
Attacks on Encrypted Range Search
Schemes in Multiple Dimensions

Francesca Falzon
∗

francesca_falzon@brown.edu

Brown University

University of Chicago

Evangelia Anna Markatou
∗

markatou@brown.edu

Brown University

Zachary Espiritu

zachary_espiritu@brown.edu

Brown University

Roberto Tamassia

roberto@tamassia.net

Brown University

ABSTRACT

Wepresent the first systematic security evaluation ofmulti-attribute

range search schemes on symmetrically encrypted data. We present

four database reconstruction attacks that apply to a broad class

of schemes and rely on volume and search pattern leakage. For

schemes achieving efficiency by decomposing a query into a small

number of subqueries, we further show how to exploit their struc-

ture pattern, i.e., co-occurrences of subqueries. We introduce a

flexible framework for building secure range search schemes by

adapting a broad class of geometric search data structures (includ-

ing range trees and quadtrees) to operate on encrypted data. We

give four concrete range search schemes within our framework that

support queries on an arbitrary number of dimensions (attributes)

and offer a sliding scale of efficiency and security trade-offs. We pro-

vide a security proof for any scheme derived from our framework

and a thorough analysis of the leakage of our concrete schemes,

characterizing the set of equivalent databases and demonstrating

information theoretic limitations on reconstruction attacks. Our

attacks are the first that do not require the observation of the access

pattern to reconstruct data from range queries in two and higher di-

mensions. Our work shows that for range queries, structure pattern

leakage can be as vulnerable to attacks as access pattern leakage.

We give a comprehensive evaluation of our schemes and attacks

with a complexity analysis, a prototype implementation, and an

experimental assessment on real-world datasets.

KEYWORDS

Encrypted Database; Database Reconstruction; Attack

1 INTRODUCTION

With the rise of cloud services, there is a growing need for schemes

that support complex privacy-preserving queries. In this paper,

we study the security of schemes that support range-queries over

multi-attribute data. One solution for supporting private range

queries is to use theoretical primitives like fully-homomorphic

encryption [19] or oblivious RAM [21]. While they offer the best

security guarantees, these solutions are not yet practical. As an

alternative, solutions for private range queries have been proposed

using searchable symmetric encryption (SSE) (see, e.g., [5, 6, 8–10, 12,

20, 30–32, 43, 45, 51]). SSE schemes offer the following tradeoff: in

∗
Both authors contributed equally to this research.

Figure 1: Reconstruc-

tion by our attack on

the range tree scheme

with uniform range

cover (Sections 4.2

and 5.2) for the Cali

dataset over a domain

with 1024 × 1024 points.
The bar heights rep-

resent the number of

records at each domain

point. The attack

succeeds in 68s.

exchange for efficiency they reveal some well-defined information,

or leakage, about the queries and underlying data.

Leakage typically occurring in SSE schemes includes one or more

of the following: search pattern (whether two query tokens refer to

the same query); volume pattern (number of records in the query

response); and access pattern (individually and deterministically

encrypted records in query responses).

Existing efficient schemes support range queries on only single-

attribute (1D) data. In this paper, we evaluate the security of a broad

class of schemes that support range queries over multi-attribute

data. We first give a general framework for building such schemes

and a generic security proof for them. The schemes from prior

work most related to those developed within our framework are

by Demertzis et al. [13, 14], who present 1D range schemes with

storage and security trade-offs, and by Faber et al. [16], who build on

the SSE scheme in [9] to support 1D range, substring, wild-card, and

phrase queries. We extend these schemes to support multi-attribute

queries, analyze their leakage, and present attacks on them. Our

work is the first to systematically analyze the security of schemes

for encrypted range search on more than two attributes. We show

that volume and search pattern—when combinedwith the structural

information of the underlying range search data structure—is as

detrimental to security as access and search pattern. One of our

attacks works on a wide class of range encrypted multimap schemes

that achieve efficiency allowing for false positives in responses,

and are regarded to be amongst the most secure. We evaluate our

schemes and attacks using real-world datasets.

Several SSE schemes have been developed for single-attribute

(1D) range queries on encrypted databases (see, e.g., [3, 27, 29, 49,

54]). Prior work on multi-attribute range query schemes uses other

1

Brown University, January, 2022 Falzon and Markatou, et al.

Table 1: Comparison of our schemes for range queries over an arbitrary number of attributes of an encrypted database, and of our reconstruc-

tion attacks on the schemes. Regarding scheme complexity, we show the query size, response size, and server space. The query time at the

client and server is proportional to query size plus response size. The client space is𝑂 (1) but for up to polylog temporary space when a query

is issued. For each scheme, we also list selected related schemes and attacks from previous work, which are limited to 1D and 2D. Regarding

attack complexity, we exclude the time to read the leakage, which is the same for any attack and depends on the database size and the domain

size, and the required number of queries reported assumes a uniform query distribution. Notation: range size 𝑅, result size 𝑟 , database size 𝑛,

domain size𝑚, number of query attributes (dimension of the domain) 𝑑 .

Scheme

Selected Related Work Scheme Complexity Attack Complexity

Schemes (all 1D) Attacks Query size Resp. size Space Reconstr. space Runtime Space # Queries

Linear Naive [13] 1D [25, 33], 2D [17] 𝑅 𝑟 𝑚 + 𝑛 2
𝑑 (𝑑!) 𝑚5 𝑚3 𝑚

2− 1

𝑑 log
2𝑚

Range URC Range [13, 16] – log
𝑑 𝑅 𝑟 𝑚 + 𝑛 log𝑑𝑚 2

𝑑 (𝑑!) 𝑚2
log

𝑑𝑚𝑚2
log

𝑑𝑚 𝑚2
log𝑚

Range BRC Range [13] – log
𝑑 𝑅 𝑟 𝑚 + 𝑛 log𝑑𝑚 2

𝑑 (𝑑!) 𝑚4 𝑚2
log

𝑑𝑚 𝑚2
log𝑚

QDAG SRC TDAG [13] 1D [37] 1 𝑟 + 𝑅𝑑 𝑚 + 𝑛 log𝑚 ≥ 2
𝑑+2(𝑑−1) (𝑑) (𝑑!) – – 𝑚4

log𝑚

frameworks. Shi et al. [50] and Wang et al. [53] use public-key

cryptography, whereas Kermanshahi et al. [34] use homomorphic

encryption to support multi-attribute range queries. De Capitani

di Vimercati et al. [15] index multi-dimensional encrypted data by

recursively partitioning records into boxes, thus taking steps toward

a general scheme, but do not provide a formal leakage analysis.

Leakage analysis of SSE schemes has been studied in a passive

adversarial setting e.g. [2, 7, 28, 44, 47]. Recent attention has been

devoted to exploiting the interplay between volume and search pat-

tern e.g. Oya and Kerschbaum [44] and Blackstone et al. [2]. Data-

base reconstruction attacks have been presented against schemes

supporting 1D range queries. The first such attack by Kellaris et

al. [33] was followed by more efficient attacks for 1D queries using

access (e.g. [25, 36, 38, 41]) and volume pattern (e.g. [24, 26, 37]).

Two attack works most related to our Linear attack are the

generic 2D database reconstruction attacks in [17, 40]. Unlike these

works, we give attacks on concrete range schemes and our attacks

work on databases of two and higher dimensions. The closest prior

attack to our SRC attack is by Kornaropoulos, Papamanthou, and

Tamassia [37], who attack 1D response hiding schemes. In [14],

Demertzis et al. note their schemes are susceptible to attacks but

do not give a full description or analysis.

Our contributions are summarized as follows:

• We present the first attacks on encrypted database schemes
that support range queries on an arbitrary number of at-
tributes in a standard scenariowhere the scheme leaks search
pattern and volume pattern. Previous attacks were either lim-

ited to 1D queries, or 2D queries in the scenario where the at-

tacker additionally observes the access pattern. (Section 5)

• We give attacks on efficient schemes that decompose a query
into a small (polylog) number of subqueries. These schemes

also leak what we call structure pattern, i.e., the pattern of co-

occurrence of subqueries. Structure pattern leakage is inher-
ent in schemes derived from standard multidimensional
search data structures (e.g., the 1D logarithmic scheme in [13],

which is derived from the range tree). (Sections 5.1 and 5.2)

• We show attacks on schemes that achieve efficiency with-
out leaking the structure pattern by allowing responses to
contain false positives. Such schemes are considered the gold

standard, since recent attacks have been limited to only 1D

queries [37]. (Section 5.3)

• We introduce a general framework for building range search
schemes for encrypted databases by adapting a broad class of

geometric search data structures (e.g. range trees and quadtrees)

to operate on encrypted data. We provide a generic security
proof for any scheme derived fromour framework. (Section 3)
• We present four concrete schemes derived from the frame-
work and analyze their complexity. (Section 4)

• We characterize the set of equivalent databases under the
leakage of our schemes and demonstrate information theoretic

limitations on the reconstruction ability of a passive adversary.

(Section 5)

• We evaluate our schemes and our attacks with a theoretical
complexity analysis, prototype implementation, and exper-
imental evaluation on real-world datasets. (Section 6)

Table 1 compares our concrete schemes for multi-attribute range

queries on an encrypted database and our reconstruction attacks on

them. Ourwork demonstrates the pitfalls of extending 1D encrypted

range search schemes to higher dimensions and helps inform future

research on expressive queries on multidimensional data.

2 PRELIMINARIES

Given integers 𝑎, 𝑏 with 𝑎 ≤ 𝑏, let [𝑎] = {1, 2, . . . , 𝑎} and let

[𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏}. Let 𝑚1, . . . ,𝑚𝑑 be positive integers and

𝑑 ≥ 2. A 𝑑-attribute database, or a 𝑑-dimensional database, 𝐷 is an

injective mapping from a domain D = [𝑚1] × · · · × [𝑚𝑑] to a set
of records of 𝑂 (1) size. We denote the set of records with domain

value 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ D as 𝐷 [𝑥]. A 𝑑-dimensional range query is

a hyper-rectangle [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑] where [𝑎𝑖 , 𝑏𝑖] ⊆ [1,𝑚𝑖]
denotes the range in the 𝑖-th dimension.

We say that points 𝑝 and 𝑝 ′ are neighbors if they share every

coordinate but one, and in the remaining coordinate, their values

differ by one. We call a set of contiguous points of 𝐷 that only differ

in the same single coordinate a one-dimensional section.

We use double-brace notation to denote amultiset, e.g. {{1,1,4,5,7}}.

Symmetric Encryption. A symmetric encryption scheme is a tuple

of polynomial-time algorithms SKE = (Gen, Enc,Dec) as follows.
Gen is a probabilistic algorithm that takes as input a security param-

eter 𝜆 and outputs a secret key 𝐾 . Enc is a probabilistic algorithm
that takes as input a key𝐾 and a message𝑚 and returns a ciphertext

𝑐 . Dec is a deterministic algorithm that takes as input a key 𝐾 and

a ciphertext 𝑐 and returns a message𝑀 . For correctness we require

that Dec(𝐾, Enc(𝐾,𝑀)) = 𝑀 for all 𝐾 and 𝑀 . We further require

that the scheme is CPA-secure.

2

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

Appendix. Additional material, including proofs of theorems and

lemmas, can be found in the Appendix.

2.1 EMM Definition and Security Model

EMM scheme syntax.Our range search schemes on encrypted data

are built using an encrypted multimap (EMM) scheme in a generic

manner. A multimap is a map that takes labels from a label space

L to sets of values from a value space V i.e. MM : L ↦→ 2
V ∪ {⊥}

where ⊥ indicates an uninitialized value. Given a multimap MM,

we denote the set of values associated to label ℓ asMM[ℓ].
Definition 1 ([10]). An encrypted multimap scheme is a

tuple of algorithms Σ = (Setup,Query, Eval,Result), where
• Σ.Setup: (probabilistic) takes a security parameter and a multimap,

and returns a secret key and an encrypted multimap.

• Σ.Query: takes a key and label, and returns a search token.

• Σ.Eval: takes an encrypted multimap and a search token, and re-

turns a ciphertext.

• Σ.Result: takes a key and a ciphertext, and returns a set of values.

Throughout this paper, our label space L is the set of possible
ranges over the desired domain, and the value space V is the set of

possible record values, i.e. {0, 1}∗.
EMM security model. The security of structured encryption is

traditionally proven using the real-ideal paradigm [10]. The defini-

tion of adaptive security for an EMM scheme Σ is parameterized

by a leakage function LΣ = (LΣ
S ,L

Σ
Q) which describes the exact

information that a passive adversary may learn about the underly-

ing database (formally described in Appendix A). In particular, LΣ
S

captures the leakage at setup and LΣ
Q captures the leakage when a

sequence of queries is issued. Using this security framework, we

refer to an adaptively (LΣ
S ,L

Σ
Q)-secure EMM scheme. The goal is

to prove that the EMM scheme is indistinguishable from an ideal

setting in which an algorithm simulates the response of the setup

and query algorithms using only the leakage. Adaptive security of

an EMM scheme is formally defined in Definition 7 in Appendix B.

2.2 REMM Definition and Security Model

Definition 2. A range encrypted multimap scheme is a tu-
ple of four algorithms REMM = (Setup,Query, Eval,Result). The
syntax of the algorithms is defined as those in Definition 1 with the

following two changes:

• REMM.Setup takes as input a security parameter 1
𝜆
and a multi-

attribute database 𝐷 and outputs a key 𝐾 and an encrypted data-

base EMM.

• REMM.Query takes as a input a key 𝐾 and a range query 𝑞 on the

domain of 𝐷 and outputs a token 𝑡 .

In order to support range queries, we take the label space of the

underlying multimap to be the set of all possible range queries and

the value space to be the set of all possible records.

For correctness we require that for all 𝑑-dimensional databases

𝐷 with domain D, all 𝑑-dimensional range queries 𝑞 over D, and

all security parameters 1
𝜆
, we have {𝐷 [𝑥] : 𝑥 ∈ 𝑞} ⊆ 𝑉 , where

(𝐾, EMM) ← REMM.Setup(1𝜆, 𝐷), 𝑡 ← REMM.Query(𝐾,𝑞),𝐶 ←
REMM.Eval(EMM, 𝑡), and 𝑉 ← REMM.Eval(𝐾,𝐶).

REMM security model.We extend the security model in [13] to

encrypted multidimensional range schemes with games RealREMM
A

and IdealREMM
A,S . They are identical to the game in Definition 7 in

Appendix B except that in step (1) the adversary selects a multi-

attribute database 𝐷 on domain 𝐷 , in step (2) the adversary selects

a polynomial number of range queries on the domain of 𝐷 , and Σ is

replaced by an encrypted multi-dimensional range scheme REMM.

The adaptive security of REMM schemes is defined analogously to

Definition 7.

3 GENERIC FRAMEWORK

We now present a framework for building range encrypted mul-

timap schemes from data structures for multidimensional range

search based on a search DAG. This framework generalizes many

1D range schemes and captures commonly used data-structures for

range search such as range-trees, kd-trees, and quad-trees. These

schemes provide a variety of trade-offs with respect to query size,

response size, storage, and security. We introduce the family of

range-supporting data structures and explain how to build an en-

crypted index from a data structure in this family. The strength and

genericness of our attacks in Section 5 are a consequence of our

ability to characterize entire classes of schemes via this framework.

Definition 3. A range-supporting data structure for a data-
base 𝐷 with domain D is a pair (𝐺, RC), where:

(i) 𝐺 is a connected directed acyclic graph (DAG).

(ii) Each vertex 𝑣 of 𝐺 corresponds to a range on domain D, which

we denote as 𝑣 .𝑟𝑎𝑛𝑔𝑒 and refer to as a canonical range.
(iii) 𝐺 has a single source vertex 𝑠 whose range is the entire domain,

i.e., 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D. For each non-sink (non-leaf) vertex 𝑣 of 𝐺 ,

we have 𝑣 .𝑟𝑎𝑛𝑔𝑒 =
⋃
(𝑣,𝑤) ∈𝐺 𝑤.𝑟𝑎𝑛𝑔𝑒 .

(iv) RC, called range covering algorithm, is a polynomial-time

algorithm that takes as input DAG 𝐺 and a range query 𝑞 on

domain D, and returns a subset𝑊 of vertices of 𝐺 , called a

cover of range 𝑞, such that the union of the canonical ranges of

𝑊 includes range 𝑞, i.e., 𝑞 ⊆ ⋃
𝑤∈𝑊 𝑤.𝑟𝑎𝑛𝑔𝑒 .

A range-supporting data structure can be used to perform range

queries by precomputing and storing the responses to all the canon-

ical ranges of the scheme. To perform a range query 𝑞, we use

the range covering function to find a cover𝑊 of 𝑞, retrieve the

responses to the canonical queries for the nodes of𝑊 , and return

their union as the response to 𝑞.

The response to a range query 𝑞 may have false positives, i.e.,
points of of the database outside of range 𝑞, which will have to be

filtered out to obtain the exact response. To avoid false positives,

we use a data structure where the cover𝑊 returned by the range

covering function is such that the union of the canonical ranges of

𝑊 is equal to range 𝑞, i.e., 𝑞 =
⋃
𝑣∈𝑊 𝑣 .𝑟𝑎𝑛𝑔𝑒 .

The theorem below gives a necessary condition for a range-

supporting data structure to be without false positives.

Theorem 1. Let (𝐺, RC) be a range-supporting data structure for
a domain D such that the answer to any range query has no false

positives. Then, for every domain point 𝑥 ∈ D, there is a node 𝑣 of 𝐺

with canonical range 𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑥 .

Note that, for any DAG, there is a trivial range covering algo-

rithm that returns the source node of the DAG for every query,

3

Brown University, January, 2022 Falzon and Markatou, et al.

Algorithm 1: BRC(𝑇, 𝑞, 𝑣)
1: // Invoked with BRC(𝑇,𝑞, 𝑠) , where 𝑠 is the root (source) of𝑇
2: Label 𝑣 as explored

3: 𝑊 ← ∅
4: if 𝑣.𝑟𝑎𝑛𝑔𝑒 ⊆ 𝑞 then

5: 𝑊 ← {𝑣 }
6: else

7: if 𝑣.𝑟𝑎𝑛𝑔𝑒 ∩ 𝑞 ≠ ∅ then
8: for (𝑣, 𝑤) ∈ 𝑇 and 𝑤 is not labeled as explored do

9: 𝑊 ←𝑊 ∪ BRC(𝑇,𝑞, 𝑤)
10: return 𝑊

Algorithm 2: SRC(𝐺,𝑞, 𝑣)
1: // Invoked with SRC(𝐺,𝑞, 𝑠) , where 𝑠 is the source of𝐺
2: Label 𝑣 as explored

3: 𝑐𝑎𝑛𝑑 ← null

4: if 𝑞 ⊆ 𝑣.𝑟𝑎𝑛𝑔𝑒 then
5: 𝑐𝑎𝑛𝑑 ← 𝑣

6: for (𝑣, 𝑤) ∈ 𝐺 and 𝑤 is not labeled as explored do

7: {𝑡 } ← SRC(𝐺,𝑞, 𝑤)
8: if |𝑡 .𝑟𝑎𝑛𝑔𝑒 | < |𝑐𝑎𝑛𝑑.𝑟𝑎𝑛𝑔𝑒 | then
9: 𝑐𝑎𝑛𝑑 ← 𝑡

10: return {𝑐𝑎𝑛𝑑 }

i.e., the trivial cover consisting of the entire domain. In general,

this algorithm will cause false positives. To avoid false positives

one needs to use a cover with multiple nodes. When the DAG is a

tree, 𝑇 , whose leaves are associated with the domain points (The-

orem 1) and for each internal node 𝑣 , the canonical ranges of the

children of 𝑣 are a partition of 𝑣 .𝑟𝑎𝑛𝑔𝑒 , Algorithm 1, called best
range cover (BRC), produces a cover of the query range with the

minimum number of nodes. This algorithm generalizes the classic

one-dimensional range tree scheme to an arbitrary partition of the

domain.

