ≤ ℓ, (VRO

FS)A,ΠFS
(pp,x, ΠFS) =

1 with overwhelming probability where pp←R SetupFS(R).

Protocol ΠFS
dlog

1. Public Parameters: Let (G,g, p)←R DlogGen(1λ, 1ℓ). Let RDL denote the relation consisting of
pairs (z, s) such that gs = z. Let (h1, h2)←R Setup(RDL) be two independent generators of G.

2. Input Phase: The prover gets (z, s) while workers (WRO
FS)i, i ∈ [n] are given (z, si) where

(s1, . . . , sn)←R Share(s). 12

3. Pre-processing: The prover sends ri to (WRO
FS)i for i ∈ [n] where (r1, . . . , rn) ←R Share(r) for

r ←R Fp.
4. Commit to Shares: In the interactive phase, the workers first commit to their respective shares

by broadcasting
(a) Ai = gsi and its associated proofs of knowledge πi1 = NIPK.PRO

FS {(Ai, si) : g
si = Ai}.

(b) Bi = hri
1 hωi

2 for ωi ←R Fp and its associated proofs of knowledge πi2 =
NIPK.PRO

FS {(Bi, (ri, ωi)) : h
ri
1 hωi

2 = Bi}.
5. Reveal Linear Form over Shares: Each worker (WRO

FS)i computes γ as γ =
RO (z∥A1∥B1∥A2∥B2∥ . . . ∥An∥Bn) ∈ Fℓ

p. Thereafter, the workers broadcast the linear form vi =
⟨γ, si⟩ + ri. To ensure that corrupt workers use si, ri consistent with earlier commitments Ai, Bi

we additionally require them to broadcast proof πi3 as:

πi3 = NIPK.PRO
FS {((AiBi,γ∥1∥0, vi), (si, ri, ωi)) :

gsihri
1 hωi

2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}.

38

6. Verifier Determines Honest Commitments: Let v′ = (v′1, . . . , v
′
n) be the received values in

the previous step by the workers, instead of (v1, . . . , vn). If one of the proofs πi1, πi2 or πi3 is invalid,
the verifier set bi = 0 else it sets bi = 1. Here we use v = (v1, . . . , vn) defined by vi = ⟨γ, si⟩ + ri
to denote the vector of honestly computed values. Since ∆(v′,v) ≤ d < (n − t)/2, VRO

FS can
compute v from v′ by decoding algorithm (e.g. Berlekamp-Welch) for Reed-Solomon codes. Set
C = {i ∈ [n] : vi ̸= v′i ∨ bi = 0} and let HQ = (hij) denote the matrix guaranteed by Lemma 1 for
Q = [n]\C = {i1, . . . , iq} for q ∈ N.

7. Output using Honest Messages: V outputs (1,C) if
(∏

j∈[q] A
hjk

ij

)
k=1,...,n−t

= (z,0n−t−1), and

(0, {PRO
FS }) otherwise.

Robust Complete Round Efficient DPoK for Discrete Log. We now provide a RE-DPoKSSS,DlogGen

for the discrete log relation based on Shamir Secret Sharing (SSS) [Sha79]. Let DlogGen be a relation
generator that on input (1λ, 1ℓ) outputs (G,g, p) where p is a λ-bit prime, G is a cyclic group of order
p and g = (g1, . . . , gℓ) ←R Gℓ is a uniformly sampled set of generators. The associated relation RDL is
defined by (z, s) ∈ RDL if gs = z. Let SSS = (Share,Reconstruct) denote (t, n) Shamir secret sharing over Fp.
Our protocol Πdlog realizing RE-DPoKSSS,DlogGen is as below. However, for ease of exposition, we first explain
a simpler non-robust version of the protocol, before explaining the robust version.

We use the non-interactive proof of knowledge for the discrete logarithm relation, namely NIPKFS =
(NIPK.SetupFS,NIPK.PRO

FS ,NIPK.VRO
FS), obtained by applying the Fiat-Shamir heuristic (using random oracle

RO : {0, 1}∗ → Fℓ
p) on the public-coin compressed sigma protocol [AC20] for proof of knowledge of the

discrete logarithm relation. Additionally, we present the protocol Πdlog using Fiat-Shamir heuristic [FS87]
and a random oracle RO : {0, 1}∗ → Fℓ

p.

We now state and prove the following theorem for ΠFS
dlog.

