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Abstract.
Deep learning-based SCA represents a powerful option for profiling side-channel
analysis. Numerous results in the last few years indicate neural networks can break
targets protected with countermeasures even with a relatively small number of attack
traces. Intuitively, the more powerful neural network architecture we require, the
more effort we need to spend in its hyperparameter tuning. Current results commonly
use random search and reach good performance. Yet, we remain with the question of
how good are such architectures if compared with the architectures that are carefully
designed by following a specific methodology. Unfortunately, the works considering
methodologies are sparse and difficult to ease without prior knowledge about the
target.
This work proposes an automated way for deep learning hyperparameter tuning
that is based on Bayesian Optimization. We build a custom framework denoted
as AutoSCA that supports both machine learning and side-channel metrics. Our
experimental analysis shows that Bayesian optimization performs well regardless of
the dataset, leakage model, or neural network type. What is more, we find a number
of neural network architectures outperforming state-of-the-art attacks. Finally, we
note that random search, despite being considered not particularly powerful, manages
to reach top performance for a number of considered settings. We postulate this
happens since the datasets are relatively easy to break, and there are many neural
network architectures reaching top performance.
Keywords: Side-channel Analysis · Deep learning · Hyperparameter optimization
and Bayesian Optimization

1 Introduction
Side-channel analysis (SCAs) is a well-known and powerful type of implementation attacks
of cryptographic algorithms. A common division of side-channel analysis is into direct
attacks like Simple Power Analysis (SPA) and Differential Power Analysis (DPA) [KJJ99]
and two-stage (profiling) attacks like template attack [CRR02] and machine learning-
based attacks [HGM+11, LPB+15, PHJ+17, ZBHV19]. Direct attacks do not require
access to an identical and open copy of the device under attack, and they have no
hyperparameters to tune. Simultaneously, to break a certain implementation, they could
require tens of thousands of measurements. Profiling attacks assume an “open” device
(or a copy of it), but the key recovery requires only a few measurements. Today, the
most powerful representatives of profiling attacks come from the machine learning domain.
Such machine learning-based (or deep learning-based) attacks can break targets protected
with countermeasures, but to reach that level of performance, they also require a careful
hyperparameter tuning [KPH+19, ZBHV19].
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Hyperparameter tuning is what differentiates a machine learning-based attack that
performs “only” satisfactory, from the one that breaks a target in a few measurements,
or even in a single measurement. In previous years, when simpler machine learning
techniques were still commonly used in SCA, the hyperparameter tuning was one of the
important factors of the attack success, but not the only one. Indeed, feature engineering
(dimensionality reduction like PCA [APSQ06] or feature selection [PHJB19]) played an
equally important role as hyperparameter tuning in mounting a successful attack. With
deep learning, pre-processing lost most of its importance as deep learning techniques are
powerful enough to work with raw traces [MPP16, KPH+19]. Thus, the attention of the
security evaluator (attacker) shifted toward hyperparameter tuning as the core task for a
successful machine learning-based side-channel analysis.

The problem of hyperparameter tuning in SCA is a difficult one. First, in general, we
do not know of hyperparameter tuning approaches applicable in any setting. What is more,
deep learning architectures have a plethora of hyperparameters to tune, so it is impossible
to check all options. Even a grid search becomes difficult to do for larger neural network
models and datasets. In SCA, we encounter additional difficulties as we do not know what
hyperparameters influence the attack performance compared to those that show little to
none importance. If we consider the number of different datasets, leakage models, neural
network architectures, and hyperparameter options, it is obvious that exhaustive search is
not an option. Simultaneously, random search and grid search do offer good performance
in many settings, but we are still left with the question of how far we are with those
architectures from the optimal ones. Finally, many SCA evaluators are not experts in
machine learning, and for them, it is not easy to recognize the important hyperparameters
without much experience.