Theorem 2. Let (𝑇, BRC) be a range-supporting data structure

whose DAG is a tree 𝑇 such that

(1) the canonical range of the leaves (sinks) of 𝑇 are in 1-1 correspon-

dence with the domain points 𝑥 ∈ D;

(2) for each internal node 𝑣 of 𝑇 , the canonical ranges of the children

(successors) of 𝑣 are a non-trivial partition of the canonical range of

𝑣 , i.e., 𝑣 .𝑟𝑎𝑛𝑔𝑒 =
⋃
(𝑣,𝑤) ∈𝑇 𝑤.𝑟𝑎𝑛𝑔𝑒 and

⋂
(𝑣,𝑤) ∈𝑇 𝑤.𝑟𝑎𝑛𝑔𝑒 = ∅.

Then for any range query 𝑞, the cover returned by BRC has no false
positives and is unique and minimal (i.e. smallest number of nodes).

Corollary 1. Let (𝑇, BRC) be a range-supporting data structure
whose DAG is a tree 𝑇 such that only (2) holds. For any range query

𝑞 that is the union of canonical ranges of leaves, the cover returned

by BRC has no false positives and is the unique minimal cover.

When false positives are acceptable in the query answer, it may

be desirable to have a cover consisting of a single node, which is

accomplished by Algorithm 2, called single range cover (SRC).

Theorem 3. Let (𝐺, SRC) be a range-supporting data structure.

For any range query 𝑞, the cover 𝑣 returned by SRC minimizes the

number of domain points of the cover outside of 𝑞, i.e. the number of

potential false positives.

Since many different domain-dependent data structures can be

encoded as a DAG with the properties of Definition 3, we now

describe a generic scheme that supports range queries given any

range-supporting data structure.

Definition 4. Given security parameter 𝜆, an encrypted mul-

timap scheme Σ, and a range-supporting data structure (𝐺, RC) for
a database 𝐷 over domain D, the generic range encrypted mul-
timap scheme scheme GenericRS(1𝜆, 𝐷,D, Σ, (𝐺, RC)) is derived
as follows. The client initializes a multimap MM, and for every node

𝑣 of 𝐺 sets MM[𝑣 .𝑟𝑎𝑛𝑔𝑒] ← {𝐷 [𝑥] : 𝑥 ∈ 𝑣 .𝑟𝑎𝑛𝑔𝑒}. Thus, multimap

MM associates each canonical range with the set of database records

contained in the range. i.e., with the response to the query for that

range. The client then creates fromMM an encrypted multimap EMM
with secret key 𝐾 using EMM scheme Σ, and outsources EMM to the

server. To perform a range query 𝑞, the client computes RC(𝐺,𝑞) to ob-
tain a cover𝑊 of 𝑞. Next, for each node𝑤 ∈𝑊 , it computes a search

token 𝑡𝑤 for EMM by setting 𝑡𝑤 ← Σ.Query(𝐾,𝑤.𝑟𝑎𝑛𝑔𝑒). We refer

to this set of search tokens of encrypted multimapMM associated with

range query 𝑞 as the tokenset t of 𝑞. The client sends tokenset t to
the server, who then retrieves from MM the corresponding encrypted

sets of records 𝐶 (𝑡) ← Σ.Eval(𝑡, EMM) for 𝑡 ∈ t (i.e., the encrypted
responses for the canonical ranges) and returns them to the client.

Finally, the client decrypts each such set𝐶 (𝑡) with Σ.Result(𝐾,𝐶 (𝑡)).

We give pseudocode for our generic range encrypted multimap

scheme, GenericRS, in Figure 11 in Appendix C.1.

Security. Our generic range encrypted multimap scheme built

from a range-supporting data structure leaks the size of the domain

and the total size of the entries stored in the EMM. For each query,

it leaks the tokenset and the sizes of the partial responses of each

token. Thus, this scheme gives rise to an additional leakage resulting

from the chosen DAG and range covering scheme, and which is

parameterized by the leakage of the underlying EMM scheme. We

call this leakage the structure pattern.

Definition 5. Let (𝐺, RC) be a range-supporting data structure
for a 𝑑-dimensional database 𝐷 with domain D, let MM be the mul-

timap resulting fromGenericRS, and let Σ be the encrypted multimap

scheme. Let 𝑠 be the source node of 𝐺 . The structure pattern of a

range query 𝑞 is

Str(𝐷,𝑞) ↦→ (LΣ
Q (MM, 𝑣 .𝑟𝑎𝑛𝑔𝑒))𝑣∈RC(𝐺,𝑞) .

The leakage of GenericRS is formally characterized in the fol-

lowing theorem.

Theorem 4. Given an adaptively secure EMM scheme Σ that

leaks search pattern and volume pattern, and a range-supporting

data structure (𝐺, RC) for a database 𝐷 with domainD of size𝑚, the

generic range encrypted multimap scheme GenericRS built from Σ
and (𝐺, RC) is adaptively (LS,LQ)-secure, where:
• LS (𝐷,D) = LΣ

S (MM)
• LQ (𝐷,𝑞 (1) , . . . , 𝑞 (𝑡)) = (Str(𝐷,𝑞 (𝑖)))𝑖∈[𝑡]

Note that the leakage of the scheme is heavily dependent on

the DAG and range covering algorithm used. We give concrete

instances of the scheme in Section 4, and we thoroughly analyze

their leakage and describe attacks on them in Section 5.

4

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

4 SCHEMES

We now give concrete examples of schemes that fit the general

framework; these schemes include generalizations of schemes that

were presented by Demertzis et al. [13, 14] and Faber et al. [16], as

well as a new scheme based a the quadtree data structure [18]. Our

cryptanalysis in Section 5 is carried on entire classes of schemes

captured by our framework; these classes include the prior 1D

schemes [13, 14, 16].

For concreteness, we present four schemes for range search on

encrypted databases. All the schemes are instances of range en-

crypted multimap schemes based on range-supporting data struc-

tures presented in Section 3. The schemes support multidimensional

range searches on an arbitrary fixed number of dimensions (at-

tributes), 𝑑 . These schemes are derived from classic data structures

for geometric searching and offer trade-offs for efficiency and secu-

rity. For each scheme, we describe the associated DAG and range

covering algorithm, and evaluate its storage and communication

complexity. The leakage is subsequently discussed in Section 5.

Following the notation used throughout the paper, we denote

the database with 𝐷 and the domain with D. We denote their sizes

as 𝑛 = |𝐷 | and𝑚 = |D|. The number of domain points in a query

range is referred to as range size and denoted with 𝑅. The number

database of records within a query range is referred to as result
size and denoted with 𝑟 . In our schemes, a query is issued by the

client to the server as a tokenset. We refer to the number of search

tokens in the tokenset as the query size. A response is returned by

the server to the client as a collection of encrypted sets of records

(one set per search token), whose total number of records is referred

to as response size. Note that the response size is equal to the result
size plus the number of false positives returned.

Additional information about the schemes can be found in Ap-

pendix D and a summary of their complexity in Table 1.

4.1 Linear Scheme

We first present a simple scheme, called linear scheme, that
offers the smallest storage at the expense of the least security.

The linear scheme indexes each record by its location. Its DAG,

𝐺𝐿 , is a star comprising a source 𝑠 adjacent to𝑚 sinks. We have that

𝑠 .𝑟𝑎𝑛𝑔𝑒 = D and each sink 𝑣 is associated with a distinct domain

point 𝑥 ∈ D such that 𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑥 . For this scheme, the generic BRC
algorithm takes 𝑂 (𝑚) time. For better efficiency, we use the linear

range covering algorithm, Algorithm 9 (LRC) in Appendix D.1.1,

where in a preprocessing step, the sinks of 𝐺𝐿 are stored in a 𝑑-

dimensional array, 𝑉 [D], indexed by the associated domain point.

Details on the linear scheme are given in Appendix D.1.

4.2 Range tree Scheme

In an effort to decrease the bandwidth of the linear scheme, we

present the range tree scheme based on a classic data structure [1].

A range tree 𝐺𝑅𝑇 on a 𝑑-dimensional domain is a recursively

defined tree. Start with a binary search tree on [𝑚1]. Each node 𝑣

in this tree is associated with a binary tree on [𝑚2]. More generally,

there is an edge from each vertex of the binary trees on [𝑚𝑖] to the
root of a binary tree on [𝑚𝑖+1]. A binary search tree on [𝑚] can
thus be viewed as a tree whose nodes are each associated with a

Algorithm 3: BRC𝑅𝑇 (𝑇, 𝑞, 𝑣)
1: // Invoked with BRC𝑅𝑇 (𝑇,𝑞, 𝑠) , where 𝑠 is the source of𝑇
2: 𝑊 ← {𝑣 }
3: 𝑞1 × · · · × 𝑞𝑑 ← 𝑞

4: for 𝑖 ∈ [𝑑] do
5: 𝑊 ′ ← ∅
6: for 𝑤 ∈𝑊 do

7: 𝑤1 × · · · × 𝑤𝑑 ← 𝑤.𝑟𝑎𝑛𝑔𝑒

8: 𝑞 ← 𝑤1 × · · · × 𝑤𝑖−1 × 𝑞𝑖 × [𝑚𝑖+1] × · · · × [𝑚𝑑]
9: Let𝑇 ⊆ 𝑇 be the subtree on [𝑚𝑖] rooted at 𝑤.

10: 𝑊 ′ ←𝑊 ′ ∪ BRC(𝑇,𝑞, 𝑤)
11: 𝑊 ←𝑊 ′

12: return 𝑊

dyadic range in [𝑚]. The source 𝑠 of 𝐺𝑅𝑇 is such that 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D.

For a node 𝑣 of a binary tree on [𝑚𝑖], let 𝑣 .𝑑𝑦𝑎𝑑𝑖𝑐 denote the dyadic
range in [𝑚𝑖] that 𝑣 is associated with. Let𝑤.𝑟𝑎𝑛𝑔𝑒 = 𝑤1× · · · ×𝑤𝑑
be the canonical range of the root𝑤 of 𝑣 ’s binary subtree on [𝑚𝑖].
We have

𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑤1 × · · · ×𝑤𝑖−1 × 𝑣 .𝑑𝑦𝑎𝑑𝑖𝑐 × [𝑚𝑖+1] × · · · × [𝑚𝑑] (1)

See Figure 2a for an example of 2-dimensional range tree.

The multi-dimensional range tree for 𝑑 > 1 does not satisfy the

properties of the tree in Theorem 2. The multi-dimensional range

tree can be viewed as being composed of subtrees that subdivide

the domain along different dimensions; these subtrees satisfy the

properties of Theorem 2. We thus design a best range cover for

multi-dimensional range trees, Algorithm 3 (BRC𝑅𝑇), that calls
Algorithm 1 (BRC) as a subroutine on these subtrees.

Theorem 5. Let 𝐺𝑅𝑇 be a multi-dimensional range tree. For any

range query 𝑞, the cover returned by BRC𝑅𝑇 has no false positives and

is the unique minimal cover.

Observe that for queries of the same size, BRC𝑅𝑇 can produce

covers of different sizes. As such, cover size may reveal some infor-

mation about the location of the queried range. Kiayias et al. [35]

introduce the notion of a uniform range cover that seeks to re-

solve this problem by making the size of the tokenset depend only

on the size of the range, and not on its location in the domain.

Let URC denote the uniform range cover algorithm for 1D ranges

from [35]. It takes as input a 1D range tree 𝐺𝑅𝑇 , a range query 𝑞,

and the source node of 𝑠 , and returns the uniform range cover of 𝑞

in𝐺𝑅𝑇 . We extend the 1D URC algorithm to higher dimensions. Our

uniform range cover algorithm for multi-dimensional range trees,

denoted URC𝑅𝑇 , is identical to Algorithm 3 (BRC𝑅𝑇) except that on
line 10, it calls URC as a subroutine instead of BRC.

Theorem 6. Let𝐺𝑅𝑇 be a range tree on [𝑚1]×· · ·× [𝑚𝑑] and 𝜎 be

any permutation on [𝑑]. If 𝑞 is a range query of size 𝑅 = 𝑅1× · · ·×𝑅𝑑
and 𝑞′ is a range query of size 𝑅 = 𝑅𝜎 (1) × · · · × 𝑅𝜎 (𝑑) , then their

respective URC𝑅𝑇 covers𝑊 and𝑊 ′ are such that |𝑊 | = |𝑊 ′ |.

4.3 QDAG SRC Scheme

We present the QDAG SRC scheme, which is derived from the

quadtree, supports single range covers at the expense of 𝑂 (𝑅𝑑)
false positives, and extends the 1D TDAG scheme [13] to higher

5

Brown University, January, 2022 Falzon and Markatou, et al.

abcde
fghijkl
mnop

abcdefgh
ijklmnop

abcd efgh

ijkl
mnop

ab
cd

cdab

dcba

ef
gh

ghef

hgfe

ij
kl

klij

lkji

mn
op

opmn

ponm

ijkl mnop
imjn
kolp

im
jn

lpkojnim

...

ko
lp

abcd
efgh ae

im

cgko
dhlp

aeim
bfjn

dh
lp

bf
jn

cg
ko

4 d h l p
c g3

2
1

4321

k o
b f
a e

j n
i m q′′

q′

v1 v2

w0

w1 w2

(a) Two-dimensional range tree on a 4 × 4 domain.

abcde
fghijkl
mnop

ab
cd

ef
gh

ij
kl

mn
op

ae
im

dh
lp

bf
jn

cg
ko

dcba

hgfe

lkji

ponm

(b) Attack on the range tree URC scheme.

Figure 2: Range tree scheme and attack on the URC version. (a) The binary tree over the first dimension is shown with thick black lines and

the binary trees over the second dimension are shown with thin gray lines. Using BRC, query range 𝑞′ = [2, 4] × [2, 3] (in blue) corresponds to

cover {𝑣1, 𝑣2, 𝑤1, 𝑤2 } and query range 𝑞′′ = [3, 4] × [1, 3] (in red) corresponds to cover {𝑤0, 𝑤2 }. The nodes in the green/orange/blue rectangles

and in pink correspond to tokensets of size 1, under URC. (b) Graph𝐺 built by Algorithm 5. Its nodes are tokensets of size 1 (e.g. (𝑎) , (𝑚𝑛𝑜𝑝)),
and its edges correspond to tokensets of size 2 (e.g. (𝑎,𝑏) , ({𝑚𝑛𝑜𝑝 }, {𝑖 𝑗𝑘𝑙 })). The largest component of𝐺 is the grid of the domain points.

Figure 3: QDAG for a [4] × [4] domain obtained by augmenting the

quadtree by adding the dark gray and red nodes.

dimensions. The response size overhead is an inherent limitation

of schemes that index the domain using only hypercube ranges.

Given a multi-dimensional database 𝐷 with domain D we build

the data structure the bottom up, starting with 𝑚 leaves corre-

sponding to points of domain D. At level 𝑗 we add nodes for all

hypercubes of size 2
𝑛−𝑗

tiling the domain, as well as each of these

hypercubes shifted by 2
𝑛−𝑗−1

along each dimension. For each node

at level 𝑗 , we add directed edges to all nodes in level 𝑗 − 1 which
it covers. We recursively build the structure until we reach the

(source) root node that corresponds to the entire domain. Each

node 𝑣 in this DAG is associated with a 𝑑-dimensional hypercube.

To execute a range query, the client computes its SRC cover.

The QDAG SRC scheme is illustrated in Figure 3. The 𝑂 (𝑅𝑑)
false positive rate,𝑂 (𝑚) space usage, and overall complexity of the

QDAG SRC scheme are described in detail in Appendix D.3.

4.4 Complexity and Leakage

Table 1 compares the schemes in this section. The SRC scheme has

optimal query size but allows false positives. The other schemes

avoid false positives but incur query size overhead. To achieve

efficient client query time, the range cover algorithm builds the to-

kenset without instantiating the scheme’s DAG, which is implicitly

defined by the parameters of the domain. Thus, we can assign IDs

to the nodes of the DAG so that the ID of each node in the cover is

computed in𝑂 (1) amortized time and space. Hence, the query time

and space at the client is proportional to the query size (to generate

the tokenset) plus the response size (to decrypt the received re-

sponse). The query execution time at the server is also proportional

to the query size plus the response size, since accessing the partial

response associated with a token takes 𝑂 (1) expected time with

an efficient multimap implementation. The client space is 𝑂 (1),
plus𝑂 (log𝑑𝑚) temporary space for the range tree schemes when a

query is issued, and temporary space proportional to the response

size when the response is received.

Theorem 7. Let Σ be an EMM scheme that leaks search and vol-

ume pattern. If the linear LRC, range tree BRC/URC, and QDAG SRC

schemes are instantiated with Σ, then each of these range encrypted

multimap schemes leaks search, volume and structure pattern.

Note that the structure pattern of the QDAG SRC scheme gives

no additional information beyond its search and volume pattern.

5 LEAKAGE ANALYSIS AND ATTACKS

We explore the information theoretic limitations on what can

be recovered from the leakage profiles of our schemes and present

reconstruction attacks. Our work shows that volume and search pat-

tern leakage combined with structural leakage can be as exploitable

as access and search pattern leakage.

Preliminaries. As before, we consider a 𝑑-dimensional database 𝐷

of size 𝑛 over domain D of size𝑚. We assume that D is encrypted

with one of the schemes presented in Section 4. The tokenset, t,
of a query 𝑞 is the set of tokens associated with 𝑞. For each token

𝑡 sent by the client, the server returns the encrypted set 𝐶 (𝑡) re-
trieved from an encrypted multimap (Definition 5), from which the

adversary determines the volume, 𝑣𝑜𝑙𝑡 , associated with token 𝑡 . For

each scheme, we present a reconstruction attack that takes as input

a volume map, denoted with VM, that for each tokenset t, maps

VM[t] = ∑
𝑡 ∈t 𝑣𝑜𝑙𝑡 , and for each token 𝑡 ∈ t, maps VM[𝑡] = 𝑣𝑜𝑙𝑡 .