Theorem 6. Assuming that NIPK satisfies completeness, knowledge-soundness and zero-knowledge with
O(log ℓ)-communication overhead, ΠFS

dlog is a RE-DPoKSSS,DlogGen (as per definition 6) for relation genera-
tor DlogGen and (t, n)-SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum distance of the
Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communication over broad-
cast channels.

Proof sketch. For knowledge-soundness, the intuition behind extraction of a valid witness are the fact that
the shares (provided to the extractor via definition) held by the honest parties uniquely determines the
output and the adversary succeeds in proving the statement in a protocol where these honest-party shares
are used. For zero-knowledge, the key intuition behind the simulation is that the adversial messages can be
‘ignored’ for providing an accepting transcript as the protocol does ‘error-correction’ and removes the ‘bad
shares’ from consideration.

Proof. Completeness and robust completeness of ΠFS
dlog follows similarly from the completeness and robust

completeness of its respective counterpart Πdlog.
Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext for ΠFS

dlog as
follows. Let C be the set of indices of workers corrupted by adversary A. Additionally, we assume that there
is an extractor Ext1 for NIPK proof. The extractor Ext runs the adversary A as follows:

– Ext is provided (pp, z, {si}i/∈C, ΠFS,Q) as input at the onset, where {si}i/∈C are the honest-party shares
and Q is the set of RO queries made by the adversary A.

12 Note that here the witness is s ∈ Fℓ
p, and we do not have any component t which is not being secret-shared.

39

– Ext receivesAi, Bi fromA along with the NIPK proofs {πi1, πi2} for all i ∈ C, such that πi1 = NIPK.PRO
FS {(Ai, si) :

gsi = Ai}, πi2 = NIPK.PRO
FS {(Bi, (ri, ωi)) : h

ri
1 hωi

2 = Bi}.
– Ext computes {Ai = gsi , Bi = hri

1 hωi
2 }i/∈C and sends

{Ai, , πi1, Bi, πi2}i/∈C to A, where πi1 = NIPK.PRO
FS {(Ai, si) : g

si = Ai}, πi2 = NIPK.PRO
FS {(Bi, (ri, ωi)) :

hri
1 hωi

2 = Bi}.
– Ext computes γ = RO (z∥A1∥B1∥A2∥B2∥ . . . ∥An∥Bn)
– Ext receives {vi, πi3}i∈C from A
– Ext computes vi, πi3 as {vi = ⟨γ, si⟩ + ri}i/∈C and πi3 = NIPK.PRO

FS {((AiBi,γ∥1∥0, vi), (si, ri, ωi)) :
gsihri

1 hωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}, and sends {vi, πi3}i/∈C

– Ext sets s′i = si for all i ̸∈ C and for all i ∈ C, it invokes the extractor Ext1 for the Fiat-Shamir transformed

proof πi1 to extract s′i satisfying gs′i = Ai.
– Ext finally computes s′ as s′ = Reconstruct({si}i/∈C) and outputs s′.

Note that by using random oracle RO to obtain the challenge γ in Step (iii) described above, we ensure that
a ‘random linear combination’ of the code is considered in Step (6) of the protocol. Now, considering that the
adversary A succeeds, we now argue the correctness of the extracted witness. Since the adversary succeeds,
the verification check in Step (7) of the protocol implies that the tuple

(
s′i
)
i/∈C

is Lℓ-consistent and the

reconstructed vector s′ satisfies s′ = Reconstruct({si}i/∈C) along with
(∏

j /∈C A
hjk

j

)
k=1,...,n−t

= (z,0n−t−1),

where Aj = gsj for all j /∈ C. Note that the extractor’s output s′ is reconstructed from the columns of the
unique matrix S ∈ Lℓ determined by the tuple (s′i)j /∈C. Hence, the extractor output is a valid witness for the
given statement. This completes the proof of knowledge-soundness for ΠFS

dlog.
Knowledge-error. Since there are three non-parallel instances of Fiat-Shamir transformed NIPK protocol

from Attema et al. [AC20] being invoked, if the knowledge-error of the Fiat-Shamir transformed version is
κ′, then the knowledge-error of ΠFS

dlog is κ ≤ 3κ′. And we know from [AC20] that the knowledge-error κ′′ of
NIPK protocol is negligible, and [AFK23] ensures that the knowledge-error κ′ of non-parallel Fiat-Shamir
version of the multi-round protocol is still negligible and degrades only linearly with respect to the number
of queries to the Random Oracle. Specifically, if Q is the upper-bound for the number of Random Oracle
queries for NIPK protocol, then given that κ′′ is the knowledge-error of the interactive NIPK protocol, from
[AFK23] we get that κ′ = (Q+ 1).κ′′.