When considering machine learning and profiling SCA, several works discuss hyperpa-
rameter tuning, see, e.g., [BPS+20, KPH+19]. While those works manage to (partially)
answer the question of the better performing neural network architectures for specific
settings, they do not provide a methodology for tuning the hyperparameters. Still, by
recognizing the less important hyperparameters, those works help indirectly to make more
efficient hyperparameter tuning. A few papers discuss how to provide a more structured
way to build neural networks for SCA. More precisely, those works offer methodologies to
build neural network architectures for SCA [ZBHV19, WAGP20]. Unfortunately, while
they represent a good start, they are far from perfect as they require knowledge about the
dataset to be attacked, and they are not easy to extend to other datasets.

This paper proposes the hyperparameter tuning based on the Bayesian optimization
that is optimized for side-channel analysis. More precisely, we start from a well-known
Bayesian optimization paradigm for hyperparameter tuning, and we develop a custom
SCA framework supporting both machine learning and SCA metrics. We manage to
optimize neural networks (in this work, multilayer perceptron, and convolutional neural
networks) to reach high performance for several commonly used SCA datasets. By doing
this, we manage to offer a simple yet powerful approach that results in high-performing
neural networks for SCA that do not require knowledge about the datasets to be attacked.
Moreover, since our framework offers automated hyperparameter tuning, it is easy to use
it with different datasets.

Our main contributions are:
1. To the best of our knowledge, we are the first to propose Bayesian optimization for

hyperparameter tuning for deep learning-based SCA. We compare this approach
with a common one in SCA, which is a random search. Surprisingly, our results
show that for some commonly considered datasets in deep learning-based SCA, a
random search can find top-performing neural networks, which raises the question of
how justified it is to develop methodologies on such simple datasets. On the other
hand, Bayesian optimization performs consistently well, making it a natural choice
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to select when facing uncertainties about the difficulty of the attack.
2. We develop a custom framework (AutoSCA) for hyperparameter tuning in SCA that

optimizes machine learning and SCA metrics. Our framework is based on Auto-
Keras [JSH19]. We plan to release the framework as open-source upon the acceptance
of the paper. 1 The results indicate that when the dataset is easy to attack, the metric
is less important. On the other hand, for more challenging settings, we found that the
recently proposed Lm metric performs the best [WWK+20]. Our framework enables
us to find strong neural network architectures regardless of the dataset, leakage
model, and neural network type. Moreover, the framework works in a black-box
setting where we do not require any knowledge about dataset characteristics. Finally,
since AutoSCA works in an automated way, it is easy to extend it to any dataset
and experimental setting.

3. We compare the neural network architectures obtained through our framework with
the state-of-the-art results showing our architectures reach better performance for
the ASCAD dataset with the fixed key. Interestingly, we also show that random
search can easily find neural network architectures outperforming the state-of-the-art
results obtained through methodologies. Indeed, such neural networks are larger
(i.e., have more trainable parameters), but we do not consider this a limitation.

2 Background
In this section, we first present the notation we use. Afterward, we discuss the supervised
learning paradigm and profiling side-channel analysis. Finally, we discuss the SCA datasets
we use in our experiments, SCA metrics, and Bayesian optimization.

2.1 Notation
Let calligraphic letters like X denote sets, and the corresponding upper-case letters X
denote random variables and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively. Let k be a key byte candidate
that takes its value from the keyspace K, and k∗ the correct key byte.

A dataset is defined as a collection of traces T, where each trace ti is associated with
an input value (plaintext or ciphertext) di and a key ki. If we consider only a specific key
byte, then we denote key byte as ki,j , and input byte as di,j .

The dataset consists of Z traces. From Z traces, we take N traces as the profiling ones,
V as the validation traces, and Q as the attack traces, where Z = M + V +Q. Finally, θ
denotes the vector of parameters to be learned in a profiling model (e.g., the weights in
neural networks), and H denotes the set of hyperparameters defining the profiling model.

2.2 Supervised Machine Learning and Profiling SCA
Supervised machine learning represents the machine learning task of learning a function f
that maps an input to the output (f : X → Y )) based on examples of input-output pairs.
The function f is parameterized by θ ∈ Rn, where n denotes the number of trainable
parameters (see Section 2.3 for further details). Supervised learning happens in two phases:
training and test. This corresponds to profiling SCA phases commonly denoted as profiling
and attack phases. In the rest of this paper, we use the terms profiling/training and
attack/testing interchangeably.