Our attack on the SRC scheme also takes as input a frequency
map FM, which associates each tokenset with the number of times

the it has been observed. Maps VM and FM take linear time to build

on the size of the input and require less storage than the input,

since their sizes are independent of 𝑛. We assume the adversary has

knowledge of𝑚, 𝑑 , 𝑛, as well as of the range encrypted multimap

scheme employed. Our attacks take as input VM and (in the SRC

case) FM and return a grid comprising one node for each point

6

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

of in domain D, where each node is labeled with the number of

database records at the corresponding point.

We show that VM and FM are an equivalent representation of

the multiset of structure pattern. We assume that the queries are

issued independently; we do not exploit the order of the queries, for

example, by assuming that their order is correlated to their position.

It is thus sufficient to consider a multiset of the structure pattern.

Theorem 8. Let Σ be an EMM scheme leaking search and volume

pattern. Let 𝐷 be a 𝑑-dimensional database over domain D and let

𝑞 (1) , . . . , 𝑞 (ℓ) be range queries overD. Then there exists an invertible

transformation between the multiset of leakage {{Str(𝐷,𝑞 (𝑖))}}𝑖∈[ℓ]
and the corresponding volume map VM and frequency map FM.

EqivalentDatabases.Wefirst generalize the notion of equivalent

databases from [17, 40] below. Intuitively, two databases are L-
equivalent if they are indistinguishable from their leakage alone.

Definition 6. Let 𝐷 and 𝐷 ′ be databases with domainD and the

same record IDs. Let L = (LS,LQ) be a leakage function and Q be

the set of range queries onD. Databases𝐷 and𝐷 ′ areL-equivalent
if {L(𝐷,𝑞)}𝑞∈Q = {L(𝐷 ′, 𝑞)}𝑞∈Q . The set of equivalent databases
is called the reconstruction space.

5.1 Leakage Analysis of the Linear Scheme

In the linear scheme (Section 4.1), each tokenset comprises a token

for each point in the queried range. Each domain point is associated

with a unique token across all queries. Thus, the linear scheme

leaks the size of the query range and information about the points

in the range. When the adversary observes a tokenset of prime size,

𝑝 , they can infer that the range has size 𝑝 in one dimension and

size 1 in the other dimensions. This leakage allows the adversary

to extract useful single-dimensional information.

Reconstruction Space.

Theorem 9. Let 𝐷 be a database on a 𝑑-dimensional domain

and let L be the leakage of the linear scheme. The set of databases

L-equivalent to 𝐷 , or reconstruction space of 𝐷 , corresponds to the

symmetries of a 𝑑-cube. (i.e. rotation/reflection across each axis).

Reconstruction Attack. Our reconstruction attack finds queries

of prime size, groups the search tokens into one-dimensional seg-

ments and then orders them. Our attack follows in five steps:

(1) Queries of prime size.We find all queries of prime size.

(2) Group one-dimensional sections. Note that if the intersec-

tion of two tokensets of prime size has at least two search tokens,

then these queries must be from the same one-dimensional sec-

tion (e.g., same row or column).We create a map 1dSlices, where
a key-value pair corresponds to a set of search tokens mapping

to a set of tokensets, where all the search tokens in a key are

on the same one-dimensional section.

(3) Order one-dimensional sections.We use PQ-trees [4] to get

the partial order of the search tokens in each key of 1dSlices.
(4) Order Reconstruction. We construct a graph 𝐺 whose nodes

are the observed tokens. For each PQ-tree, we find a frontier

(a possible order of the tokens), and use it to add edges in 𝐺

between neighboring tokens in each frontier.

Algorithm 4: LinearReconstruction(VM)
1: // Find tokensets that correspond to one-dimensional queries.

2: Let primeTokensets store the tokensets of unit and prime size in VM.

3: Let 1dSlices be an empty map, mapping tokens (which share the same

coordinate in one dimension) to a list of tokensets

4: // Group tokensets by one-dimensional section.

5: for each tokenset t in primeTokensets do
6: Find all keys, 𝐾 , in 1dSlices that intersect in ≥ 2 elements with t
7: Add t to 𝐾 and let𝑉 be a list of the values of 𝐾 in 1dSlices
8: Delete all keys in 𝐾 from 1dSlices and add 𝐾 → 𝑉 to 1dSlices
9: // Order the elements of each one-dimensional section.

10: Create a PQ-tree for each key of 1dSlices with its values.

11: // Make a grid representing the domain value of each search token.

12: Let𝐺 be a graph with nodes all the observed search tokens.

13: for each PQ-Tree𝑇 do

14: Pick a frontier (a possible ordering of the search tokens) of𝑇 .

15: Add an edge to𝐺 for every pair of neighbors in this frontier.

16: // Reconstruct the database.

17: Label the nodes of𝐺 with their volume in VM.

18: return𝐺

(5) Database Reconstruction. Since we know the volumes that

correspond to each search token and the domain point each

search token corresponds to (as we have ordered them), we

achieve full database reconstruction.

Algorithm 4 shows our reconstruction attack on the linear scheme.

Theorem 10. Let 𝐷 be a database over a 𝑑-dimensional domain

D = [𝑚1] × · · · × [𝑚𝑑] of size𝑚 and let 𝐷 be encrypted with the

linear scheme. Given the volume map for a set of range queries on 𝐷

comprising all queries of unit and prime size, Algorithm 4 achieves full

database reconstruction of 𝐷 by building in 𝑂 (𝑚5) time and 𝑂 (𝑚3)
space an 𝑂 (𝑚)-size representation of the reconstruction space of 𝐷 .

The input to the algorithm is available with probability 1 − 1

𝑚2
after

𝑂

(
𝑑∑
𝑖=1

𝑚2

𝑚𝑖
log𝑚𝑖 · log

(
𝑚2

𝑚𝑖
log𝑚𝑖

))
(2)

uniformly distributed queries, which is𝑂 (𝑚2− 1

𝑑 log
2𝑚) queries when

𝑚𝑖 =𝑚
1/𝑑

for 𝑖 = 1, · · · , 𝑑 .

For the case of 2D range queries, we can transform the leakage of

the linear scheme into access and search pattern leakage and give

it as input to the FDR attack on 2D databases from [17]. This trans-

formation results in information loss, making the reconstruction

space potentially exponential in the number of records.

5.2 Leakage Analysis of the Range Tree Scheme

For the range tree scheme, the client issues queries that are ex-

panded into sub-queries associated with nodes of the range tree. In

this section, we present and analyze concrete attacks on the range

tree scheme under the URC and BRC range covering techniques.

In their journal paper, Demertzis et al. [14] mention that, for

the 1D range tree BRC and URC schemes, the structural leakage

of queries from overlapping ranges allows the adversary to ex-

ploit the co-occurrence of tokens and reconstruct the tree structure

(and hence the database). For this reason, they suggest using such

schemes for the restrictive scenario where no two queries issued

7

Brown University, January, 2022 Falzon and Markatou, et al.

Algorithm 5: RangeTreeReconstructionURC (VM)
1: Let𝑄1 be the keys of VM of size 1.

2: Let𝑄2 be the keys of VM of size 2 with only members of𝑄1.

3: Construct graph𝐺 with nodes the elements of𝑄1

4: for t = (𝑡0, 𝑡1) ∈ 𝑄2 do

5: Add an edge between 𝑡0 and 𝑠𝑡1 in𝐺 .

6: Label the nodes of𝐺 with their volume in VM.

7: return the largest connected component of𝐺

by the client overlap. Notably, they do not give the details of such

an attack, address its asymptotic performance, or implement it.

Reconstruction Space under URC.

Theorem 11. Let 𝐷 be a database with domain D = [𝑚1] ... ×
[𝑚𝑑] and let L be the leakage of the range tree scheme with range

covering algorithm URC. The set of databases L-equivalent to 𝐷 cor-

responds to the symmetries of a 𝑑-cube.

Reconstruction Attack under URC. For this attack, we leverage
the fact that URC leaks neighboring point-value search tokens. Thus,
if we can identify such queries, we can determine not only which

tokens correspond to point queries, but also their neighbors. We

first make the following observations:

• Under URC, if a client queries a query 𝑞 with tokenset of size 1,

then they are querying either everything or one point. In two

dimensions, there are four cases:

(i) Query 𝑞 is a point query (green rectangles in Figure 2b).

(ii) Query 𝑞 is a row query (orange rectangles in Figure 2b).

(iii) Query 𝑞 is a column query (blue circles in Figure 2b).

(iv) Query 𝑞 queries the whole database (pink circle in Figure 2b).

• Let 𝑞 be a query with tokenset (𝑡0, 𝑡1). The union of 𝑡0’s and 𝑡1’s

corresponding range must form a hyper-rectangle.

• Under URC any range of size 2 corresponds to two tokens.

We sketch Algorithm 5: Let 𝑄1 be the set of queries with tokenset

of size 1. In Figure 2a, these are the nodes in a box or highlighted.

Create a graph 𝐺 with nodes 𝑄1. Add an edge (𝑡0, 𝑡1) in 𝐺 , if there
exists a tokenset (𝑡0, 𝑡1). The largest connected component of 𝐺

corresponds to the ordered search tokens of the database. Figure 2b

contains the corresponding graph 𝐺 . We complete the attack by

mapping each search token of 𝐺 to its corresponding volume.

Theorem 12. Let 𝐷 be a database over a 𝑑-dimensional domain of

size𝑚 and let 𝐷 be encrypted with the range tree scheme and uniform

range cover (URC). Given the volume map for all range queries on 𝐷 ,

Algorithm 5 achieves full database reconstruction of 𝐷 by building

in 𝑂 (𝑚2
log

𝑑𝑚) time and space an 𝑂 (𝑚)-size representation of the

reconstruction space of 𝐷 . The input to the algorithm is available with

probability 1 − 1

𝑚2
after 𝑂 (𝑚2

log𝑚) uniformly distributed queries.

Reconstruction Space under BRC.

Theorem 13. Let 𝐷 be a database with domain D = [𝑚1] ×
· · · × [𝑚𝑑] and let L be the leakage of the range tree scheme with

range covering algorithm BRC. The set of databases L-equivalent to
𝐷 corresponds to the symmetries of a 𝑑-cube.

Algorithm 6 returns a representation of the reconstruction space

of 𝐷 , which contains only the symmetries of the square.

Reconstruction Attack under BRC. We present an attack on

the range tree BRC scheme that achieves polynomial run-time (a

sketch of our attack can be found in Figures 4 and 5). We first define

the following terms. A leaf node is a node that has no children.

A boundary node corresponds to a query that covers at least one

extreme domain value. For example, nodes 𝑎 and 𝑝 are boundary

nodes in Figure 4(a). A node that is not a leaf node or a boundary

node is an inner node (orange in Figure 4(a)).

First, we find all distinct queries that are mapped to a tokenset of

size 2 and generate a co-occurrence graph𝐺 = (𝑉 , 𝐸) where nodes
𝑉 correspond to tree nodes and edges 𝐸 denote that the endpoints

form a tokenset (Figure 4(b)).

Infer the inner nodes. We first identify the inner nodes in the

range tree (orange in Figure 4(a)). Given query tokensets (𝑠1, 𝑠2, 𝑠3),
(𝑠1, 𝑠2) and (𝑠2, 𝑠3), there can be no query that maps to (𝑠1, 𝑠3). Thus,
𝑠2 can be identified as an inner node (see Figure 4 for an example).

Trim the co-occurrence graph. At this point, we want to dis-

tinguish between the boundary and leaf nodes. We observe that leaf

nodes form triangular structures in 𝐺 with their parent nodes (e.g.

𝑐-𝑎𝑏, 𝑏-𝑐 and 𝑏-𝑐𝑑 in Figure 4(a)). We remove any edges between

inner nodes in 𝐺 . Additionally, we use the number of times two

tokens appear in a tokenset together i.e. the edgecounts, to remove

any edges with edgecount more than two. This is because parents

of leaf nodes have an edgecount of two with one of their children,

but ancestors further up the tree have a higher edgecount.

Inner Grid Reconstruction. We now use the co-occurrence

graph 𝐺 along with the inner nodes and triangular structures to

identify the leaf nodes in each 1D range tree. To distinguish between

leaf and non-leaf nodes that look identical in𝐺 , we use the original

co-occurrence graph. We now observe a component in 𝐺 ′ that
contains a 𝑑-dimensional grid (Figure 4(d)) containing nodes that

form the triangular structures. Since we know the relationship

of the nodes in triangular structures, we remove the inner nodes

(Figure 4(c)) and re-order the records.

Inferring the extreme nodes’ volumes. So far we have deter-

mined the volumes of each non-extreme domain point. We now

extrapolate the volumes of domain points extreme in only one di-

mension. In our grid structure above (Figure 4(d)), we can see that

there are some nodes that are inner nodes. Replacing the inner

nodes with a volume (the inner node’s volume minus the volume of

its neighbor), we can reconstruct the volume of these domain points.

We add an edge between two such nodes, if the inner nodes they

replace were neighbors in the original co-occurrence graph 𝐺𝑜 .

Then, for each dimension 𝑖 ∈ [2, 𝑑] in increasing order, we

identify all missing volumes on the grid that are on extreme domain

values in 𝑖 dimensions. For each such volume 𝑣 (see. e.g., example

the corner represented by 𝑎 in Figure 5(c)), we identify 𝑖 + 1 tokens
that surround the 𝑖-cube of size 2𝑖 whose corner is 𝑣 . Then, we find

the smallest tokenset that contains these 𝑖 + 1 tokens. It contains
one more token corresponding to the 𝑖-cube. Since we know the

volumes of all the points but 𝑎, we can extrapolate 𝑎’s volume.

Once we identify all volumes of nodes on extreme domain values

in 𝑖 dimensions, we add the relevant grid edges, based on the new

nodes’ locations on the grid (if necessary).

Theorem 14. Let 𝐷 be a database over a 𝑑-dimensional domain

of size𝑚 and let 𝐷 be encrypted with the range tree scheme and best

8

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

(a) (b)

1 11 1 1 111 13 2 2 5 9 2 2 9 5 2 2 13 1
(c)

(d)

(e)

Figure 4: Attack on the range tree BRC scheme (Algorithm 6) for a 1D domain. (a) Domain with volume of each point and range tree. We

find the inner nodes of the range tree (orange) by relying on the property that tokensets form a continuous range (Line 12). E.g, tokensets

(𝑑, {𝑒 𝑓 }) , ({𝑒 𝑓 }, 𝑔) and (𝑑, {𝑒 𝑓 }, 𝑔) , and the absence of tokenset (𝑑,𝑔) imply that {𝑒 𝑓 } is an inner node. Thick green lines show the triangular

structures identifying leaf nodes. (b) Co-occurrence graph 𝐺 , whose edges (in green) join nodes of the range tree that form a tokenset, e.g.,

(𝑏, 𝑐) , (Line 2). (c) Construction of graph𝐺trim. We remove from𝐺 edges between inner nodes (Line 13). We use the times two tokens appear in

a tokenset together (edgecounts) (Line 16) to remove edges with edgecount > 2 (Line 20). We identify most leaf nodes using𝐺 , but some nodes

like {𝑎𝑏𝑐𝑑 } and 𝑑 appear identical in𝐺 (dashed green edges in part a). We distinguish them using graph𝐺 , e.g., {𝑎𝑏𝑐𝑑 } has fewer edges than

𝑑 (Line 22). Graph𝐺trim now contains all inner nodes from𝐺 with edgecount 2, and some non-inner neighbors. (d) We extract the inner nodes

from the new graph (Line 25), and swap every other pair of nodes (Line 30). (e) We replace the two nodes with only one edge ({𝑎𝑏 },{𝑜𝑝 }) with

their volume minus the volume of their neighbor (Algorithm 7, line 2). We reconstruct the number of database records at all domain points

by assigning volumes to the remaining nodes of the graph (Algorithm 7, line 15).

abcde
fghijkl
mnop

abcdefgh
ijklmnop

abcd efgh

ijkl
mnop

ab
cd

cdab

dcba

ef
gh

ghef

hgfe

ij
kl

klij

lkji

mn
op

opmn

ponm

ijkl mnop imjn
kolp

im
jn

lpkojnim

ko
lp

abcd
efgh ae

im

cgko
dhlp

aeim
bfjn

dh
lp

bf
jn

cg
ko

4 d h l p
c g3

2
1

4321

k o
b f
a e

j n
i m

abcd
efgh

ae
bf

dhcgbfae

cg
dh

d

cba

h

g

l

k

j

i

p

on

m

cd

f

ab

eim

jn

ef

ko cg

ij
dh

op mn

lp

ae

bf

cg
dhgh

im
jn

ko
lp

ae
bf

kl

ef
gh

ij
kl

imjn
kolp

abcd
efgh

bf
jn

cg
ko

aeim
bfjn

cgko
dhlp

abcde
fghijkl
mnop

g k

jfjn

ef

ko cg

ij

bf

gh kl

g k

jfbf

gh

cg ko

kl

jn

ef ij

4 1 4 2 9
2 33

2
1

4321

3 2
3 5
7 9

5 1
8 6

3 3

553

4

2 2

2

1

9 8

(a)

(b)

(c)

ae
im

dh
lp

ab
cd

mn
op

c g k
b f
a e

j
i

kcg ijae
bf

Find the smallest
response with

kij cg

7ae
bf

(d)

-
3

f
9

=
e

b
a

…

7a
6m
1d
9p

3 3

553

4

2 2

2

1

9 8

91

7 6

G

Gtrim

g k

jf3

4

2 2

2

1

9 8?

(e)

Figure 5: Attack on the range tree BRC scheme for a 2D domain. (a) Domain with volume of each point and range tree. (b) The attack works

similarly to the 1D case, creating the co-occurrence graph 𝐺 . (c) Then, we similarly create 𝐺trim. (d) Algorithm 7 extrapolates the volume at

every domain point. We can find any volumes on a domain point that is extreme only in 1D by replacing each such non-leaf node in𝐺′ with

its volume minus the volume of its neighbor (Line 2). For example, we find the volume at 𝑒 by subtracting the volume of 𝑓 from 𝑒 𝑓 . For each

missing volume (domain values extreme in 2 dimensions), say the volume at 𝑎, we find node 𝑘 , diagonal to 𝑎 and 2 away in each dimension

that 𝑎 is extreme in. We then identify two neighbors of 𝑘 in 𝐺trim, {𝑖 𝑗 }, {𝑐𝑔}, such that the smallest tokenset (Line 12) containing 𝑘 , {𝑖 𝑗 } and
{𝑐𝑔} contains {𝑎𝑒𝑏𝑓 }, the token corresponding to a 2x2 square that contains 𝑎. Since we know all the volumes but for 𝑎’s, we can extrapolate

the volume of 𝑎 (Line 13). (e) We similarly identify the volumes of all the corner nodes (𝑎, 𝑑 , 𝑝,𝑚), combine them with the augmented grid

and reconstruct the database (Line 15).

range cover (BRC). Given the volume map for all range queries on 𝐷 ,

Algorithm 6 achieves full database reconstruction of 𝐷 by building in

𝑂 (𝑚4) time and 𝑂 (𝑚2
log

𝑑𝑚) space an 𝑂 (𝑚)-size representation of

the reconstruction space of 𝐷 . The input to the algorithm is available

with probability 1 − 1

𝑚2
after 𝑂 (𝑚2

log𝑚) uniformly distributed

queries.