Zero-Knowledge. For proving zero-knowledge, we describe the simulator as follows. Without loss of
generaltiy, let us assume that C = {1, . . . , ϵ} for ϵ ≤ t. The simulator SFS runs the adversary as follows:

– SFS receives {Ai, Bi}i∈C from the adversary.
– SFS simulates messages {Ai, Bi, πi1, πi2}i/∈C of the honest parties as follows:

· SFS chooses A′
i ←R G for 1 ≤ i ≤ t, and sets a = (z,A′

1, . . . , A
′
t).

· SFS setsA′
t+j = atj where tj ∈ Ft+1

p is the interpolation vector such that f(t+j) = ⟨(f(0), . . . , f(t)), tj⟩
for all polynomials f(x) of degree≤ t, i.e. tj = {λ0(t+j), λ1(t+j), . . . , λt(t+j)} where λ0(x), . . . , λt(x)
are lagrange polynomials with respect to the set {0, . . . , t}.

· SFS picks B′
i, i > ϵ uniformly at random from G.

· SFS invokes the simulator for the NIPK to obtain πi1 = NIPK.PRO
FS {(Ai, si) : gsi = Ai}, πi2 =

NIPK.PRO
FS {(Bi, (ri, ωi)) : h

ri
1 hωi

2 = Bi}.
· Then SFS sends the messages {A′

i, B
′
i, πi1, πi2}i>ϵ to A.

– SFS queries the random oracle RO to obtain the challenge γ ←R Fℓ
p.

– Thereafter, the simulator receives {vi}i<ϵ from A, along with the proofs {πi3}i<ϵ.
– SFS sets v′ ←R Fp and computes (v′1, . . . , v

′
n)←R Share(v′), computes simulated NIPK.PRO

FS proof
πi3 = NIPK.PRO

FS {((AiBi,γ∥1∥0, vi), (si, ri, ωi)) : gsihri
1 hωi

2 = AiBi ∧ ⟨γ, si⟩ + ri = vi}, and sends
{vi, πi3}i>ϵ.

– Finally, SFS sends (v′i, πi3)i>ϵ to the adversary A.

We argue correctness of simulation of honest-party first messages {Aj}i/∈C as follows: in the real protocol,
the vector of shares for party j is of the form (f1(j), . . . , fℓ(j)), where fi : i ∈ [ℓ] are the polynomials used
to share the values si : i ∈ [ℓ] respectively. Let f = (f1, . . . , fℓ) denote the vector of sharing polynomials and

40

let f(j) to denote the vector (f1(j), . . . , fℓ(j)). Then for j > ϵ in the real protocol, (Aj)j>ϵ are distributed
as (gf(j))j>ϵ, subject to constraint that gf(0) = z. Sampling such a polynomials fi, i ∈ [ℓ] corresponds
to choosing fi(1), . . . , fi(t) uniformly and then determining fi(t + j) = ⟨(fi(0), . . . , fi(t)), tj⟩ using the
interpolation vector tj . Thus f(t+ j) is a tj-linear combination of f(0), . . . , f(t), which dictates simulator’s
computation of At+j from vector a. The simulated transcript is an accepting transcript as gf(0) = z and
gf(i) = Ai for all i /∈ C, and the verification check is satisfied since a known linear combination of {f(i)}i/∈C

in the exponent yields the desired value f(0) in the exponent. Additionally, since {f(i)}i/∈C are implicitly
set as the honest-party shares, it is identical to the correct distribution of secret shares. This completes the
proof of zero-knowledge for ΠFS

dlog.

We note that knowledge soundness ensures simulation extractability in the random oracle model [GKK+21,GOP+23],
and hence, our Fiat-Shamir transformed round efficient DPoK is simulation-extractable. The following corol-
lary of Theorem 6 follows immediately and yields the concrete bounds on the corruption threshold tolerated
by ΠFS

dlog.

Corollary 3. Setting d = t < n/3, ΠFS
dlog is n/3-private and n/3-robust.