1We are happy to share the framework with the program committee members through the conference
chairs if required.
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1. The goal of the training phase is to learn such parameters θ′ that minimize the
empirical risk represented by a loss function L on a dataset T of size N (T =
{(xi, yi)}N

i=1):

θ′ = argmin
θ

1
N

N∑
i

L(fθ(xi), yi). (1)

As common in profiling SCA, we consider the c-classification task, where c denotes
the number of classes that depends on the leakage model we use, as discussed in
Section 2.4. More precisely, the classifier is a function that maps input features to
label space (f : X → Rc). As already stated, we consider deep learning techniques,
and more precisely, multilayer perceptron and convolutional neural networks. Then,
the function f is a deep neural network with the Softmax output layer. Additionally,
we encode classes in one-hot encoding, where each class is represented as a vector of
c values that has zero on all the places, except one place, denoting the membership
of that class, i.e., yi = eyi ∈ {0, 1}

c such that 1T yi = 1 ∀i. The most common loss
function for deep learning is the categorical cross-entropy:

CCE = −
c∑
i

yij log(fj(xi,θ), (2)

where yij corresponds to the j element of one-hot encoded class for input xi, and fj

denotes the j element of f .

2. In the attack phase (also known as testing or inference), the goal is to make predictions
about the classes

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the device under the attack. The
outcome of predicting with a model f on the attack set is a two-dimensional matrix
P with dimensions equal to Q× c. Every element pi,v of matrix P is a vector of all
class probabilities for a specific trace xi (note that

∑c
v pi,v = 1,∀i. The probability

S(k) for any key byte candidate k is a valid SCA distinguisher, where it is common
to use the maximum log-likelihood distinguisher:

S(k) =
Q∑

i=1
log(pi,v). (3)

The value pi,v denotes the probability that for a key k and input di, we obtain the
class v. The class v is derived from the key and input through a cryptographic
function CF and a leakage model l.

Note that we follow a standard assumption in the supervised machine learning, which
states that the training and test data are drawn independently from identical distributions
(commonly called i.i.d. assumption). This means that the process that samples the
data has no memory, i.e., we do not expect a higher correlation for any two traces
compared to other traces. Consequently, we neglect the fact that in profiling side-channel
analysis, we need to use two different devices, which increases the chances of violating i.i.d.
assumption [BCH+20].

Most of the time, in SCA, an adversary is not interested in predicting the classes in
the attack phase but aims at revealing the secret key k∗. For this, common measures are
the success rate (SR) and the guessing entropy (GE) of a side-channel attack [SMY09]. In
particular, let us assume, given Q amount of traces in the attack phase, an attack outputs
a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of probability. So, g1 is
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the most likely and g|K| the least likely key candidate. Guessing entropy is the average
position of k∗ in g. Commonly, averaging is done over 100 independent experiments to
obtain statistically significant results. Note that while defined here as guessing entropy for
the whole key, it can also be observed for separate key bytes, in which case it is called
partial guessing entropy. In this work, we calculate partial guessing entropy (i.e., one key
byte only), but we denote it as guessing entropy for simplicity.

2.2.1 Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward neural network that maps sets of inputs
onto sets of appropriate outputs. MLP consists of multiple layers (at least three) of nodes
in a directed graph, where each layer is fully connected to the next one, and training of
the network is done with the backpropagation algorithm [GBC16].

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) commonly consist of three types of layers: convolu-
tional layers, pooling layers, and fully-connected layers. The convolution layer computes
the output of neurons that are connected to local regions in the input, each computing a
dot product between their weights and a small region they are connected to in the input
volume. Pooling decrease the number of extracted features by performing a down-sampling
operation along the spatial dimensions. The fully-connected layer (the same as in MLP)
computes either the hidden activations or the class scores.