5.3 Leakage Analysis of SRC Schemes

The SRC variant is considerably more difficult to attack than URC

and BRC variants as SRC queries contain only a single (encrypted)

range cover. This prevents us from making the same spatial con-

nections between queries that enabled the prior attacks. In fact,

Demetrzis et al. [14] conjecture that even novel attacks could not

9

Brown University, January, 2022 Falzon and Markatou, et al.

Algorithm 6: RangeTreeReconstructionBRC (VM)
1: Let 𝐸,𝑄 be the keys (tokensets) of VM of size 2 and ≥ 2, respectively.

2: Construct undirected graph𝐺 that connects tokens that appear as

pairs in 𝐸.

3: Let𝐺𝑜 = 𝐺

4: // Remove any “inner” edges from𝐺

5: Initialize set inner← ∅.
6: Initialize table edgecounts with edgecounts[𝑒] = 0, ∀𝑒 ∈ 𝐸.
7: for each tokenset 𝑆 ∈ 𝑄 do

8: Construct subgraph𝐺𝑆 of𝐺 induced by the nodes of 𝑆 .

9: // Graph𝐺𝑆 is a hyperrectangle (Lemma 4)

10: Let𝐶 be subset of nodes of𝐺𝑆 with the smallest degree in𝐺𝑆 .

11: Let 𝐼 ← 𝑆 −𝐶 // 𝐼 is a subset of inner nodes of 𝑆

12: Add 𝐼 to set inner.
13: Remove any edges ∈ 𝐺𝑆 from𝐺 not connected to a node in𝐶 .

14: if |𝐶 | = 2 // We may be in a one dimensional slice. then

15: for each edge 𝑒 ∈ 𝐺𝑆 do

16: edgecounts[𝑒] ← edgecounts[𝑒] + 1
17: // Disambiguate identical components of the graph

18: for all node 𝑣 ∈ inner do
19: if there is no edge 𝑒 incident on 𝑣 where edgecounts[𝑒] = 2 then

20: Remove node 𝑣 from𝐺 and from inner.
21: else

22: Find all neighbors of 𝑣 in𝐺 with edgecounts[(𝑣,𝑢)] = 2 and

remove them from𝐺 , but for one with the most edges in𝐺𝑜 .

23: Let𝐺trim be the largest component of𝐺

24: // Contract edges between remaining inner nodes

25: for each vertex 𝑢 ∈ inner do

26: Let 𝑣, 𝑤 be the neighbors of 𝑢 in𝐺 .

27: Add edge (𝑣, 𝑤) to𝐺 , and remove node 𝑢 from𝐺 .

28: Let𝐺′ be the subset of𝐺 containing all nodes with more than one

neighbors. //𝐺′ contains multiple grids of various dimension.

29: for each dimension 𝑖 do

30: On each one-dimensional section of𝐺′ (e.g. row, column...) spanning

dimension 𝑖 , swap every other pair of nodes, skipping the first one.

31: Add back any nodes not in𝐺′ from𝐺 .

32: return FindExtremeVolumes (VM,𝐺𝑜 ,𝐺trim,𝐺
′) (Algorithm 7)

achieve full database reconstruction against their 1D SRC schemes.

Nevertheless, we show that we can reliably attack SRC schemes.

Reconstruction Space under SRC. The QDAG SRC scheme is

the only scheme from Section 4 with a reconstruction space that

displays symmetries other than those of the 𝑑-cube. We present a

database that demonstrates these additional symmetries (Appen-

dix E.7), which yields the following lower bound.

Theorem 15. Let𝐷 be a dense database with domainD = [𝑚1] ×
· · · × [𝑚𝑑] and let L be the leakage of the QDAG scheme with range

covering algorithm SRC. Let 𝑆L be the set of databases L-equivalent
to 𝐷 . We have |𝑆L | ≥ 2

𝑑+2(𝑑−1) (𝑑) (𝑑!).

Reconstruction Attack under SRC. Our SRC attack general-

izes to a broad class of SRC schemes. Let (𝐺, SRC) be a range-

supporting data structure satisfying the following two properties:

(1) Every non-sink node 𝑣 in 𝐺 has a subset of children 𝐶 , such

that {𝑐.𝑟𝑎𝑛𝑔𝑒 : 𝑐 ∈ 𝐶} partition 𝑣 .𝑟𝑎𝑛𝑔𝑒 , and (2) sinks of 𝐺 are 1-1

with the domain point values. Our SRC attack works on all range

encrypted multimap schemes built with such a (𝐺, RC) pair.
To attack these schemes, we construct and solve an integer linear

program (ILP) whose constraints are based on the underlying DAG;

Algorithm 7: FindExtremeVolumes(VM,𝐺𝑜 ,𝐺trim,𝐺
′)

1: // Find volumes of extreme domain points

2: Replace any node with one neighbor in𝐺′ with its volume minus its

neighbors’ volume.

3: Add an edge between two new volume nodes, if the nodes they

replaced were connected in𝐺𝑜 .

4: Let𝐺′ consist only of its largest component, a 𝑑-dimensional grid

missing some nodes.

5: for 𝑖 ∈ [2, 𝑑] do
6: for nodes 𝑣 in𝐺′ missing a volume, extreme in any 𝑖 dimensions do

7: Let 𝑁𝑣 be the potential neighbors of 𝑣 in𝐺′.
8: Let 𝑐 be the common neighbor of 𝑁𝑣 in𝐺′ (not 𝑣).
9: Create 𝑁 ′𝑣 by finding the other (leaf) neighbors of 𝑐 in𝐺′ in the

same dimension as each node in 𝑁𝑣 .

10: Find the other common neighbor of 𝑁 ′𝑣 in𝐺′ that is not 𝑐 , 𝑐′

11: Create 𝑁 ′′𝑣 by finding the other (non-leaf) neighbors of 𝑐′ in𝐺trim

in the same dimension as each node in 𝑁 ′𝑣 .
12: Find the smallest key, 𝑘 , in VM that contains 𝑐′ and 𝑁 ′′𝑣 .
13: Let 𝑣’s volume be the sum of the volumes of all nodes in 𝑘 minus

the volumes of 𝑁𝑣, 𝑁
′′
𝑣 , 𝑐 and 𝑐

′
.

14: Add relevant edges for the new volume nodes based on their location

on the grid in𝐺′.
15: Label the nodes of𝐺′ with their volume in VM.

16: return𝐺′.

Algorithm 8: GenericReconstructionSRC (VM, FM)
1: Let max be the maximum volume in FM.

2: Let 𝐹 be the set of frequencies in FM.

3: Let𝐺 be the underlying DAG and for each node 𝑣 ∈ 𝐺 , create integer

ILP variable 𝑥𝑣 with bounds [0,max].
4: for non-leaf node 𝑣 ∈ 𝐺 do add Equation 3 to the ILP.

5: for 𝑓 ∈ 𝐹 do add Equations 4 to the ILP.

6: Run the ILP solver to retrieve assignment 𝐴.

7: Let 𝐻 be a grid corresponding to the tokens forming leaves of the tree.

8: Label the nodes of 𝐻 with their volume in VM.

9: return 𝐻

The ILP is satisfied by any database in the reconstruction space,

given that every possible range query has been issued exactly once.

For every node 𝑣 in the DAG (e.g. the QDAG) we associate a variable

𝑥𝑣 that corresponds to the volume of 𝑣 .𝑟𝑎𝑛𝑔𝑒 . For each non-sink 𝑣

in 𝐺 we write the following constraint:

𝑥𝑣 =
∑
𝑐∈𝐶

𝑥𝑐 (3)

where 𝐶 is the set of 𝑣 ’s children whose canonical ranges partition

𝑣 .𝑟𝑎𝑛𝑔𝑒 . Now suppose that every domain query has been issued

exactly once. We can determine exactly how many unique queries

correspond to each SRC node in𝐺 . We refer to this as the frequency

of the node. Let 𝐹 be the set of all frequencies. For a frequency

𝑓 ∈ 𝐹 , let 𝑋𝑓 be the set of variables corresponding to nodes with

frequency 𝑓 and let 𝑉𝑓 be the set of volumes with frequency 𝑓 . For

each 𝑓 ∈ 𝐹 , we restrict the variables in 𝑋𝑓 to values in 𝑉𝑓 , since

there should be a 1-1 correspondence between variables in 𝑋𝑓 and

volumes in 𝑉𝑓 . We implement the correspondence as follows. For

each 𝑓 ∈ 𝐹 we define a |𝑋𝑓 | × |𝑋𝑓 | matrix of Boolean variables

𝑏1,1, 𝑏1,2, . . . , 𝑏 |𝑋𝑓 |, |𝑋𝑓 | such that each row corresponds to a variable

in 𝑋𝑓 and each column corresponds to a volume in 𝑉𝑓 . For each

10

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

0 1 2 3 4 5

·106
0

50

100

records (×106)

S
t
o
r
a
g
e
(
G
B
)

Index size

0 1 2 3 4 5

·106
0

0.5

1

·105

records (×106)
T
i
m
e
(
s
)

Construction time

0 20 40 60 80 100

0

20

40

60

80

100

% of domain

%
o
f
f
a
l
s
e
p
o
s
i
t
i
v
e
s

Avg. false positives

0 20 40 60 80 100

0

5

10

15

% of domain

T
i
m
e
(
s
)

Avg. Query time

(a) (b) (c) (d)

Figure 6: (a) Index size and (b) construction time of the linear (), range tree BRC/URC () and QDAG SRC () schemes for the

Gowalla dataset. (c) Average false positive rate for the QDAG SRC scheme as a function of the size of the queried range, as computed by

sampling 100,000 random queries. (d) Average query time at the server on the Spitz dataset as a function of the size of the queried range, as

computed by sampling 100,000 random queries. The linear scheme is not included due to its prohibitive query size (i.e., tokenset size).

frequency 𝑓 ∈ 𝐹 , we then write the constraints

𝑥𝑠 −
|𝑋𝑓 |∑
𝑡=1

𝑣𝑡𝑏𝑠,𝑡 = 0;

|𝑋𝑓 |∑
𝑠=1

𝑏𝑠,𝑡 = 1;

|𝑋𝑓 |∑
𝑡=1

𝑏𝑠,𝑡 = 1 (4)

where 𝑥𝑠 ∈ 𝑋𝑓 and 𝑣𝑡 ∈ 𝑉𝑓 .
Our attack either needs to observe every range query exactly

once or needs knowledge of the query distribution. Given the distri-

bution, after observing enough queries, the adversary can deduce

how many unique queries correspond to each tokenset. The adver-

sary can then create constraints using Equations 3 and 4 and use a

generic ILP solver to reconstruct the database. Algorithm 8 takes

as input VM and FM and returns grid graph 𝐺 whose nodes are

labeled with volumes.

Theorem 16. Let (𝐺, SRC) be a range-supporting data structure
for a 𝑑-dimensional domain D such that:

(1) each non-sink 𝑣 in 𝐺 has a subset of children 𝐶 such that their

canonical ranges, {𝑐.𝑟𝑎𝑛𝑔𝑒 : 𝑐 ∈ 𝐶}, are a partition of 𝑣 .𝑟𝑎𝑛𝑔𝑒 ;

(2) the sinks of 𝐺 are in 1-1 correspondence with the points in D.

Let𝐷 be a database overD encrypted withGenericRS using (𝐺, SRC)
and an EMM scheme which leaks volume and search pattern. Given

the volume map and frequency map for all range queries on 𝐷 , where

each query is issued exactly once, Algorithm 8 achieves full database

reconstruction of 𝐷 . The input to the algorithm is available with

probability 1 − 1

𝑚2
after 𝑂 (𝑚4

log𝑚) uniformly distributed queries.

Note that the effectiveness of Algorithm 8 depends on the size

of the reconstruction space, which is determined by the underlying

range-supporting data structure (𝐺, SRC) and the database 𝐷 .

Our attack on SRC schemes is related to the attack byKornaropou-

los, Papamanthou, and Tamassia (KPT) [37], which approximately

reconstructs a database from one-dimensional range queries. The

KPT attack utilizes counting functions to determine the number of

canonical ranges that return a given (encrypted) response. This

information is used to build a system of equations that captures

the distance between consecutive records. In contrast, we build

a system of equations representing how the volume of canonical

ranges is distributed to its subranges, as given by the DAG. Our

attack assumes a uniform query distribution to observe all possible

queries with the same frequency and aims at full database recon-

struction. The KPT attack does not assume knowledge of the query

distribution and uses nonparametric estimators over a subset of the

possible queries to achieve an approximate reconstruction.

6 EXPERIMENTS

In this section, we experimentally evaluate the performance of our

Linear, Range-BRC/URC and QDAG-SRC schemes and attacks on

them using the following real-world datasets:

Cali [39]: 21,047 latitude-longitude points of road network inter-

sections in California, a dataset used in a prior 2D attack [40].

Spitz [52]: 28,837 latitude-longitude points of phone location data

of politician Malte Spitz between August 2009 and February 2010 a

dataset previously used in several reconstruction attacks [17, 36, 40].

Gowalla [11]: 6,442,892 latitude-longitude points from users of

the Gowalla social networking website between 2009 and 2010, a

dataset used in the experiments by Demertzis et al. [13]. We further

replicate Demertzis et al.’s Gowalla experiments by randomly par-

titioning the dataset into 10 sets, each consisting of 500,000 records.

We then measured the indexing time and cost of our schemes by

increasing the size of the domain by a new set of 500,000 tuples.

Schemes. For each dataset, we used the latitude and longitude as

query attributes and 16-byte random strings as records. For our

scheme experiments, we normalized the domain of Cali and Spitz

to [210] × [210] and the domain of Gowalla to [216] × [216] to
have the same number of domain points as in the 32-bit domain

used by Demertzis et al. [13].

Figure 6 shows the performance of our schemes. Figure 6(a) gives

the index size (space), which is proportional to the number of data-

base records. Schemeswithmore canonical ranges have longer build

times (see Figure 8). For example, the Range-BRC/URC scheme has

more range covers than the QDAG-SRC scheme, and thus has larger

index size. Figure 6(b) shows how the construction time increases

with the number of records and the index size. Figure 6(c) gives

the average number of false positives for the QDAG-SRC scheme

as a function of the query range size (expressed as percentage of

the domain size). In Figure 6(d), the query time grows with the

range size in the Range-BRC/URC schemes, but remains flat in the

QDAG-SRC scheme.

Attacks. We performed experiments on our attacks on the Linear,

Range-URC, Range-BRC and QDAG-SRC schemes. Our attacks

11

Brown University, January, 2022 Falzon and Markatou, et al.

(a) (b) (c) (d)

Figure 7: (a) Accuracy, (b) memory usage, and (c) runtime of our attack on the linear scheme for 2D databases of different domain sizes, after

observing different percentages of prime-size queries. (d) Runtime of the attack for the Gowalla dataset, varying the number of records (in

millions) and percentage of prime-size queries (25% (lightgray circle •), 50% (gray diamond ♦) , 75% (darkgray star★), plus sign 100% (black +)).

always returned the original database up to the symmetries of a

𝑑-cube, when given the complete input.

Figure 7 shows our experiments on the Linear attack. In Fig-

ure 7(a) we show the median accuracy of our attack under 2D

databases of different domain sizes, after observing different per-

centages of the prime queries. We measure the accuracy of our

attack as the percent of correctly reconstructed domain point vol-

umes. We observe that this attack achieves great accuracy with a

relatively small percent of the prime queries. The attack requires

little storage space (Figure 7(b)), but as the domain size increases it

can take more time (Figure 7(c)). We also ran our attack against a

[25] × [25] Gowalla dataset, varying the number of records from

1 million to 6 million. This shows that our attack’s runtime is not

affected by the number of records; only the domain size.

Recall that for the case of 2D range queries, we can transform the

leakage of the linear scheme into access and search pattern leakage.

This leakage can be given as input to the approximate database

Cali Spitz

Scheme

Index

Size (MB)

Build

Time (s)

Index

Size (MB)

Build

Time (s)

Linear 3.41 6.23 4.67 2.07

Range-BRC/URC 985.38 1095.20 1350.09 562.86

QDAG-SRC 207.99 208.30 284.96 118.70

Figure 8: Scheme costs for the Cali and Spitz datasets.

Cali Spitz

Figure 9: Median runtime in seconds (top) and median memory us-

age (GB) (bottom) of our attacks on the range treeURC (blue circle •),
range tree BRC (orange diamond ♦), and QDAG SRC (green star ★)

schemes for theCali and Spitz databases on different domain sizes.

reconstruction attack on 2D databases from [40]. However, this

transformation results in loss of information, which makes the

reconstruction space potentially much larger (exponential in the

number of database records).

We also ran our attacks on the Range-URC, Range-BRC and

QDAG-SRC schemes. We used the Spitz and Cali dataset normal-

ized at different domain sizes to showcase our attacks in Figure 9.

We observe that the QDAG-SRC attack takes the longest time and

generally requires more memory. This attack needs to solve an

integer linear programming problem, and thus has a longer run-

time. The Range-URC attack is the most efficient. We also run these

attacks against the Gowalla dataset to observe how the number of

records affects the runtime and memory requirements (Figure 10).

We observe that the attacks are generally not affected. The QDAG-

SRC attack against the Gowalla dataset (Figure 10) shows some

random variance in the runtime and memory needed. We believe

this is due to randomness in the solver that causes it to take different

search paths on each execution.

Implementation Details.We implemented our schemes and the

URC, BRC, and SRC attacks in Python 3.9.2 and the Linear attack

in C++. The Linear attack utilizes a C++ library that implements

PQ-trees [22]. We ran all of our experiments on a compute cluster.

For simplicity, we used the same compute node for the client and

the server so our results do not include any latency that would be

incurred due to network transmission.

For cryptographic primitives, we used version 3.4.7 of the Python

cryptography library [48]. To match the evaluation of Demertzis et

al. [13], we use SHA-512 for PRFs and AES-CBC (with 128-bit block

size) for encryption. For our underlying EMM scheme, we used

our own implementation of the Π
bas

construction from Cash et al.

[8]. For our SRC attack, we used the CP-SAT solver from Google’s

ortools package [46] as our ILP solver.