E PS Signatures and PoK for PS

In this section we show the generality of techniques shown above by providing distributed protocols for
another pairing-based signature scheme, whose proof of knowledge of signature also reduces to discrete
logarithm relation.

We begin by recalling the Pointcheval Sanders (PS) signature scheme from [PS16], along with the asso-
ciated proof of knowledge.

Definition 14 (PS Signature Scheme [PS16]). The PS Signature Scheme to sign a message m =
(m1, . . . ,mℓ) ∈ Fℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) described as follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime order p,
with an efficient bilinear map e : G1 × G2 → GT , as part of the public parameters pp. Note that the
bilinear groups are of type 3, which ensures that there are no homomorphisms between G1 and G2 that
are efficiently computable.

– KeyGen(pp) : This algorithm samples g̃ ←R G2 and
(x, y1, . . . , yℓ)←R Fn+1

p , computes (X̃, Ỹ1, . . . , Ỹℓ) =
(g̃x, g̃y1 , . . . , g̃yℓ), and outputs (sk, pk), where sk = (x, y1, . . . , yℓ) and
D pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples h←R G1 \ {0}, and outputs σ = (h, hx+
∑

j yjmj).
– Verify(pk, (m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2), and first checks if σ1 ̸= e1. It then

proceeds to check if

e

σ1, X̃ ·
∏
j

Ỹ
mj

j

 = e(σ2, g̃).

If yes, it outputs 1, and outputs 0 otherwise.

Note that given σ = (σ1, σ2), σ
′ = (σr

1, σ
r
2) is also a valid signature if σ is a valid signature. However, it can

be seen that the distribution of σ is not independent of the message m in the above scheme.

Proof of Knowledge PS signatures support an efficient zero-knowledge proof of knowledge (ZKPoK)
wherein a prover holding a valid PS signature σ on a message vector m can efficiently prove knowledge of
the signature. A prover P who owns a PS signature σ = (σ1, σ2) on a message m = (m1, . . . ,mℓ) ∈ Fℓ

p can
prove knowledge of such a signature using a slight modification of the signature scheme as described above.

41

At a high level, P generates a signature on a a pair (m, t) for uniformly sampled t ←R Fp based on the
original signature σ; the usage of a random t makes the resulting signature independent of m. The complete
protocol is as below:

– Public Key pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ)
– P’s inputs: Message m ∈ Fℓ

p and signature σ = (σ1, σ2) on m

1. P samples r, t←R Fp and computes σ′ = (σr
1, (σ2 · σt

1)
r).

2. P sends the computed value σ′ = (σ′
1, σ

′
2) to V.

3. P and V run a ZKPoK of (m, t) for the relation:

e(σ′
1, X̃) ·

∏
j

e(σ′
1, Ỹj)

mj · e(σ′
1, g̃)

t = e(σ′
2, g̃).

4. V accepts if the ZKPoK is valid.

The proof of knowledge protocol used in Step (3) is a special case of “proof of opening”, wherein we can use
a protocol for proving the knowledge of s ∈ Fℓ

p which opens the commitment z = gs where g = (g1, . . . , gℓ)
and g1, . . . , gℓ are public generators of a group G (of order p), where the discrete log problem is hard. We
describe the protocol concretely below.

– P and V’s common inputs: z ∈ G.
– P’s private inputs: s ∈ Fℓ

p.

1. P samples r←R Fℓ
p and computes α = gr.

2. P → V: α.
3. V → P: c←R Fp.
4. P → V: s′ = cs+ r.
5. V checks: gs

′
= αzc.

We also describe another variant of PS Signature Scheme, based on a stronger assumption (Assumption
1 in [PS16]), that leads to much more efficient distributed prover protocols. This variant is same as the one
described in Definition 14, with the exception of KeyGen algorithm which includes additional elements in the
public key (hence stronger assumption). The modified KeyGen algorithm is described below:

Definition 15 (PS Signature: B [PS16]). The PS Signature Scheme to sign a message m = (m1, . . . ,mℓ) ∈
Fℓ
p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) as described in Definition 14, except

KeyGen which is described below:

– KeyGen(pp): The algorithm samples g ←R G1, g̃ ←R G2, (x, y1, . . . , yℓ+1) ←R Fℓ+1
p and computes

(X,Y1, . . . , Yℓ+1) = (gx, gy1 , . . . , gyℓ+1), (X̃, Ỹ1, . . . , Ỹℓ+1) = (g̃x, g̃y1 , . . . , g̃yℓ+1). It then outputs (sk, pk)
where sk = (x, y1, . . . , yℓ+1) and
pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1).