2.3 Hyperparameters and Parameters
It is common to differentiate between parameters and hyperparameters for machine
learning algorithms. Hyperparameters are all configuration variables external to the
model f , e.g., the number of hidden layers in a neural network. Template attack has no
hyperparameters, and simpler machine learning techniques (random forest, support vector
machines) have a few (important) hyperparameters. Neural networks (deep learning) have
many hyperparameters, making their tuning very difficult and computationally intensive.

The parameter vector θ represents the configuration variables internal to the model f ,
and those values are estimated from data. Let us briefly discuss the number of trainable
parameters n. We start with a perceptron that takes a single input, and given some
parameters (a set of weights and a bias) outputs a new number:

y = w · x+ b, (4)

where x denotes the input, w denotes the weight, and b denotes bias.
This can be easily extended to a scenario where the perceptron receives more than one

input. Then, each input is given its weight, multiplied with the value of that input. The
sum of the weighted inputs is then calculated, where we add bias to the result. Finally,
the activation function A is applied:

y = A(
∑

i

wi · xi + b). (5)

Following this, it is clear that the number of trainable parameters for multilayer perceptron
equals the sum of connections between layers summed with biases in every layer:

n = (in · r + r · out) + (r + out), (6)

where in denotes input size, r is the size of hidden layer(s), and out denotes the output
size.



6 Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis

For convolutional neural networks, the number of trainable parameters in one convolu-
tion layer equals:

n = [in · (fi · fi) · out] + out, (7)

where in denotes the number of input maps, fi is the filter size, and out is the number of
output maps.

2.4 Datasets and Leakage Models
During the execution of the cryptographic algorithm, the processing of sensitive information
produces a certain leakage. Depending on the leakage model l, we distinguish between
two leakage models we use in this paper:

1. Hamming weight (HW) leakage model. In this leakage model, the attacker assumes
the leakage is proportional to the sensitive variable’s Hamming weight. When
considering the AES cipher, this leakage model results in nine classes.

2. Identity (ID) leakage model. In this leakage model, the attacker considers the leakage
in the form of an intermediate value of the cipher. When considering the AES cipher,
this leakage model results in 256 classes.

2.4.1 ASCAD Datasets.

The first target platform is an 8-bit AVR microcontroller running a masked AES-128
implementation, where the side-channel is electromagnetic emanation [BPS+20]. There
are two versions of the ASCAD dataset: one with a fixed key with 50 000 traces for
profiling/training, and 10 000 for testing. We denote this dataset as ASCAD_f. The
second version has random keys, and the dataset consists of 200 000 traces for profiling
and 100 000 for testing. We denote this dataset as ASCAD_r. For both versions, we
attack the key byte 3, which is the first masked byte. For ASCAD_f, we use a pre-selected
window of 700 features, while for ASCAD_r, the window size equals 1 400 features. Note
that the leakage model does not leak information directly as it is first-order protected,
and we, therefore, do not state a model-based SNR. These datasets are available at
https://github.com/ANSSI-FR/ASCAD.

2.4.2 CHES CTF Dataset.

This dataset refers to the CHES Capture-the-flag (CTF) AES-128 trace set, released in
2018 for the Conference on Cryptographic Hardware and Embedded Systems (CHES). The
traces consist of masked AES-128 encryption running on a 32-bit STM microcontroller. In
our experiments, we consider 45 000 traces for the training set, which contains a fixed key.
The attack set consists of 5 000 traces. The key used in the training and validation set
is different from the key configured for the test set. Each trace consists of 2 200 features.
This dataset is available at https://chesctf.riscure.com/2018/news.