7 CONCLUSION

We introduce a framework for designing schemes that support

range queries over encrypted data in multiple dimensions. In par-

ticular, we describe how to turn a broad class of DAG-based spa-

tial range search data structures into an encrypted database that

supports range queries. We demonstrate the effectiveness of this

framework by developing four schemes that offer trade-offs for

space-complexity, query bandwidth, response size, and leakage

12

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

Figure 10: Runtime (left) in seconds and memory requirement

(right) in GB of our attacks on the URC (blue circle •), BRC (or-

ange diamond♦) and SRC (green star ★) schemes for the Gowalla

[25] × [25] dataset varying the number of records (in millions).

to suit the needs of a wide variety of applications. We conduct a

thorough leakage analysis and present reconstruction attacks.

Our attacks prompt the exploration of mitigation techniques

such as frequency smoothing [23], rounding the ranges to a spec-

ified integer multiple [42], batching queries, and alternate range

decomposition approaches. It would be useful to study database

reconstruction attacks on our schemes with weaker assumptions,

e.g., attacking the range tree URC/BRC schemes when only having

access to a subset of the possible queries and/or with unknown dis-

tribution. Another open problem is developing efficient searchable

encryption schemes that support other types of spatial queries like

aggregate range queries and 𝑘-nearest neighbor queries.

ACKNOWLEDGMENTS

Work supported in part by the Kanellakis Fellowship at Brown

University and by a gift from the NetApp University Research Fund,

a corporate advised fund of Silicon Valley Community Founda-

tion. The authors would also like to thank William Schor for his

preliminary contributions to the implementation of the schemes.

REFERENCES

[1] J. L. Bentley and J. H. Friedman. 1979. Data Structures for Range Searching. ACM

Comput. Surv. 11, 4 (Dec. 1979), 13.

[2] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage

Abuse Attacks. In 27th Annual Network and Distributed System Security Sympo-

sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet

Society.

[3] D. Bogatov, G. Kollios, and L. Reyzin. 2019. A Comparative Evaluation of Order-

Revealing Encryption Schemes and Secure Range-Query Protocols. Proc. VLDB

Endow. 12, 8 (April 2019), 933–947.

[4] K.S. Booth and G. S. Lueker. 1976. Testing for the consecutive ones property, in-

terval graphs, and graph planarity using PQ-tree algorithms. Journal of computer

and system sciences 13, 3 (1976).

[5] R. Bost. 2016. Sophos: Forward Secure Searchable Encryption. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security

(Vienna, Austria) (CCS ’16). New York, NY, USA, 12.

[6] R. Bost, B. Minaud, and O. Ohrimenko. 2017. Forward and Backward Private

Searchable Encryption from Constrained Cryptographic Primitives. In Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (Dallas, Texas, USA) (CCS ’17). New York, NY, USA, 18.

[7] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

Abuse Attacks Against Searchable Encryption. In Proc. ACM Conf. on Computer

and Communications Security (CCS).

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.C. Rosu, and M. Steiner.

2014. Dynamic Searchable Encryption in Very-Large Databases: Data Structures

and Implementation. In 21st Annual Network and Distributed System Security

Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.

[9] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.C. Roşu, and M. Steiner. 2013. Highly-

Scalable Searchable Symmetric Encryption with Support for Boolean Queries. In

Advances in Cryptology – CRYPTO 2013. Berlin, Heidelberg.

[10] M. Chase and S. Kamara. 2010. Structured Encryption and Controlled Disclosure.

In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on

the Theory and Application of Cryptology and Information Security, Singapore,

December 5-9, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6477).

[11] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and Mobility:

User Movement in Location-Based Social Networks. In Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(San Diego, California, USA) (KDD ’11). New York, NY, USA, 1082–1090.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. 2006. Searchable Symmetric

Encryption: Improved Definitions and Efficient Constructions. In Proc. ACM Conf.

on Computer and Communications Security.

[13] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garo-

falakis. 2016. Practical private range search revisited. In Proc. ACM Int. Conf. on

Management of Data (SIGMOD).

[14] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical

Private Range Search in Depth. ACM Trans. Database Syst. 43, 1, Article 2 (2018),

52 pages. https://doi.org/10.1145/3167971

[15] Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca

Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati. 2021. Multi-

dimensional indexes for point and range queries on outsourced encrypted data.

Proceedings of the GLOBECOM (2021), 1–1.

[16] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. 2015.

Rich Queries on Encrypted Data: Beyond Exact Matches. In Computer Security –

ESORICS 2015. Cham.

[17] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern, and R. Tamassia.

2020. Full Database Reconstruction in Two Dimensions. In Proc. ACM Conf. on

Computer and Communications Security (CCS).

[18] R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval on

Composite Keys. 4, 1 (mar 1974), 1–9.

[19] C. Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.

Stanford, CA, USA. Advisor(s) Boneh, D.

[20] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili. 2018. New

Constructions for Forward and Backward Private Symmetric Searchable Encryp-

tion (CCS ’18). New York, NY, USA, 18.

[21] O. Goldreich and R. Ostrovsky. 1996. Software Protection and Simulation on

Oblivious RAMs. J. ACM 43, 3 (May 1996), 43.

[22] Greg Grothaus. [n.d.]. PQTrees. https://github.com/Gregable/pq-trees. Accessed:

2022-01-12.

[23] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing

for Encrypted Data Stores. In USENIX Security Symposium. 2451–2468.

[24] P. Grubbs, M.S. Lacharité, B. Minaud, and K.G. Paterson. 2018. Pump Up the

Volume: Practical Database Reconstruction from Volume Leakage on Range

Queries. In Proc. ACM Conf. on Computer and Communications Security (CCS).

[25] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. 2019. Learning to

Reconstruct: Statistical Learning Theory and Encrypted Database Attacks. In

Proc. IEEE Symp. on Security and Privacy (S&P).

[26] Z. Gui, O. Johnson, and B. Warinschi. 2019. Encrypted Databases: New Volume

Attacks against Range Queries. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2019, London, UK, November 11-15,

2019.

[27] F. Hahn and F. Kerschbaum. 2016. Poly-Logarithmic Range Queries on Encrypted

Data with Small Leakage. In Proceedings of the 2016 ACM on Cloud Computing

Security Workshop (Vienna, Austria) (CCSW ’16). New York, NY, USA, 12.

[28] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In 19th Annual Network and Distributed System Security Symposium, NDSS 2012,

San Diego, California, USA, February 5-8, 2012. The Internet Society.

[29] S. Kamara and T. Moataz. 2018. SQL on Structurally-Encrypted Databases. In

Advances in Cryptology – ASIACRYPT 2018. Cham.

[30] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-

tured Encryption. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II (Lecture Notes

in Computer Science, Vol. 11477). Springer, 183–213.

[31] S. Kamara and C. Papamanthou. 2013. Parallel and Dynamic Searchable Symmet-

ric Encryption. In Financial Cryptography and Data Security. Berlin, Heidelberg.

[32] S. Kamara, C. Papamanthou, and T. Roeder. 2012. Dynamic Searchable Symmetric

Encryption. In Proceedings of the 2012 ACM Conference on Computer and Commu-

nications Security (Raleigh, North Carolina, USA) (CCS ’12). New York, NY, USA,

12.

[33] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. 2016. Generic Attacks on Secure

Outsourced Databases. In Proc. ACM Conf. on Computer and Communications

Security 2016 (CCS 2016).

[34] Shabnam Kasra Kermanshahi, Shi-Feng Sun, Joseph K. Liu, Ron Steinfeld, Surya

Nepal, Wang Fat Lau, and Man Au. 2020. Geometric range search on encrypted

data with Forward/Backward security. IEEE Transactions on Dependable and

Secure Computing (2020), 1–1. https://doi.org/10.1109/TDSC.2020.2982389

13

https://doi.org/10.1145/3167971
https://github.com/Gregable/pq-trees
https://doi.org/10.1109/TDSC.2020.2982389

Brown University, January, 2022 Falzon and Markatou, et al.

[35] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. 2013. Delegat-

able Pseudorandom Functions and Applications (CCS ’13). New York, NY, USA,

669–684.

[36] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. 2020. The State of the

Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribu-

tion. In Proc. IEEE Symp.on Security and Privacy (S&P).

[37] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized

Leakage-Abuse Attacks. In Proc. IEEE Symp. on Security and Privacy (S&P).

[38] M.S. Lacharité, B. Minaud, and K.G. Paterson. 2018. Improved reconstruction

attacks on encrypted data using range query leakage. In Proc. IEEE Symp. on

Security and Privacy 2018 (S&P 2018).

[39] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. 2005. On Trip Planning Queries in Spatial Databases. In Advances in Spatial

and Temporal Databases. Berlin, Heidelberg, 273–290.

[40] Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, and William

Schor. 2021. Reconstructingwith Less: LeakageAbuseAttacks in TwoDimensions.

In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-

nications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for

Computing Machinery, New York, NY, USA, 2243–2261.

[41] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-

tion with Access and Search Pattern Leakage. In Proc. Int. Conf on Information

Security (ISC).

[42] Evangelia Anna Markatou and Roberto Tamassia. 2019. Mitigation Techniques

for Attacks on 1-Dimensional Databases that Support Range Queries. In Informa-

tion Security - 22nd International Conference, ISC 2019, New York City, NY, USA,

September 16-18, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11723).

[43] M. Naveed, M. Prabhakaran, and C. A. Gunter. 2014. Dynamic Searchable En-

cryption via Blind Storage. In 2014 IEEE Symposium on Security and Privacy.

[44] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not

Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th

USENIX Security Symposium (USENIX Security 21). USENIX Association, 127–142.

https://www.usenix.org/conference/usenixsecurity21/presentation/oya

[45] S. Patel, G. Persiano, K. Yeo, and M. Yung. 2019. Mitigating Leakage in Secure

Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps via Hashing. In

Proc. ACM Conf. on Computer and Communications Security (London, United

Kingdom) (CCS ’19). New York, NY, USA, 15.

[46] Laurent Perron and Vincent Furnon. 2019. OR-Tools. Google. https://developers.

google.com/optimization/

[47] David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference

Attacks on Efficiently Deployable, Efficiently Searchable Encryption. In Proc.

ACM Conf. on Computer and Communications Security (CCS).

[48] PythonCryptographic Authority. 2018. pyca/cryptography. https://cryptography.

io/ version 3.4.7.

[49] P. Rizomiliotis, E. Molla, and S. Gritzalis. 2017. REX: A Searchable Symmetric

Encryption Scheme Supporting Range Queries (CCSW ’17). New York, NY, USA.

[50] E. Shi, J. Bethencourt, T-H. H. Chan, D. Song, and A. Perrig. 2007. Multi-

Dimensional Range Query over Encrypted Data (SP ’07). USA, 15.

[51] D. Song, D. Wagner, and A. Perrig. 2000. Practical techniques for searches on

encrypted data. In Proceeding IEEE Symposium on Security and Privacy (S&P).

[52] Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded

from https://crawdad.org/spitz/cellular/20110504.

[53] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li. 2014. Maple: Scalable Multi-

Dimensional Range Search over Encrypted Cloud Data with Tree-Based Index. In

Proc. of the 9th ACM Symposium on Information, Computer and Communications

Security (ASIA CCS ’14).

[54] Cong Zuo, Shi-Feng Sun, Joseph K Liu, Jun Shao, and Josef Pieprzyk. 2018. Dy-

namic searchable symmetric encryption schemes supporting range queries with

forward (and backward) security. In European Symposium on Research in Computer

Security (ESORICS) (LNCS). Springer, 228–246.

A FORMALIZING LEAKAGE

Structured encryption is parameterized by different leakage func-

tions, which output information about the underlying data structure

and its contents. Below, we define two common leakage functions

of EMM schemes relevant to this work. LetMM be a multimap with

label space L and volume space V.

• The search pattern reveals when two queries are equal. It takes

as input a multimap MM and a label ℓ ∈ L, and outputs an ID.

Without loss of generality we assume a 1-to-1 correspondence

between range queries and identifiers: SP(MM, ℓ) ↦→ 𝑖 ∈ [|L|] .

• The volume pattern of a label ℓ reveals the number of records

inMM[ℓ]: Vol(MM, ℓ) = |MM[ℓ] |.
In this paper we assume that the underlying EMM scheme is

response-hiding, and leaks the multimap size at setup, and the

search and volume patterns at query time.

B SECURITY DEFINITION

Definition 7. Let Σ = (Setup,Query, Eval,Result) be an EMM

scheme and let LΣ = (LΣ
S ,L

Σ
Q) be a tuple of stateful algorithms. For

algorithms A and S, we two experiments below.

RealΣA (1
𝜆)

(1) The adversary A selects a multimap MM and gives it to the

challenger C.
(2) The challenger C runs the setup algorithm with 1

𝜆
and MM as

input, (𝐾, EMM) ← Σ.Setup(MM). The challenger C sends the

encrypted multimap EMM to the adversary A.

(3) A adaptively chooses a polynomial-in-lambda number of labels

ℓ1, . . . , ℓpoly(𝜆) ; for each label ℓ𝑖 the adversary sees the token 𝑡𝑖 ←
Σ.Query(𝐾, ℓ𝑖).

(4) A eventually outputs a bit 𝑏 ∈ {0, 1}.
IdealΣA,S (1

𝜆)
(1) The adversary A selects a database 𝐷 and gives LΣ

S (𝐷) to the
simulator S.

(2) The simulator generates an encrypted multimap EMM and gives

it to the adversary A.

(3) A adaptively chooses a polynomial-in-lambda number of labels

ℓ1, . . . , ℓpoly(𝜆) ; for each label ℓ𝑖 the challenger computes a pair

(𝑡𝑖 , stS) ← LΣ
Q (ℓ𝑖 , stLΣ) using the query leakage and the state

stLΣ and gives 𝑡𝑖 to the adversary A.

(4) A eventually outputs a bit 𝑏 ∈ {0, 1}.
Scheme Σ is adaptively LΣ

-secure if for all polynomial-time ad-

versaries A, there exists a poly-time simulator S such that:

| Pr[RealΣA (1
𝜆) = 1] − Pr[IdealΣA,S (1

𝜆) = 1] | ≤ negl(𝜆) .

C GENERIC FRAMEWORK

C.1 Pseudocode for GenericRS
The pseudocode for GenericRS can be found in Algorithm 11.

C.2 Proof of Theorem 1

Proof. For a contradiction, suppose there is a point 𝑥 ∈ D for

which such 𝑣 does not exist. If 𝑞 = 𝑥 is queried, then by Property (𝑣)
of Definition 3, RC must return some node that covers 𝑞. Algorithm

RC must thus return a node𝑤 ∈ 𝑉 such that 𝑞 ⊊ 𝑤.𝑟𝑎𝑛𝑔𝑒 . □

C.3 Proof of Theorem 2

Proof. First, we show that BRCmust return an exact cover. Con-

sider a point 𝑥 ∈ 𝑞. By assumption (1) there is a leaf node 𝑣 ∈ 𝑉
such that 𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑥 . Let 𝑝 = (𝑠, 𝑣1, . . . , 𝑣ℓ , 𝑣) be the path from

source 𝑠 to leaf 𝑣 . By assumption (2) all nodes in 𝑇 that cover 𝑥

must be in 𝑝 .

14

https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://cryptography.io/
https://cryptography.io/
https://crawdad.org/spitz/cellular/20110504

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

GenericRS(1𝜆, 𝐷,D, Σ, (𝐺, RC))
Setup(1𝜆 , 𝐷) :
1 : Initialize empty multimapMM.
2 : for node 𝑤 ∈ 𝐺 do
3 : MM[𝑤.𝑟𝑎𝑛𝑔𝑒] ← {𝐷 [𝑥] : 𝑥 ∈ 𝑤.𝑟𝑎𝑛𝑔𝑒 }
4 : (𝐾, EMM) ← Σ.Setup(1𝜆 ,MM) ; return (𝐾, EMM)
Query(𝐾,𝑞) :
5 : 𝑊 ← ∅; t← ∅
6 : 𝑊 ← RC(𝐺,𝑞)
7 : for 𝑤 ∈𝑊 do t← t ∪ Σ.Query(𝐾, 𝑤.𝑟𝑎𝑛𝑔𝑒)
8 : permute and return t
Eval(t, EMM) :
9 : c← ∅; for 𝑡 ∈ t do c← c ∪ Σ.Eval(𝑡, EMM)
10 : return c
Result(𝐾, c) :
11 : v← ∅; for 𝑐 ∈ c do v← v ∪ Σ.Result(𝐾,𝑐)
12 : return v

Figure 11: Algorithms of the generic range encrypted multimap

scheme (Definition 2) for a database 𝐷 with domain D built

from an encrypted multimap scheme Σ (Definition 1) and a range-

supporting data structure (𝐺, RC) (Definition 3).

Let 𝑢 be the most recently explored vertex in 𝑝 . If 𝑢 satisfies the

if statement on line 4, then 𝑢 is an exact cover of 𝑥 and is added to

𝑊 . Else, we must have that 𝑢.𝑟𝑎𝑛𝑔𝑒 ∩ 𝑞 ≠ ∅ and BRC is called on

the children of 𝑢. Since this path starts with 𝑠 then the exploration

of 𝑝 must start, and since 𝑝 has finite length then this process must

also stop. Moreover, since 𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑥 then the leaf 𝑣 satisfies line 4

and 𝑥 will necessarily be covered without false positives.

Next we show that𝑊 is minimal. Suppose not, then there is

some other set𝑊 ′ ⊆ 𝑉 that is minimal. By assumption (2), if two
nodes 𝑢, 𝑣 ∈ 𝑉 are such that 𝑢.𝑟𝑎𝑛𝑔𝑒 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 , then 𝑢 must be a

descendent of 𝑣 . Combining this observation, with the minimality

of𝑊 ′, then there must exist 𝑣 ′ ∈𝑊 ′ and 𝑣 ∈𝑊 such that 𝑣 .𝑟𝑎𝑛𝑔𝑒 ⊊
𝑣 ′.𝑟𝑎𝑛𝑔𝑒 ⊆ 𝑞. But 𝑣 ′ must have been explored before 𝑣 , and lines 4-5

would have added 𝑣 ′ to to𝑊 , which is a contradiction.

Lastly we prove uniqueness of𝑊 . Suppose there exist distinct

covers𝑊 and𝑊 ′ of minimal size. Then there is a point 𝑥 ∈ 𝑞 in

the queried range that is covered by different vertices in the two

covers i.e. there exist distinct 𝑣 ∈𝑊 and 𝑣 ′ ∈𝑊 ′ such that without

loss of generality 𝑥 ⊆ 𝑣 ′.𝑟𝑎𝑛𝑔𝑒 ⊊ 𝑣 .𝑟𝑎𝑛𝑔𝑒 ⊆ 𝑞. By assumption (2),
𝑣 ′.𝑟𝑎𝑛𝑔𝑒 forms a non-trivial partition of 𝑣 .𝑟𝑎𝑛𝑔𝑒 . Thus there exists

another node 𝑣 ′′ such that 𝑣 ′.𝑟𝑎𝑛𝑔𝑒 ∪ 𝑣 ′′.𝑟𝑎𝑛𝑔𝑒 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 and𝑊 ′
must contain both 𝑣 ′ and 𝑣 ′′ instead of 𝑣 , which contradicts the

minimality of𝑊 ′. □

C.4 Proof of Theorem 3

Proof. First we show that SRC returns a cover of 𝑞 via the fol-
lowing invariant: at the end of every iteration, 𝑐𝑎𝑛𝑑 is a cover of

𝑞. We proceed inductively on the vertices explored. On the first

iteration, source 𝑠 is explored; 𝑠 satisfies line 4 and thus 𝑐𝑎𝑛𝑑 = 𝑠 .