– Sign(sk, (m1, . . . ,mℓ)): Choose h←R G1\{0} and output

(h, hx+
∑ℓ

i=1 yi·mi). Note that Sign still works on the ℓ-length message.

Alternate Proof of Knowledge. We describe a protocol for showing knowledge of a PS signature (σ1, σ2)
on a message m ∈ Fℓ

p while simultaneously revealing a dynamically sampled commitment C of m. The proof
of knowledge reduces to the knowledge of opening of C and a short pairing check as described below:

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m ∈ Fℓ

p and signature σ = (σ1, σ2) on m

1. P samples r, t, s←R Fp and computes σ′ = (σr
1, (σ2 · σt

1)
r · Y s

ℓ+1), C = g̃t
∏l

i=1 Ỹ
mi
i ∈ G2.

2. P sends the computed value σ′ = (σ′
1, σ

′
2) and C to V.

42

3. P and V run a ZKPoK showing knowledge of (m1, . . . ,mℓ, t) such that C = g̃t
∏ℓ

i=1 Ỹ
mi
i and a ZKPoK

showing knowledge of s such that e(Yℓ+1, g̃)
s = e(σ′

2, g̃)e(σ
′
1, X̃)−1e(σ′

1, C)−1.
4. V accepts if the ZKPoKs are valid.

Proof. For completeness, notice that σ2 = σ
x+

∑ℓ
i=1 yimi

1 and thus we have σ′
1 = σr

1, σ
′
2 = Y s

ℓ+1·σ
r(x+

∑ℓ
i=1 yimi+t)

1

and C = g̃t
∏ℓ

i=1 Ỹ
mi
i . Thus we have:

e(σ′
2, g̃) = e(σr

1, g̃
x+

∑ℓ
i=1 yimi+t) · e(Yℓ+1, g̃)

s

= e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
s

The above is equivalent to the verification relation. Zero knowledge follows from the fact that σ′
1, σ

′
2 and C

are distributed uniformly in their respective domains, and from the zero knowledge property of the ZKPoKs.
To show knowledge soundness, we show an extractor E which extracts a valid signature on a message in Fℓ

p.
Using the extractors for the ZKPoKs, E obtains (m1, . . . ,mℓ, t, s) such that

C = g̃t
ℓ∏

i=1

Ỹ mi
i , e(σ′

2, g̃) = e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
s

The extractor E computes
(
σ1 = σ′

1, σ2 = σ′
2(σ

′
1)

−t(Yℓ+1)
−s
)
. To see that (σ1, σ2) is a valid signature we

verify:

e(σ2, g̃) = e(σ′
2, g̃) · e(σ′

1, g̃)
−t · e(Yℓ+1, g̃)

−s

= e(σ′
1, X̃) · e(σ′

1, C) · e(σ′
1, g̃)

−t

= e(σ′
1, X̃) · e(σ′

1,

ℓ∏
i=1

Ỹ mi
i)

= e(σ1, X̃

ℓ∏
i=1

Ỹ mi
i)

The above shows (σ1, σ2) is a valid signature for the block (m1, . . . ,mℓ) for the public key (g̃, X̃, Ỹ1, . . . , Ỹℓ).

F DPoK for PS Signatures over Secret-Shared Inputs

We now present a DPoK for PS signatures for secret-shared inputs. We refer the reader to Section E for
the description of the PS signature scheme and its proof of knowledge (in the non-distributed setting) from
[PS16]. We start by defining a relation relevant to PS signature verification.

Definition 16 (PS Relation). Let PSGen denote the relation generator, such that PSGen(1λ, ℓ) outputs a
bilinear group
(G1,G2,GT , g1, g2, e, p) ←R PS.Setup(1λ). The corresponding relation Rps is defined by (x, (m,u)) ∈ Rps

for
x = pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1) ∈ Gℓ+2

1 × Gℓ+3
2 , m = (m1, . . . ,mℓ) ∈ Fℓ

p and u = (σ, t) =
((σ1, σ2), t) ∈ G2

1 × Fp if

e(σ′
1, X̃) ·

∏
j

e(σ′
1, Ỹj)

mj · e(σ′
1, g̃)

t = e(σ′
2, g̃).