2.5 Leakage Distribution Difference and Correlation with the Key Guess-
ing Vector

Recently, Wu et al. proposed a new metric called Leakage Difference Distribution (LDD)
to describe the relationship among various key guesses, where the metric can be considered
as an ideal key rank if used with the correct key [WWK+20]. First, to calculate LDD, it
is required to calculate a hypothetical leakage distribution for every key candidate and
all plaintexts for a given dataset. The obtained leakage distribution variation between
different key candidates gives Leakage Distribution Difference. LDD aims to provide an
estimation of the hypothetical label distribution variation between different key candidates,

https://github.com/ANSSI-FR/ASCAD
https://chesctf.riscure.com/2018/news
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where a specific key will have a smaller probability to be selected based on a (properly)
trained profiling model if LDD is large between that key and the correct key:

LDD(k∗, k) =
Q∑

i=0
‖f(di, k

∗)− f(di, k)‖2
, k ∈ K, (8)

where f(di, k) is the leakage model function that returns the leakage value according to a
key candidate k and data value di ∈ Q, where Q denotes the number of attack traces in
the dataset.

Depending on the leakage model function, we can modify LDD and obtain, e.g.,
HWDD for the Hamming weight leakage model:

HWDD(k∗, k) =
Q∑

i=0
‖HW (Sbox(di ⊕ k∗))−HW (Sbox(di ⊕ k))‖2

. (9)

If the profiling model performs well, then we can expect that the correlation between
LDD and key guessing vector will be good, which can be used to define a metric that
estimates how well did the profiling model fit the leakage:

Lm(LDD,g) = corr(argsort(LDD),g). (10)

2.6 Bayesian Optimization
Tuning hyperparameters for deep neural networks is an expensive step. Within the deep
learning domain, various neural architecture search (NAS) methods aim to find the best
architecture for the given learning task and dataset. The NAS algorithms are commonly
very expensive as their computational complexity depends on the number of neural network
architectures to evaluate and the time needed to evaluate each of the networks. Therefore,
it is crucial to have an efficient method to select optimal hyperparameters when the
number of iterations t is limited due to either computation power or time. In that context,
Bayesian Optimization (BO) can be used to optimize any black-box function. In general,
Bayesian Optimization aims to find the parameters x′ that maximize the function f(x)
over a domain X :

x
′

= argmax
x∈X

f(x). (11)

Let us consider that the Bayesian optimization works over t iterations. Then, Bayesian
optimization aims to find the maximum point on the function using the minimum number
of iterations. Formally, the aim is to minimize the number of iterations t before we can
guarantee that x′ s.t. f(x′) is less than ε from the true maximum f

′ .
If the problem is simple, e.g., we search a small hyperparameter space, random search

or grid search is often sufficient. If we start considering larger search spaces, we can benefit
from the memory in the process (i.e., considering the results from previous measurements).
Considering the memory of previous measurements is commonly possible with sequential
search strategies, which is represented with sequential model-based optimization (SMBO)
in the Bayesian optimization.

To achieve good results with any search strategy, we need to account for both exploration
(visiting search space regions not visited before) and exploitation (sampling from more
promising regions based on observed results). In Bayesian Optimization, the aim is to
build a probabilistic model of the underlying function that will include exploitation and
exploration.

In Bayesian Optimization, we first need a probabilistic model of a function (which is
often referred to as the surrogate model), where there are several ways to model it. In this
work, we consider the Gaussian Process, a common choice for Euclidean spaces [JSH19].
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A Gaussian Process is a collection of random variables, where any finite number of such
random variables is jointly normally distributed. Gaussian Process is defined by the mean
function and the covariance function. We can estimate the function’s distribution at any
new point x∗, where the mean gives the best estimate of the function value, and the
variance gives the uncertainty.

Second, we require an acquisition function for Bayesian optimization to generate the
next neural network architecture to observe, i.e., to select what point to sample next.
More precisely, the acquisition function takes the mean and variance at each point x on
the function and computes a value that indicates how desirable it is to sample next at
this position. One common example of the acquisition function is the upper confidence
bound [ACBF02]. The value of the upper confidence bound function is an estimation of
the lowest possible value of the cost function given the neural network f :

α(x∗) = µ(x∗)− βσ(x∗). (12)

Here, β is the balancing factor to regulate between the exploration and exploitation.
This acquisition function computes the likelihood that the function at x∗ will return a
result higher than the current maximum f(x′). For further information about Bayesian
Optimization, possible models of the functions, and acquisition functions, we refer interested
readers to [JSH19, Fra18].