Since 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D, then 𝑐𝑎𝑛𝑑 covers 𝑞.

Let 𝑣 be the next vertex explored. If 𝑞 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 and |𝑣 .𝑟𝑎𝑛𝑔𝑒 | <
|𝑐𝑎𝑛𝑑.𝑟𝑎𝑛𝑔𝑒 |, then by line 8 𝑐𝑎𝑛𝑑 is updated to 𝑣 . Thus 𝑐𝑎𝑛𝑑 is a

cover. Otherwise 𝑐𝑎𝑛𝑑 is not updated at this iteration, and by our

inductive hypothesis, 𝑐𝑎𝑛𝑑 must cover 𝑞.

Next we prove minimality if the number of false positives. Sup-

pose for a contradiction, that SRC returns a cover 𝑣 ′ of 𝑞 that does
not minimize the maximum number of possible false positives.

Then there exists a vertex 𝑣 ∈ 𝑉 \ {𝑣 ′} such that 𝑞 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 and
|𝑣 .𝑟𝑎𝑛𝑔𝑒 | < |𝑣 ′.𝑟𝑎𝑛𝑔𝑒 |.

If 𝑣 is explored before 𝑣 ′, then when 𝑣 ′ is explored we have that

|𝑐𝑎𝑛𝑑.𝑟𝑎𝑛𝑔𝑒 | ≤ |𝑣 .𝑟𝑎𝑛𝑔𝑒 |. Since |𝑣 .𝑟𝑎𝑛𝑔𝑒 | < |𝑣 ′.𝑟𝑎𝑛𝑔𝑒 |, then 𝑐𝑎𝑛𝑑
would not be updated to 𝑣 ′, which is a contradiction.

If 𝑣 is not explored before 𝑣 ′, then 𝑣 must be explored later other-

wise𝐺 would not be connected. When 𝑣 is explored, |𝑐𝑎𝑛𝑑.𝑟𝑎𝑛𝑔𝑒 | ≤
|𝑣 ′.𝑟𝑎𝑛𝑔𝑒 |. Since |𝑣 .𝑟𝑎𝑛𝑔𝑒 | < |𝑣 ′.𝑟𝑎𝑛𝑔𝑒 |, then 𝑐𝑎𝑛𝑑 must be updated

to a vertex whose range query is at least as small as 𝑣 , which is a

contradiction. □

C.5 Proof of Theorem 4

Proof. We construct a stateful simulatorS for Setup andQuery.

(EMM, stS) ← S.SimSetup(1𝜆, 𝑛,𝑚)
(1) Invoke the simulator of the underlying EMM scheme to initialize

an encrypted multimap EMM with 𝑛 random values.

(2) Return EMM.

(EMM, stS) ← S.SimQuery(1𝜆, (Str(𝐷,𝑞 (𝑖)))𝑖∈[𝑡])
(1) For each SP(MM, 𝑣 .𝑟𝑎𝑛𝑔𝑒) such that 𝑣 ∈ RC(𝐺, 𝑠, 𝑞 (𝑡)):

(a) Determine if 𝑣 .𝑟𝑎𝑔𝑒 has been queried before using the

search patterns SP(MM,𝑤 .𝑟𝑎𝑛𝑔𝑒) for all nodes in the cov-

ers𝑤 ∈ RC(𝐺, 𝑠, 𝑞 (𝑖)) such that 𝑖 ∈ [𝑡 − 1].
(b) If yes, then simulator S uses state stS to return the same

result as before.

(c) Else simulatorS uses the RC algorithm and invokes the sim-

ulator of the EMM scheme Σ on SP(MM, 𝑣 .𝑟𝑎𝑛𝑔𝑒), obtains
the result for 𝑣 .𝑟𝑎𝑛𝑔𝑒 , and updates its state stS .

Note that the simulator uses SP, RC, and𝐺 to correctly simulate the

results of the structural leakage.

It remains to show that for all probabilistic poly-time adversaries

A, the probability | Pr[RealGenericRSA = 1] − Pr[IdealGenericRSA,S =

1] | is negligibly small. We define the following three games and

conclude with a hybrid argument.

Hyb0: This is identical to RealGenericRSA .

Hyb1: This is identical to Hyb0, except that every encrypted

record 𝑐 in EMM is replaced with a random string 𝑟 of cor-

rect length. Note that each record replacement is done via a

single hybrid, and we thus combine a total of 𝑓 (𝑛,𝑚) hybrids
into this single step.

Hyb2: This is identical to Hyb1, except that instead of invoking

Σ.Setup and Σ.Query we invoke the simulator of the under-

lying EMM scheme.

| Pr[Hyb0] − Pr[Hyb1] | is negligibly small, otherwise the CPA

security of the underlying symmetric encryption scheme would

be broken with non-negligible probability. Similarly, | Pr[Hyb1] −
Pr[Hyb2] | is negligibly small, otherwise the security of the underly-

ing EMM scheme would be broken with non-negligible probability.

Since the distribution of Hyb2 is identical to IdealGenericRSA this

concludes our proof. □

D SCHEMES

D.1 Linear Scheme

D.1.1 Pseudocode for LRC.

15

Brown University, January, 2022 Falzon and Markatou, et al.

Algorithm 9: LRC(𝑇, 𝑞)
𝑊 ← ∅
for 𝑥 ⊆ 𝑞 do𝑊 ←𝑊 ∪ {𝑉 [𝑥] }
return 𝑊

D.1.2 Complexity of the Linear Scheme.
Theorem 17. Let 𝐺𝐿 be the star DAG for a database 𝐷 of size 𝑛

on a 𝑑-dimensional domain D of size𝑚, and let LRC be the linear

covering algorithm defined in Algorithm 9. We have that (𝐺𝑅𝑇 , LRC)
is a range-supporting data structure (Definition 3) and the range

encrypted multimap scheme derived from it (Definition 5) uses space

𝑂 (𝑛 +𝑚). Also, a query with range size 𝑅 and result size 𝑟 has query

size 𝑅 and response size 𝑟 .

Proof. It is straightforward to verify properties (𝑖) to (𝑖𝑣). It
remains to show that algorithm LRC runs in polynomial-time when

invoked on the source of 𝐺𝐿 . LRC is implemented such that the

sinks of 𝐺𝐿 are stored in an array, 𝑉 [D], indexed by domain point.

Let 𝑞 be any range query on the domain. Initializing an empty set

𝑊 can be done in constant time. Looping through 𝑥 ∈ 𝑞 and adding
𝑉 [𝑥] to𝑊 takes time 𝑂 (𝑅), where 𝑅 is the size of the range 𝑞.

We now prove the complexity. The linear scheme generates a

multimap with𝑚 labels, one for each sink in 𝐺𝐿 . Each record is

stored once with its corresponding point value. The index has size

𝑛 +𝑚. When the client issues a range query of size 𝑅, the client

computes 𝑅 search tokens and sends them to the server. Each search

corresponds to the domain points and each record is stored once,

hence a it has a response size of 𝑂 (𝑟). □

D.2 Range tree Scheme

D.2.1 Proof of Theorem 5. We first restate the one-dimensional

analogue proved in [35].

Theorem 18 ([35]). Let𝐺𝑅𝑇 be a one-dimensional range tree on

domain [𝑚]. Given range queries 𝑞 and 𝑞′ of the same size 𝑅, let𝑊

and𝑊 ′ be their respective covers returned by algorithm URC on 𝐺𝑅𝑇 .

We have |𝑊 | = |𝑊 ′ |.

We now give the proof of Theorem 5.

Proof. We prove the following invariant: at the end of the 𝑖𝑡ℎ

iteration of the for loop on line 4, the set𝑊 is the minimal cover of

the range 𝑞1×· · ·×𝑞𝑖 × [𝑚𝑖+1] × · · ·× [𝑚𝑑], where 𝑞 = 𝑞1×· · ·×𝑞𝑑 .
We proceed by induction on 𝑖 .

Let 𝑖 = 1. At the start of the first iteration𝑊 = {𝑠}. Let 𝑇 ⊆ 𝑇
be the subtree on [𝑚1] rooted at 𝑠 . Note that the canonical ranges

of 𝑇 are comprised of dyadic ranges in dimension 1 and the whole

domain in dimensions 2 to 𝑑 (Equation 1). On line 8 we thus con-

struct a query 𝑞 = 𝑞1 × [𝑚2] × · · · × [𝑚𝑑]. Since the first dimension

can be covered by dyadic ranges along [𝑚1], then by Corollary 1,

𝑊 contains a minimal and unique cover of 𝑞 in 𝑇 .

Now let 𝑖 > 1 and𝑤 be any vertex in𝑊 . At the start of the 𝑖th

iteration,𝑊 must comprise of the unique, minimal cover of 𝑞′ =
𝑞1×· · ·×𝑞𝑖−1×[𝑚𝑖]×· · ·× [𝑚𝑑]. In particular,𝑞′ =

⋃
𝑤∈𝑊 𝑤.𝑟𝑎𝑛𝑔𝑒 .

Let𝑇 ⊆ 𝑇 be the subtree on [𝑚𝑖] rooted at𝑤 , and let𝑤1 × · · · ×𝑤𝑑
be the canonical range of 𝑤 . On line 8 we construct a query 𝑞 =

𝑤1×· · ·×𝑤𝑖−1×𝑞𝑖 ×[𝑚𝑖+1]×· · ·× [𝑚𝑑]. Note that 𝑞 ⊆ 𝑤.𝑟𝑎𝑛𝑔𝑒 and

𝑞 is the union of canonical ranges of the leaves of𝑇 . By Corollary 1,

Algorithm 3 (BRC𝑅𝑇) returns the minimal and unique cover of 𝑞 in

𝑇 . This argument holds for all vetices𝑤 ∈𝑊 .

If the resulting cover is not unique, then there must be another

distinct cover of 𝑞′ but that would either contradict the inductive

hypothesis or Corollary 1. A similar argument can be made for

minimality. The inductive hypothesis holds at the end of the 𝑖th

iteration, which concludes our proof. □

D.2.2 Proof of Theorem 6.

Proof. Let 𝑇 be one of the binary subtrees of 𝑇 on [𝑚𝑖] for
any 𝑖 ∈ [𝑑] with a source 𝑤 . By construction, the nodes of 𝑇

partition 𝑤.𝑟𝑎𝑛𝑔𝑒 with respect to the dyadic ranges of [𝑚𝑖]. We

now introduce the following useful lemma.

Lemma 1. Let 𝑖 ∈ [𝑑] and𝑊 be the set of range covers at the

end of iteration 𝑖 − 1. For 𝑤 ∈ 𝑊 , let 𝑞 and 𝑇 be defined as in the

equivalent of Algorithm 3 (URC𝑅𝑇), respectively. Then the resulting

cover𝑊 ′ has the same size for all𝑤 ∈𝑊 .

Proof. For each 𝑤 ∈ 𝑊 , its corresponding range query 𝑞 has

the same size range along the 𝑖th dimension i.e. size |𝑞𝑖 |. Since we
are applying URC to a single binary tree over one dimension, then

by Theorem 18,𝑊 ′ will have the same resulting size. □

More generally, note the following. Let |𝑞𝑖 | be fixed, and let𝑇 be

a binary tree over [𝑚] for any integer𝑚 that’s a power of 2. Then

the size of a decomposition of a range query of size |𝑞𝑖 | in 𝑇 must

have the same size.

Now let 𝑞 be a range query of size 𝑅 = 𝑅1 × · · · × 𝑅𝑑 and let 𝑞′

be a range query of size 𝑅 = 𝑅𝜎 (1) × · · · × 𝑅𝜎 (𝑑) . For each 𝑅𝑖 let
𝐶𝑖 be the size of the resulting cover𝑊 ′ when a universal range

cover of 𝑞𝑖 is computed on any binary tree on some domain [𝑚].
Such 𝐶𝑖 must exist by the above observation. Then when we apply

URC𝑅𝑇 (𝑇, 𝑞, 𝑠), the resulting cover has size 𝐶1 ×𝐶2 × · · · ×𝐶𝑑 .
Applying Lemma 1, we see that when we compute URC𝑅𝑇 (𝑇, 𝑞, 𝑠),

the resulting cover has size 𝐶𝜎 (1) ×𝐶𝜎 (2) × · · · ×𝐶𝜎 (𝑑) . Thus we
can conclude that 𝑞 and 𝑞′ have the same size URC𝑅𝑇 covers. □

D.2.3 Complexity of the Range tree Scheme.
Theorem 19. Let 𝐺𝑅𝑇 be the range tree for a database 𝐷 of

size 𝑛 on a 𝑑-dimensional domain D of size𝑚, and let BRC𝑅𝑇 and

URC𝑅𝑇 be the range covering algorithms defined in Section 4.2. We

have that (𝐺𝑅𝑇 , BRC𝑅𝑇) and (𝐺𝑅𝑇 , URC𝑅𝑇) are range-supporting data
structures (Definition 3) and the range encrypted multimap schemes

derived from them (Definition 5) use space 𝑂 (𝑛 +𝑚 log
𝑑𝑚). Also, a

query with range size 𝑅 and result size 𝑟 has query size 𝑂 (log𝑑 𝑅)
and response size 𝑟 .

Proof. We give the proof for the range encrypted multimap

scheme built from (𝐺𝑅𝑇 , BRC𝑅𝑇). It is straightforward to check that
DAG 𝐺𝑅𝑇 satisfies properties (𝑖) to (𝑖𝑣) of Definition 3. We now

show that BRC𝑅𝑇 runs in poly-time when called on 𝐺𝑅𝑇 .

At the start of the 𝑖𝑡ℎ iteration of the for loop on line 4, 𝑊

contains at most

∏𝑖−1
𝑗=1 log𝑅 𝑗 nodes where 𝑅 = 𝑅1 × · · · × 𝑅𝑑 is the

size of the queried range. Parsing𝑤.𝑟𝑎𝑛𝑔𝑒 and computing 𝑞 can be

done in constant time. Computing the subtree rooted at 𝑤 takes

time linear in the number of nodes of 𝑇 ⊆ 𝐺𝑅𝑇 . Next, observe that
16

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

BRC does a depth-first search traversal of the vertices of the input

tree, thus this subroutine takes time linear in the number of nodes

of 𝑇 . When𝑚𝑖 = 𝑂 (𝑚), the outer for loop takes time 𝑂 (𝑚 log
𝑑𝑚)

and therefore BRC𝑅𝑇 runs in polynomial time.

We now prove the complexity. The range tree has

∏𝑑
𝑖=1 2𝑚𝑖

nodes that each correspond to a label in the multimap; each record

is stored

∏𝑑
𝑖=1 log𝑚𝑖 times for a total storage of (𝑚 + 𝑛 log𝑑𝑚).

Algorithm BRC guarantees that any range can be covered by a

logarithmic number of pre-computed ranges [13] in a range tree;

Since we apply BRC once for every every dimension, any range

over D can be covered with 𝑂 (log𝑑 𝑅) canonical ranges. Since
BRC𝑅𝑇 iteratively applies BRC on one-dimensional range trees, then

applying Theorem 2, the cover is minimal and has no false positives.

Moreover, the cover returned by BRC on a one dimensional range

tree is disjoint, and hence the cover returned by BRC𝑅𝑇 is also

disjoint. Thus the response size is 𝑂 (𝑟).
The proof for the range encrypted multimap scheme built from

(𝐺𝑅𝑇 , URC𝑅𝑇) follows a similar argument and is thus omitted. □

D.3 QDAG SRC Scheme

D.3.1 False Positives.
Lemma 2. Given QDAG 𝐺𝑄𝑆 = (𝑉 , 𝐸) over domain D = [𝑚1] ×

· · ·× [𝑚𝑑] and any range 𝑞 inD of size 𝑅 = 𝑅1×· · ·×𝑅𝑑 , there exists
a vertex 𝑣 ∈ 𝑉 such that 𝑞 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 and 𝑣 .𝑟𝑎𝑛𝑔𝑒 has size 𝑂 (𝑅𝑑).

Proof. Recall that the number of nodes in a quadtree scheme is

𝑂 (𝑚). In the quadtree, at the 𝑗-th level, each of the 𝑑 dimensions

is partitioned into 2
𝑛−𝑗

axis-aligned segments. Thus, at the 𝑗-th

level of the quadtree we have partitioned the domain into 2
(𝑛−𝑗)𝑑

hypercubes.

In the QDAG, we shift each hypercube by the legnth of half

of the edge of the hypercube along each dimension. Thus at the

𝑗-th level of the QDAG we have at most 2
𝑑
2
(𝑛−𝑗)𝑑 = 𝑂 (2(𝑛−𝑗)𝑑)

hypercubes. Each hypercube corresponds to a node in the QDAG,

so size of the QDAG is upper bounded by a constant factor of 2
𝑑

times the size of the region quadtree. □

D.3.2 Space Usage.
Lemma 3. Let 𝐷 be a database with 𝑛 records and a domain D of

size𝑚. Then the size of the QDAG on D is 𝑂 (𝑚).

Proof. Let 𝑞 be any range query of size 𝑅. We will show that

this range can be covered by a vertex 𝑣 ∈ 𝑉 such that 𝑣 .𝑟𝑎𝑛𝑔𝑒 has

size 𝑂 (𝑅𝑑). First note, there exists some minimal integer 𝑗 such

that for all 𝑖 , 𝑅𝑖 ≤ 2
𝑗 ≤ 2𝑅𝑖 .

Case 1: range query 𝑞 is covered by a vertex 𝑣 ∈ 𝑉 such that

𝑣 .𝑟𝑎𝑛𝑔𝑒 has size 2𝑗𝑑 . Thus, 𝑞 is covered by a range of size

𝑂 (max{𝑅1, . . . , 𝑅𝑑 }𝑑) = 𝑂 (𝑅𝑑) .

Case 2: range query 𝑞 is not covered by a vertex 𝑣 ∈ 𝑉 such

that 𝑣 .𝑟𝑎𝑛𝑔𝑒 has size 2𝑗𝑑 . Along each dimension, the range 𝑞 must

intersect with at most 2 distinct ranges 𝑣 .𝑟𝑎𝑛𝑔𝑒, 𝑣 ′.𝑟𝑎𝑛𝑔𝑒 each of

size 2
𝑗𝑑

where 𝑣, 𝑣 ′ ∈ 𝑉 . Since ranges of the same size are shifted

by lengths of 2
𝑗−1

there must exist a hypercube inD with edges of

length 2
𝑗 + 2𝑗−1 that completely contains 𝑞. Note this hypercube

does not correspond to a vertex of 𝐺𝑄𝑆 .