Our Protocol Πps. Our DPoK protocol Πps for relation PSGen is described below, which can be invoked
from our compiler with input authentication based on PS signatures (instead of BBS+). It builds upon the
known PS PoK [PS16] in the non-distributed setting. The PoK involved the following steps: (i) the prover

43

randomizes the signature using some auxiliary inputs and broadcasts the randomized signature to all other
parties (this randomization ensures unlinkability), and then (ii) the prover shows knowledge of these auxiliary
inputs and secret-shares of the message satisfying discrete-log relations determined by the first message.

Our PS PoK over secret-shared inputs follows the same blueprint, where the prover similarly randomizes
the first message using certain auxiliary inputs. In our case, the problem reduces to a DPoK for the discrete
log relation, with the workers holding the shares of the witness (message) and the verifier holding the public
statement (public key pk + the randomized signature). We handle this using our robust complete DPoK
Πdlog for discrete log.

Protocol Πps

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Fℓ

p and signature σ = (σ1, σ2) on m

– Wi’s inputs : Wi possesses the ith share mi of the message vector m, such that
Reconstruct(m1, . . . ,mn) = m

– Pre-processing : P samples t ←R Fp, computes (t1, . . . , tn) ←R Share(t). P sends the shares ti
to Wi, for all i ∈ [n].

– Interactive Protocol
1. P samples r, v ←R Fp and computes σ′ = (σr

1, (σ2 · σt
1)

r · Y v
ℓ+1), C = g̃t

∏ℓ
i=1 Ỹ

mi
i . P also

generates a NIPK π showing knowledge of v such that e(σ′
1, X̃) ·e(σ′

1, C) ·e(Yℓ+1, g̃)
v = e(σ′

2, g̃).
2. P broadcasts the computed value σ′ = (σ′

1, σ
′
2), C and π to V.

3. Each Wi and V locally set g = (g̃, Ỹ1, . . . , Ỹℓ).
4. Each Wi locally holds the i-th share si = (mi, ti) such that s = (m, t) =

Reconstruct
(
{si}i∈[n]

)
.

5. All Wi for i ∈ [n] and V run DPoK protocol Πdlog for the relation gs = C
6. V accepts if π is valid and Πdlog accepts.

We note that DPoK protocol Πps achieves robust completeness, knowledge-soundness and zero-knowledge.
The proof is straightforward from the existing proof of knowledge of PS signatures and robust completeness,
knowledge-soundness and zero-knowledge properties of our DPoK protocol Πdlog for discrete log.

Theorem 7. Assuming that Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and (t, n)-SSS, Πps is
a DPoK for the relation generator PSGen and (t, n)-SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum distance of the
Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communication over broad-
cast channels.

Remark 8 (Public Verifiability). The protocol Πps was presented and analyzed assuming an honest designated
verifier for simplicity. By replacing Πdlog with its publicly verifiable version Πpv

dlog in steps (5) of the Interactive
Phase, we obtain a publicly verifiable version of the protocol, which we call Πpv

ps . Observe that Πpv
ps requires

one less round of interaction, as compared to Πps, while it retains the properties of robust completeness,
knowledge soundness and honest verifier zero-knowledge holds identically for the Πps.

44

	Introduction
	Our Contributions
	Technical Overview
	Related Work
	Resistance to Known Vulnerabilities

	Preliminaries
	Threshold Secret Sharing
	Proofs of Knowledge
	BBS+ Signatures and PoK for BBS

	Distributed Proof of Knowledge
	Defining a DPoK
	Robust Complete DPoK for Discrete Log

	DPoK for BBS+ Signatures over Secret-Shared Inputs
	Compiler for Authenticated MPC
	Our Compiler

	Implementation and Evaluation
	Comparison with Anonymity Sets
	Additional Preliminaries
	NIZK in the ROM
	Compressed Sigma Protocols
	PoK for BBS+ Signature Scheme
	Coding Theory

	Generalization to Threshold Linear Secret Sharing Scheme
	Robust DPoK for Discrete Log for TLSS
	(Corollary) Distributed Proof of Knowledge using Replicated Secret Sharing

	Round Efficient Distributed Proof of Knowledge
	PS Signatures and PoK for PS
	Proof of Knowledge
	Alternate Proof of Knowledge.

	DPoK for PS Signatures over Secret-Shared Inputs