3 Related Works
Profiling SCA has a history spanning already almost 20 years. The first profiling at-
tack is the template attack, where the authors showed it could break implementations
secure against other forms of side-channel attacks [CRR02]. This attack has advantages
because it is the most powerful one from the information-theoretic perspective and has
no hyperparameters to tune. At the same time, the main drawbacks of this technique
are unrealistic assumptions (unlimited number of traces, noise following the Gaussian
distribution [LPB+15]) and the fact that machine learning techniques (especially deep
learning) can reach significantly better attack performance, especially if the target is
protected with countermeasures. Researchers suggested using one pooled covariance matrix
averaged over all labels to cope with statistical difficulties arising in template attack when
the number of features is larger than the number of traces per class [CK14].

When discussing machine learning approaches, we can divide the corpus of works
based on the complexity of the used techniques and the hyperparameter phase treatment.
Indeed, the first works considered simpler machine learning techniques like random for-
est [LMBM13], support vector machines [HGM+11, HZ12, PHJ+17], Naive Bayes [PHG17],
or multilayer perceptron [GHO15]. The main focus was on the attack performance and how
those techniques compare with the template attack and its variants. From 2016 [MPP16],
the SCA community shifted a large part of its attention to the deep learning techniques.
The two most explored approaches are multilayer perceptron 2 and convolutional neural
networks. Both of those approaches reached top performance where it is even possible
to break implementations protected with countermeasures [CDP17, PHJ+18, KPH+19].
Only recently, the community started to expand the deep learning perspective for profiling
SCA, see, e.g., autoencoders that are used to pre-process the traces [WP20].

The SCA community’s maturity in using machine learning can also be examined
from the hyperparameter tuning phase’s perspective. Indeed, first works do not mention
whether they conduct hyperparameter tuning or even what are the final hyperparameters
selected [MHM14, YZLC12]. Afterward, numerous works consider various machine learning

2Note that we listed multilayer perceptron in simpler machine learning techniques also. Indeed,
depending on whether we first run dimensionality reduction, we use multilayer perceptrons of different
complexities.
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techniques to conduct hyperparameter tuning through a random search or a grid search.
In [BPS+20], the authors conduct an empirical evaluation of different hyperparameters for
CNNs and the ASCAD database. Perin et al. conducted a random search in pre-defined
ranges to build deep learning models to form ensembles [PCP20]. Several works aim to
evaluate the influence of various hyperparameters systematically. L. Weissbart considered
multilayer perceptrons and hyperparameter tuning for the number of layers and neurons,
and activations functions [Wei19]. Li et al. investigated the weight initialization role for
MLP and CNN architectures [LKP20]. Perin and Picek explored the influence of the
optimizer choice for deep learning-based side-channel analysis [PP20]. These works discuss
certain hyperparameters’ influence in specific settings, but they do not offer the rules
on how to build the full neural network architectures. At the same time, these papers
provide answers to how important are specific hyperparameters, which can help improve
the hyperparameter tuning in the future.

Finally, several papers aim to offer a methodology on how to build neural networks.
In [ZBHV19], the authors proposed a methodology to select hyperparameters that are
related to the size (number of learnable parameters, i.e., weights and biases) of layers
in CNNs. This includes the number of filters, kernel sizes, strides, and the number of
neurons in fully-connected layers. To the best of our knowledge, this is the first work
that tried to systematically answer the question of how to build well-performing neural
network architectures. Unfortunately, we are still far from a real methodology. While the
authors present CNN architectures that reach top performance, they also assume much
knowledge about datasets and consider only CNNs. What is more, it is not trivial to
extend this methodology to new datasets. Wouters et al. [WAGP20] improved upon the
work from Zaid et al. [ZBHV19], where they discussed several misconceptions in the first
work, and they showed how to reach similar attack performance with significantly smaller
neural network architectures. Thus, this shows that we are far from having established
methodologies or even ways how to build them.