Let 𝑞′ = [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑] define this hypercube. Consider
an edge [𝑎𝑖 , 𝑏𝑖] of this hypercube. For each 𝑖 ∈ [𝑑] there is a set of
vertices 𝑉𝑖 ⊂ 𝑉 such that for all 𝑣 ∈ 𝑉𝑖 , 𝑣 .𝑟𝑎𝑛𝑔𝑒 is of size 2(𝑗+1)𝑑
and it covers [𝑎𝑖 , 𝑏𝑖]. In the 𝑖-th dimension 𝑣 .𝑟𝑎𝑛𝑔𝑒 must either start

at 𝑎𝑖 or at 𝑎𝑖 − 2𝑗 . Since the hypercubes of size 2(𝑗+1)𝑑 are tiling

the entire domain with shifts of 2
𝑗
along each dimension we can

thus find a vertex 𝑣∗ ∈ 𝑇 that contains 𝑞′ and thus also contains 𝑞.

The range 𝑣∗ .𝑟𝑎𝑛𝑔𝑒 has size 2(𝑗+1)𝑑 = 𝑂 (2𝑗𝑑) = 𝑂 (𝑅𝑑). □

D.3.3 Complexity.
Theorem 20. Let 𝐺𝑄𝑆 be the QDAG for a database 𝐷 of size 𝑛

on a 𝑑-dimensional domain D of size𝑚, and let SRC be the linear

covering algorithm defined in Algorithm 2. We have that (𝐺𝑄𝑆 , SRC)
is a range-supporting data structure (Definition 3) and the range

encrypted multimap scheme derived from it (Definition 5) uses space

𝑂 (𝑚 + 𝑛 log𝑚). Also, a query with range size 𝑅 and result size 𝑟 has

query size 1 and response size 𝑂 (𝑟 + 𝑅2).

Proof. QDAGs satisfy properties (𝑖) to (𝑖𝑣) of Definition 3. We

now show that the range cover algorithm SRC runs in poly-time

when called on 𝐺𝑄𝑆 and its source node 𝑠 .

SRC explores the graph in a depth-first search manner and each

node is visited at most once. If 𝑞 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 , then 𝑐𝑎𝑛𝑑 is updated to

𝑣 . Then for every vertex𝑤 such that (𝑣,𝑤) ∈ 𝐸, SRC is recursively
called on 𝐺𝑄𝑆 and𝑤 , and a new vertex 𝑡 is obtained. If |𝑡 .𝑟𝑎𝑛𝑔𝑒 | <
|𝑐𝑎𝑛𝑑.𝑟𝑎𝑛𝑔𝑒 |, then 𝑐𝑎𝑛𝑑 is updated to 𝑡 . By Lemma 3, there are

𝑂 (𝑚) nodes in 𝐺𝑄𝑆 , so visiting every node once takes time 𝑂 (𝑚);
updating 𝑐𝑎𝑛𝑑 takes constant time.

We now prove the complexity. By Lemma 3, the number of nodes

in 𝐺𝑄𝑆 is a constant factor larger than the corresponding quadtree

and thus the corresponding range encrypted multimap scheme has

an asymptotic storage complexity of 𝑂 (𝑚 + 𝑛 log𝑚). To query this

scheme, the client generates a single search token, and thus the

scheme has a query complexity of 1. By Lemma 2, the total number

of false positives for any given query is 𝑂 (𝑅𝑑), where 𝑅 is the size

of the query issued. Thus, the total response size is 𝑂 (𝑟 + 𝑅2). □

E LEAKAGE ANALYSIS

E.1 Proof of Theorem 8

Proof. It is straight forward to see how one can build VM and

FM from the multiset {{Str(𝐷,𝑞𝑖))}}𝑖∈[ℓ] . To show the reverse, we

will construct the structure pattern using VM and FM.

Initialize an empty multiset 𝑆 . Then for each tokenset t(𝑖) in VM:

(1) Initialize an empty dictionary𝑀 .

(2) For each 𝑡 ∈ t(𝑖) set𝑀 [𝑡] ← VM[𝑡].
(3) 𝑓 ← FM[t(𝑖)]
(4) Add 𝑓 copies of𝑀 to the multiset 𝑆 .

Each issued query 𝑞 (𝑖) corresponds to a tokenset t(𝑖) i.e. the search
pattern of the canonical ranges that cover 𝑞. VM associates each

tokenset with the observed volume i.e. the volume pattern of the

response. Since each map𝑀 in 𝑆 is added as many times as the cor-

responding tokenset has been observed, then the structure pattern

multiset is in one-to-one correspondence with the multiset 𝑆 . □

17

Brown University, January, 2022 Falzon and Markatou, et al.

E.2 Proof of Theorem 9

Proof. Consider a database𝐷 encrypted with the linear scheme.

Consider a token 𝑡 and its neighboring tokens 𝑡0, 𝑡
′
0
, 𝑡1, 𝑡

′
1
.... Two

tokens are neighboring if they correspond to the same values in

all dimensions but one and in the remaining dimension their value

differs by 1. There exists a range query that issues 𝑡 with each one

of its neighboring search tokens. There exists no query of size two

with 𝑡 that does not contain one of its neighbors as that query

would not correspond to a valid range. Combining all these queries,

can construct a grid that covers the entire domain. This grid is

dense and does not allow for reflectable components as in [17].

Thus the reconstruction space only includes transformations of 𝐷

corresponding to the symmetries of a 𝑑-cube. □

E.3 Proof of Theorem 10

Proof. The first step of Algorithm 4 is to find any queries that

correspond to a set of search tokens of prime size, say set 𝑄 . We

know that the size of the range being queried is leaked, as it is

the number of search tokens the client sends the server. If a range

has prime size 𝑝 , then the query covers 𝑝 points in one dimension

and one point in the remaining dimensions. Thus, all queries in

𝑄 query are one-dimensional sections. The next step is to group

queries that come from the same one-dimensional section. Note

that if two queries’ search token intersection contains two or more

elements, then the queries must correspond to ranges along the

same one-dimensional section. We thus group queries in their cor-

responding one-dimensional section, and create a PQ-tree for each

one-dimensional section. The attack then generates a graph 𝐺 that

contains an edge between neighboring search tokens, representing

a partial order reconstruction of the search tokens. Once we map

the search tokens to their corresponding volumes, we achieve par-

tial database reconstruction. If the adversary has observed enough

queries for the order of the individual one-dimensional sections

to be fully reconstructed, graph 𝐺 is a 𝑑-dimensional grid fully

ordering all search tokens, and thus achieving full database recon-

struction.

To achieve FDR, every PQ-tree must have enough information to

reconstruct the order of each one-dimensional section. Consider a

one-dimensional section, e.g. a row 𝑅. The search tokens in 𝑅 share

all values but one, the one corresponding to the first dimension.

Thus, their values span from 1 to𝑚1. Split the search tokens in two

groups: 𝐴 includes all search tokens with values less than 𝑚1/2
in the first dimension and 𝐵 contains the remaining points in 𝑅.

The PQ-tree can order these search tokens if in its input there

exists a range that starts before and a range that starts after every

search token. Thus, if the PQ-tree observes a range that starts

before every point in 𝐴 or ends before every point in 𝐵 or after

the last point of 𝐵, it can fully order the search tokens in 𝑅. Let’s

count the number of range queries that start at a specific point

in 𝐴, end anywhere in 𝐵 and have prime length. There are more

small prime numbers than larger. Thus, the worst case scenario is

our starting point being in the beginning of 𝐴. Thus, the possible

size of our range is between 𝑚1/2 and 𝑚1. We approximate the

number of prime numbers between 𝑚1/2 and 𝑁1 to be around

𝑚1

log𝑚1

− 𝑚1/2
log𝑚1/2 >

𝑚1/6
log𝑚1/6 , for 𝑚1 > 26. Thus, the probability

that a range query satisfies these constraints is
1

𝑚16 log𝑚1/6𝑚2

2
...𝑚2

𝑑

.

Let 𝑥 = 𝑚16 log𝑚1/6𝑚2

2
...𝑚2

𝑑
. After observing 10𝑥 log𝑥 queries,

then we will not have observed even one query satisfying the

constraints with probability (1 − 1/𝑥)10𝑥 log𝑥 ≈ 1

𝑥10
. There are

𝑚1/2 such queries from 𝐴 and𝑚1/2 similar such queries from 𝐵.

TBy union bound, the probability that even one of them is missing

is approximately
𝑚1

(𝑚16 log𝑚2/6𝑚2

3
...𝑚2

𝑑
)10 ≤

1

𝑚5
. There are𝑚0 rows,

thus the probability we missed one of them is ≤ 𝑚1

𝑚5
. We can make a

similar argument for each PQ tree, concluding that if the adversary

observes

∑𝑑
𝑖=1 Ω

(
𝑚2

𝑚𝑖
log𝑚𝑖 · log

(
𝑚2

𝑚𝑖
log𝑚𝑖

))
queries, Algorithm 4

achieves FDR with probability greater than 1 − 1

𝑚2
.

There are 𝑂 (𝑚2) observed search tokens and responses, each of

which require 𝑂 (𝑚) space. The algorithm thus requires 𝑂 (𝑚3)
storage. Algorithm 4 first identifies all tokensets of prime size

which takes 𝑂 (𝑚3) time. Then, the Algorithm identifies which

tokens correspond to the same one-dimensional slice. This re-

quires a loop over all tokensets 𝑂 (𝑚2) and on each loop doing

a set intersection between sets of size 𝑂 (𝑚), 𝑂 (𝑚2) times. Thus,

it takes 𝑂 (𝑚5) time. We then construct a PQ tree for each one-

dimensional slice and create the augmented graph 𝐺 , which takes

𝑂 (𝑚2) time. Thus, Algorithm 4 takes 𝑂 (𝑚5) time, 𝑂 (𝑚3) space
and succeeds with probability greater than 1 − 1

𝑚2
after observ-

ing

∑𝑑
𝑖=1 Ω

(
𝑚2

𝑚𝑖
log𝑚𝑖 · log

(
𝑚2

𝑚𝑖
log𝑚𝑖

))
queries uniformly at ran-

dom. □

E.4 Proof of Theorem 11

Proof. Let 𝑠𝑡 be a search token corresponding to a point query

(𝑖1, 𝑖2, . . . , 𝑖𝑑) and 𝑠𝑡𝑖 , 𝑠𝑡 ′𝑖 be its neighboring search tokens in dimen-

sion 𝑖 . Note that if the client wishes to perform a point query, they

send exactly one search token to the server. The only other times

they send only one search token are when they query either one

point or the whole range in all dimensions. Let 𝑄 be a set with all

such search tokens.

If the client queries a neighboring value of (𝑖1, 𝑖2, . . . , 𝑖𝑑), i.e. a
value that differs in only one dimension by 1, they have to send the

two neighboring search tokens. Because the client picked URC, they
cannot send only one search token, even if one exists that spans

that range. Thus, given all range queries corresponding to two

search tokens, they can construct a grid spanning the domain of the

database fully ordering the point search tokens, and recovering their

corresponding value. This leakage does not allow for reflectable

components like [17], and the reconstruction space corresponds to

the symmetries of a 𝑑-cube. □

E.5 Proof of Theorem 12

Proof. The first step of Algorithm 5 is to find queries that cor-

respond to exactly one token, and place them in a set 𝑄1. Since the

client is using URC, the chosen sub-queries are all combinations of

the client’s one-dimensional range choices. Thus, the number of

search tokens that corresponds to a range query is the product of

the number of sub-queries in each dimension. Since the product

is one, we conclude that in each dimension, the client is querying

either one value or everything.

18

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

The algorithm builds a graph, 𝐺 , that has an edge between two

search tokens in 𝑄1 if there is a query that corresponds to that

pair of search tokens. The largest component of 𝐺 corresponds to

a partial order reconstruction of the search tokens. We now show

that (i) there can be an edge in 𝐺 between any two neighboring

point-value tokens; (ii) no edge exists between point-value tokens

that are not neighbors; and (iii) the largest component of the graph

contains the point-value tokens.

(i) Because the client uses URC, any queries of size twomust corre-

spond to two search tokens. Thus, a range query of two point values

must correspond to two neighboring search tokens. (ii) For two

search tokens to be in a query together theymust form a valid hyper-

rectangle. A range corresponding to a single point can only form a

valid rectangle when combined with another neighboring single

point. All other options in 𝑄1 are already multiple-dimensional

rectangles, which combined with a single point do not make a valid

range. Note that this is not true in general, however members of𝑄1

either query a single point on a given dimension or all of them. It

could be possible to generate a valid range by adding a single point

to the end of a line segment, however in this case the line segment

spans the whole range. (iii) Only members of 𝑄1 corresponding to

ranges of the same dimension can have an edge between them in𝐺 .

There are more point-valued ranges than valid ranges in all other

cases. Thus, the largest component will be the one corresponding

to point queries.

Since volume is leaked, volumes can be associated with their

corresponding tokens. The graph 𝐺 has size 𝑂 (𝑚). It takes 𝑂 (𝑚2)
time to look for all queries of size one and two, and 𝑂 (𝑚2) to con-

struct 𝐺 . In case the adversary has observed all possible queries,

which happens with high probability after Ω(𝑚2
log𝑚) uniformly

distributed queries by the coupon collector principle, graph 𝐺 con-

tains all relevant search tokens and corresponding edges. Since it

takes at least 𝑂 (𝑚2
log

𝑑𝑚) to read the search tokens and their re-

sponses, our algorithm requires 𝑂 (𝑚2
log

𝑑𝑚) time. The algorithm

requires 𝑂 (𝑚2
log

𝑑𝑚) space to store the search tokens and their

responses. □

E.6 Proof of Theorem 14

Proof. First, we show that we can reconstruct the inner grid

database D and then we show that we can reconstruct the vol-

umes of the extreme points as well (up to the symmetries of the

square). Finally, we show that our algorithm succeeds with prob-

ability greater than 1 − 1

𝑚2
after observing Ω(𝑚2

log𝑚) queries
uniformly random queries in 𝑂 (𝑚4) time.

The first step of the algorithm is to construct a co-occurrence

graph 𝐺 with nodes search tokens (i.e. range tree nodes), and an

edge between two nodes if there is a tokenset consisting of the

two of them. Then, for each tokenset 𝑆 of size greater than two, we

observe hyperrectangle (Lemma 4) graph𝐺𝑆 of𝐺 induced by the

nodes of 𝑆 . In a one-dimensional query, this is a line graph. 𝐺𝑆 is

also a line graph when the node of 𝐺𝑆 cover the same ranges in all

dimensions but one. In case of a line graph, 𝐺𝑆 only has two nodes

that have the smallest degree. In all other cases, there are four or

more nodes that have the smallest degree, as they are the corners

of the hyperrectangle.

We are able to identify all one-dimensional queries (including

some higher dimensional ones) by noting which tokensets have

only two nodes with the smallest degree in 𝐺𝑆 . The next step is to

identify the inner nodes that cover two domain points. We measure

the 𝑒𝑑𝑔𝑒𝑐𝑜𝑢𝑛𝑡 of each edge 𝑒 = (𝑠1, 𝑠2): the number of times 𝑠1
and 𝑠2 appear in our identified queries together. Note that a token

corresponding to a query of size 2, 𝑠1, (e.g. 𝑔ℎ in Figure 4) is con-

nected in 𝐺 with another token 𝑠2, such that their edgecount is

exactly 2. There are only two possible tokensets that contain 𝑠1 and

𝑠2 together, (𝑠1, 𝑠2) and (𝑠1, 𝑠2, 𝑠3), for some token 𝑠3. Extending the

range in either direction will replace either 𝑠1 or 𝑠2 with their an-

cestors. For example, there are only 2 tokensets containing 𝑔ℎ and

𝑖 together,(𝑔ℎ, 𝑖) and (𝑔ℎ, 𝑖, 𝑓). Extending the range in one direction

replaces 𝑔ℎ with {𝑒 𝑓 𝑔ℎ} and in the other direction replaces 𝑖 with

{𝑖 𝑗}. Note that any other one-dimensional tokens that cover a larger

range, have edges with higher edge counts as there are more pos-

sible tokensets. For example, there are three tokensets containing

𝑒 𝑓 𝑔ℎ and 𝑖 together,(𝑒 𝑓 𝑔ℎ, 𝑖), (𝑒 𝑓 𝑔ℎ, 𝑖, 𝑑) and (𝑒 𝑓 𝑔ℎ, 𝑖, 𝑐𝑑). Extend-

ing the range in one direction replaces 𝑔ℎ with {𝑒 𝑓 𝑔ℎ} and in the

other direction replaces 𝑖 with {𝑖 𝑗}. It is possible that inner nodes
that cover multi-dimensional ranges have 𝑒𝑑𝑔𝑒𝑐𝑜𝑢𝑛𝑡 of 2 with a

non-inner node. However, these tokens cannot be connected to leaf

tokens as they would not form valid ranges, and thus such edges do

not exist in 𝐺 . In the end, we only consider the largest component

of the graph, which contains the leaf tokens, ignoring other smaller

components that may contain these multi-dimensional tokens.

At this point, we have identified the inner nodes that cover

pairs of points and most of the point-query tokens. We still have

to distinguish between certain leaf tokens and certain boundary

tokens. Specifically, some inner tokens have isomorphic edges with

edgecount of two. One edge connects to a boundary node, and the

other edge connects to an inner node. For example, in Figure 4,

nodes 𝑑 and 𝑎𝑏𝑐𝑑 are isomorphic. We are able to extract the correct

token, by picking the one with the most edges in the original co-

occurence matrix. The leaf node will always have one more edge

than the boundary node, as the leaf node can be in a tokenset with

the boundary node’s sibling.

Now, we have identified all the pair token nodes and the tokens

(or volumes) of all non-extreme leaf nodes. However, due to the

nature of BRC and graph𝐺 , they are not in order. By doing a series

of swaps and contractions, removing the pair-token nodes and

putting the leaf nodes in order, we can reconstruct the inner grid

of the database.

Once we have reconstructed the inner grid of the database, we

can now reconstruct the volumes at the extreme points. Note that

for the inner grid, we were able to identify which search token

corresponds to which domain point. However, we cannot do the

same for the extreme points, we can only extrapolate the volumes.

The reason is that due to BRC, the search tokens for extreme points

of the database often appear alone. For example, in Figures 4 and

5, the corner search tokens appear identical in the co-occurrence

graph (nodes 𝑎, 𝑝 and 𝑎, 𝑑 , 𝑝 ,𝑚 respectively).

In our 𝑑-dimensional grid, in place of each domain point 𝑝 ex-

treme in one dimension is a search token 𝑠 covering 𝑝 and its

neighbor 𝑝𝑛 , where 𝑠 has exactly one neighbor in our graph𝐺 ′, the
search token covering 𝑝𝑛 . We can thus extrapolate the volume of

𝑝 from the volumes of 𝑠 and 𝑝𝑛 . We are unable to generalize this

19

Brown University, January, 2022 Falzon and Markatou, et al.

technique to tokens extreme in multiple dimensions as there is no

such token.

Let’s assume we have extrapolated all volumes of domain points

extreme in up to 𝑖−1 dimensions. For each domain value 𝑣 (extreme

in 𝑖 dimensions) we have yet to extrapolate, we have to find a basic

𝑖-dimensional cube 𝑐 with sides of size 2, that contains 𝑣 . In order

to identify this cube, we leverage the structure of BRC tokensets.

The range query that covers an 𝑖-dimensional cube of side length

3, 𝑐3, which includes 𝑣 , consists of a tokenset of size 𝑖+2. These

tokens correspond to an 𝑖-dimensional cube of side length 2, 𝑐2,

(containing 𝑣), one token corresponding to a point value 𝑡 diagonal

to 𝑣 right outside 𝑐2, and 𝑖 2 × 1 rectangles, set 𝑅. Essentially, the
rectangles extend 𝑐2 by one value in each dimension. We need one

more point to cover all of 𝑐3, which is 𝑡 . Using the co-occurrence

graph and the inner grid, we are able to identify tokens from 𝑅

and 𝑡 . Then, the smallest response that contains all of them, must

contain 𝑐2, in order to form a valid range. Then, using the volume of

𝑐2, we can extrapolate the volume of 𝑣 . For example in Figure 5, to

extrapolate the volume of 𝑎, the 2-dimensional cube of side length

2 is {𝑎𝑏𝑒 𝑓 }, the 2 2 × 1 rectangles are {𝑖 𝑗} and {𝑐𝑔} and 𝑡 = 𝑘 . This
way, we can extrapolate the volume of domain points extreme in 𝑖

dimensions. Thus, by induction, our algorithm can find the volumes

of all extreme domain points.

The first step of the algorithm is to create dictionaries 𝐸,𝑄 , which

takes 𝑂 (𝑚2
log

𝑑𝑚), as we have to go through all possible queries

and their responses. Then, we go through 𝑂 (𝑚2) tokensets and for

each construct a graph with their tokens and remove relevant edges

from 𝐺 . This takes 𝑂 (𝑚4) time. Then, we disambiguate identical

components of the graph and contract edges of the graph, which

takes at most 𝑂 (𝑚2) time. Then, we swap one-dimensional section

of the graph, which takes 𝑂 (𝑚2) time.

We then have to identify volumes of the extreme points. There

are𝑂 (𝑚) such points, and for each point we find a constant number

of neighbors in two graphs, which takes𝑂 (𝑚2) time. Then, we look

through the tokensets to identify the required tokenset and extract

the extreme point’s volume. Finding the extreme point values takes

𝑂 (𝑚3) time. Thus, in total, our attack takes 𝑂 (𝑚4) time.

Our attack needs to observe all possible queries and their re-

sponses to work. Using a coupon collector argument, we observe

all possible queries after the Ω(𝑚2
log𝑚) queries have been issued

under a uniform distribution with probability greater than 1 − 1

𝑚2
.

The adversary needs 𝑂 (𝑚2
log

𝑑𝑚) space to store the search to-

kens and their responses. Graph𝐺 requires𝑂 (𝑚2) space, with𝑂 (𝑚)
nodes and 𝑂 (𝑚2) edges, similar to the temporary storage required

by the 𝐺𝑆 ’s. Most work on the algorithm is done on these graphs

and there is a constant number of additional data-structures used,

all requiring less than 𝑂 (𝑚2) space. Thus, the algorithm requires

𝑂 (𝑚2
log

𝑑𝑚) space.
□

Lemma 4. Let 𝐷 be a 𝑑-dimensional database, over domain D =

[𝑚1]× . . .×[𝑚𝑑], with𝑚 =𝑚1 · . . . ·𝑚𝑑 , which is encrypted under the
range tree scheme and leaks volume, search pattern and sub-queries

under BRC. Let 𝐺 be the co-occurrence graph with nodes the tokens

of the range tree, and an edge between two nodes if they compose a

tokenset. Graph 𝐺𝑆 induced by the nodes of a tokenset 𝑆 on 𝐺 forms

a hyperrectangle.

Proof. We prove this lemma by induction on the number of

dimensions of the range that corresponds to tokenset 𝑆 . In case of

a 1D range query (on range 𝑟), we show that the corresponding

tokenset 𝑆 forms a line graph𝐺𝑆 of𝐺 induced on the nodes of 𝑆 . A

token 𝑠 ∈ 𝑆 has one or two edges in 𝐺𝑆 (unless |𝑆 | = 1).

Let us say that 𝑠1 covers one of the endpoints of 𝑟 , range 𝑟1. As

𝑆 forms a valid range, some token must cover the domain point

𝑝 ∈ 𝑟 , right next to 𝑟1. Let us say token 𝑠2 covers 𝑟2, with 𝑝 ∈ 𝑟2.
As 𝑟1 + 𝑟2 form a valid range, there is an edge between 𝑠1 and 𝑠2
in 𝐺𝑆 . Notably, 𝑠1 cannot be connected to any other token in 𝑆 , as

it would not form a valid range. On the other hand, ∃𝑝 ′ ∈ 𝑟 right
outside 𝑟2 (if |𝑆 | > 1). Thus, some token 𝑠3 ∈ 𝑆 must cover it (with

range 𝑟3). Since 𝑟2 + 𝑟3 forms a valid range there exists an edge

between 𝑠2 and 𝑠3. Since this is a 1D query, 𝑠2 cannot have any other

connections. Similarly we can show that any token of 𝑆 that does

not correspond to range covering an endpoint of 𝑟 has two edges

and the remaining two have one edge. Thus, 𝐺𝑆 is a line graph.

Suppose that any tokenset covering an (𝑖−1)-dimensional range

query forms a hyperrectangle. Let 𝑆 cover an 𝑖-dimensional range

𝑟 . Let the last dimension of 𝑟 be of size 𝑘 . There are 𝑘 (𝑖 − 1)-
dimensional ranges 𝑟 𝑗 , 𝑗 ∈ [1, 𝑘] that can be combined to cover

𝑟 . Let 𝑟 𝑗 and 𝑟 𝑗+1 differ by one in the last dimension. Let tokens

𝑠 𝑗 (covering some part of 𝑟 𝑗) and 𝑠 𝑗+1 (covering some part of 𝑟 𝑗+1)
cover the same ranges in the first 𝑖−1 dimensions. The combination

of the ranges they cover is valid. Thus, there either exists an edge

between them in 𝐺 or there exists a token that covers their ranges

combined.

Let 𝑇𝑖 be the set of tokensets 𝑆 𝑗 covering each of the 𝑘 (𝑖 − 1)-
dimensional ranges 𝑟 𝑗 . For each neighboring pair of tokensets in

𝑇𝑖 , there either exists new tokenset 𝑆 ′ that covers their combined

ranges (larger tokens apply) or the tokens are included in the BRC

response (if no possible combination with neighbors exists). Note

that it cannot be the case that only a subset of the neighboring

tokensets can be combined, as the tokens are created in the same

way for the different neighboring ranges. In case they are included

in the BRC response, this pair of tokensets forms a hyper-rectangle

(with their edges from𝐺). Additionally, any new tokenset (replacing

a previous pair) must also form a hyper-rectangle with its neigh-

bors. Since all neighboring tokensets form hyper-rectangles, all of

them together in 𝐺𝑆 form a hyperrectangle of dimension up to 𝑖 ,

(potentially the hyper-rectangles (𝑖 − 1)-dimensional ranges form

hyperrectangles of dimension smaller than 𝑖 − 1).
□

E.7 Explanation of SRC Lower Bound

Before demonstrating a lowerbound for the size of the reconstruc-

tion space of the QDAG with SRC, we first build intuition with an

example of a quadtree with SRC. Recall that a region quadtree is a

tree that recursively partitions a square domain into 2
2
quadrants.

Each non-leaf node 𝑣 has four children; each child of 𝑣 is associated

with a quadrant of 𝑣 .𝑟𝑎𝑛𝑔𝑒 . Using SRC as a covering algorithm for a

quadtree results in a false positive rate of𝑂 (𝑚). As we will soon see,
the quadtree SRC scheme – in contrast to the QDAG SRC scheme –

is more secure at the expense of significantly more false positives.

We now demonstrate an assignment of volumes to the database

resulting in a reconstruction space exponential in𝑚. Note that each

20

Attacks on Encrypted Range Search
Schemes in Multiple Dimensions Brown University, January, 2022

0

0

1 0 1 0
0 0 0 0
1 0
0 0

1 0
0 0

1 0 1 0
0 1
1
0 1

0
0 1

1
0
1
0 1 0 1

(a) (b) (c)

 …

…

Figure 12: Here we demonstrate an assignment of volumes that

gives a lowerbound on the reconstruction space of (a) the quadtree

with SRC and (b)-(c) the QDAG with SRC.

leaf node has 3 siblings. For each set of 4 sibling leaf nodes assign a

volume of 1 to one leaf and 0 to the other siblings. Each leaf has a

frequency of one and thus any set of volumes corresponding to the

four siblings can be permuted; there are 2
2
unique permutations per

set of 4 siblings, and𝑚/(22) such sets of siblings. More generally, we

see that the reconstruction space of the quadtree is lowerbounded

by (2𝑑)𝑚/2𝑑 >> 2
𝑑 (𝑑!).

In contrast, the QDAG with the SRC range covering algorithm,

offers a smaller false positive rate at the expense of a significantly

smaller reconstruction space; we note however that the reconstruc-

tion is still 𝑂 (2𝑑−1) greater than the symmetries of the hypercube.

This is because the additional nodes and edges in the QDAG create

a number of additional restrictions that the volume assignments

must satisfy hence reducing the total number of possible symme-

tries when compared to the region quadtree. In order to maintain

the same volume assignments to the leaf nodes’ parents, we cannot

independently permute the volumes of the leaves.

Each QDAG node corresponding to each domain point not at

the edge of the database is covered by an additional three nodes

(compared to the quadtree). Assign each such domain point a unique

value greater than 1. Each QDAG node corresponding to the domain

points at the edge of the database is covered by 0 additional nodes (in

the case of a corner) or 1 additional node otherwise. Assign each of

these external domain points alternating bit volumes (See Figure 12).

Since there is an even number of domain values along each edge

this alternating bit assignment is always possible. Now observe,

for a given edge, we can re-assign the bit-complement volumes to

the domain points along the edge. The volumes associated with

the nodes covering the edge nodes remain the same. I general,

we can re-assign the bit-complement volumes to parallel edges

independently of each other. In two dimensions this results in 2
2+22

additional symmetries. In 𝑑 dimensions this results in 𝑑 · 22(𝑑−1)

additional symmetries. Composing them with the symmetries of

the hypercube yields a lower bound of 2
𝑑+2(𝑑−1) (𝑑) (𝑑!).

E.8 Proof of Theorem 16

Proof. We start by showing that each solution inA corresponds

to a valid a valid database. Let𝐺 be the underlyingDAGover domain

D. For correctness we require that for all nodes 𝑣 in 𝐺 .

𝑥𝑣 =
∑

𝑤 sink of𝐺,
𝑤.𝑟𝑎𝑛𝑔𝑒⊆𝑣.𝑟𝑎𝑛𝑔𝑒

𝑥𝑤 . (5)

That is, for every node 𝑣 in 𝐺 , 𝑣 ’s volume must be sum of the

volumes assigned to the leaf-nodes that correspond to points in

𝑣 .𝑟𝑎𝑛𝑔𝑒 . By Property (1), any non-sink node 𝑣 of has a subset of

children 𝐶 such that {𝑐.𝑟𝑎𝑛𝑔𝑒 : 𝑐 ∈ 𝐶} partition 𝑣 .𝑟𝑎𝑛𝑔𝑒 . By Equa-

tion 3 there exists a constraint of the form 𝑥𝑣 =
∑
𝑐∈𝐶 𝑥𝑐 . Each

𝑐 ∈ 𝐶 , must itself also have a subset of children𝐶 ′ whose canonical
rages partition 𝑐.𝑟𝑎𝑛𝑔𝑒 . By recursively substituting the variables

corresponding to the children that partition the canonical range

of each variable, until we reach the sinks (which are 1-1 with the

points in the domain by Property (2)), we end up with the Equa-

tion 5. Each of the substituted equations are constraints in the ILP

that are satisfied, so Equation 5 must also be satisfied. We conclude

that any solution in A must be correspond to a real database.

Let 𝑆L denote the reconstruction space and let 𝑆A be the set

of databases that correspond to solutions in A. We will show that

𝑆A = 𝑆L . It is straightforward to see that 𝑆L ⊆ 𝑆A . In particular,

since Equations 3 and 4 characterize the DAG𝐺 , then any database

𝐷 ∈ 𝑆L must satisfy the ILP.

Next we show that 𝑆A ⊆ 𝑆L . Since the databases in 𝑆L are

leakage-equivalent, then by Theorem 8 they result in the same

volume map VM and frequency map FM, assuming each range

query is issued exactly once. By Theorem 8 it is sufficient to show

that the databases in 𝑆A also result in VM and FM.

Let 𝐷 ∈ 𝑆A and let 𝐺 be its DAG of 𝐷 with volumes assigned

to each node. Let V̂M and F̂M be the volume map and frequency

map of 𝐺 , respectively. From the leakage, we can build a map 𝑀

mapping each observed tokenset t to its volume-frequency pair

(𝑣𝑜𝑙, 𝑓). Equation 4 restricts each observed volume to be assigned to

one node. The constraints impose a 1-to-1 correspondence between

each volume with a given frequency 𝑓 and each node in the DAG

with frequency 𝑓 . Since each observed tokenset has an associated

volume-frequency pair, then the tokensets are 1-to-1 with the nodes

in 𝐺 ; in particular each tokenset t such that𝑀 [t] = (𝑣𝑜𝑙, 𝑓) can be

mapped to a node of 𝐺 with volume-frequency pair (𝑣𝑜𝑙, 𝑓).
Since each volume-frequency pair is 1-to-1 with the nodes in the

𝐺 of the same frequency then 𝑣 must also have the same frequency

and volume. Thus F̂M[t] = FM[t]. Also, we have that V̂M[t] =
(𝑡, 𝑣𝑜𝑙t) = VM[t]. Since this holds true for all tokensets, then V̂M =

VM and F̂M = FM. This proves that Algorithm 8 achieves full

database reconstruction.

The proof demonstrating that the input is available with proba-

bility 1 − 1

𝑚2
after the adversary observes 𝑂 (𝑚4

log𝑚) uniformly

distributed queries follows from Lemma 5 in Appendix F. □

F ESTIMATING FREQUENCIES

In the SRC attack (Algorithm 8) we assume that each query is

issued exactly once. This is a very strong assumption, and so in

this section we show how an adversary can correctly estimate the

frequencies with inverse polynomial probability in 𝑂 (𝑚).

Lemma 5. Let 𝐷 be a 𝑑-dimensional database, over domain D =

[𝑚1] × · · · × [𝑚𝑑], which is encrypted under the QDAG SRC scheme.

Let 𝐹 be a dictionary mapping the observed search tokens to the

number of times that search token was observed, 𝐺 be the QDAG

over D. If the adversary observes 𝑁 uniformly distributed queries,

then the frequency of each search token st computed by Algorithm 10

(GetFrequencies) corresponds to the number of unique range queries

21

Brown University, January, 2022 Falzon and Markatou, et al.

Algorithm 10: GetFreqencies(𝐹,𝐺,D)

1: // 𝐹 is a dictionary mapping search tokens to the number of times each

search token was observed,𝐺 is a DAG over domain D.

2: Let 𝑁 be the number of queries observed.

3: Let𝑄 be the number of unique range queries over D.

4: for st in 𝐹 do

5: 𝐹 [st] ← 𝐹 [st]/(𝑁 /𝑄)
6: return 𝐹

that are associated with st happens with probability at least 1 −
2|𝐹 | exp(−2𝑁 /𝑚4), where𝑚 =𝑚1 × · · · ×𝑚𝑑 .

Proof. Suppose that the adversary has observed𝑁 queries being

issued, and has constructed dictionary 𝐹 . For each search token st

observed define the i.i.d. random variable

𝑋𝑖 =

{
1, if the i𝑡ℎ search token is st

0, otherwise.

Let 𝑍st be the number of unique range queries that correspond to

search token st and let 𝑄 is the number of unique range queries

over D. Observe that we have

E[𝑋𝑖] =
𝑍st

𝑄
.

Define variable 𝐴st =
∑𝑁
𝑖 𝑋𝑖 . We thus have that GetFreqencies

succeeds when for all st we have

𝐴st

𝑁
∈

[
𝑍st

𝑄
± 𝜀

]
for 𝜀 = 𝑂 (1/𝑄) = 𝑂 (𝑚−2). Applying a Chernoff bound argument

we see that

Pr

[
𝐴st

𝑁
≥ 𝑁

(
𝑍st

𝑄
− 𝜀

)]
≤ exp(−2𝑁𝜀2) .

A similar argument holds for the upper bound. Taking a union

bound over the |𝐹 | times we must approximate frequencies gives

us a total success probability of 1 − 2|𝐹 | exp(−2𝑁 /𝑚4). □

22

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 EMM Definition and Security Model
	2.2 REMM Definition and Security Model

	3 Generic Framework
	4 Schemes
	4.1 Linear Scheme
	4.2 Range tree Scheme
	4.3 QDAG SRC Scheme
	4.4 Complexity and Leakage

	5 Leakage Analysis and Attacks
	5.1 Leakage Analysis of the Linear Scheme
	5.2 Leakage Analysis of the Range Tree Scheme
	5.3 Leakage Analysis of SRC Schemes

	6 Experiments
	7 Conclusion
	References
	A Formalizing leakage
	B Security Definition
	C Generic Framework
	C.1 Pseudocode for GenericRS
	C.2 Proof of Theorem 1
	C.3 Proof of Theorem 2
	C.4 Proof of Theorem 3
	C.5 Proof of Theorem 4

	D Schemes
	D.1 Linear Scheme
	D.2 Range tree Scheme
	D.3 QDAG SRC Scheme

	E Leakage Analysis
	E.1 Proof of Theorem 8
	E.2 Proof of Theorem 9
	E.3 Proof of Theorem 10
	E.4 Proof of Theorem 11
	E.5 Proof of Theorem 12
	E.6 Proof of Theorem 14
	E.7 Explanation of SRC Lower Bound
	E.8 Proof of Theorem 16

	F Estimating Frequencies