4 The AutoSCA Framework
This section first briefly discussed the general design for our framework, and afterward, we
discuss why we do not include the number of trainable parameters as the optimization
goal.

4.1 General Design
The AutoSCA framework can be divided into two steps. First, we characterize the search
space by testing different combinations of settings. Second, we select the best candidate out
of these attempts. An illustration of the framework is shown in Figure 1. Our framework
is based on Auto-Keras [JSH19]. In our framework, 50 iterations are performed testing
different hyperparameter combinations, which are determined by Bayesian Optimization.
In each iteration, the Bayesian Optimization function outputs a set a hyperparameters Pi

to build the model, followed by the training process. As the number of iterations in the
hyperparameters search increases, we tend to find many models that may easily overfit
and eventually produce poor results. This will be mainly a problem if the best model
is a small model (more iterations lead to more chance to identify smaller models, too).
Therefore, we train each profiling model for ten epochs. This also brings the additional
benefit that the best model obtained from this setting would consume less training time
when used for the real attack, thus increasing the attack efficiency.

Once the training is finished, the attack performance is evaluated by calculating score
O(Pi) of the different objective functions with 2 000 attack traces. Note that the score is
only calculated in the validation phase to speed up the test procedure. After 50 iterations
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Bayesian 
Optimization Model Training

Model Evaluation
𝑂𝑂 𝑃𝑃𝑖𝑖

Attack with the best model 
(Guessing Entropy)

AutoSCA tuning strategy

𝑃𝑃𝑖𝑖

𝑖𝑖 = 𝑖𝑖 + 1

Figure 1: AutoSCA framework.

are finished, the best hyperparameters combination is selected based on its score, and the
best model is constructed following this optimal setting. To evaluate its actual attack
performance, this model is trained for either 10 or 50 epochs and then attacked ten times
on 5 000 traces that are randomly selected out of 10 000 traces. As a result, guessing
entropy can be calculated by averaging the key rank of each attack.

4.2 The Perspective of Small Neural Network Architectures
Note that we do not put the neural network architecture size into our design considerations.
One could consider this somewhat “outdated” as recent works [ZBHV19, WAGP20], give
much emphasis on profiling model size. More precisely, Zaid et al. developed custom
CNN architectures for each dataset they considered [ZBHV19]. While they obtained
significantly better attack performance than related works, they also emphasize that
their neural networks are much smaller than, e.g., [BPS+20, KPH+19]. Next, Wouters
et al. [WAGP20] continued along this research line of small neural network architectures,
and they reported a reduction of neural network trainable parameters from 38.5% to 70%,
depending on the specific dataset, while “...still producing similar results.“

Our opinion is that such a line of thinking does not follow the SCA perspective.
Indeed, we believe our primary concern should be reaching the top attack performance
in reproducible conditions. If multiple architectures reach the same attack performance,
it makes sense considering different constraints, like, e.g., neural network architecture or
profiling set size [PHPG19]. Besides being oriented toward the attack performance, there
are several more reasons not to consider the neural network size as a primary concern:

1. By using very small neural networks, we need to make more significant adjustments
concerning each dataset. Indeed, already Zaid et al. require quite some different
architectures for ASCAD and AES_RD [ZBHV19], which is a striking difference
from one architecture needed by Kim et al. [KPH+19]. Considering larger datasets
and targets protected with more countermeasures makes very small neural network
architectures more limited as they would have problems with profiling model capacity.
We believe a proper way to go is to use larger architectures and emphasize explicit
profiling model regularization.

2. Realistically speaking (and compared to neural network architectures in other do-
mains), SCA’s neural network architectures are small. As such, we see no significant
reason why to emphasize the need for even smaller neural networks. Indeed, from
the computational perspective, we consider all those architectures to be well within
reach of academia and industry capabilities. Finally, one can argue that smaller
neural network architectures are easier to interpret and explain, and we agree with
that perspective even though we still cannot interpret or explain even such small ar-
chitectures. Still, that perspective should be in the service of the attack performance
as understanding architectures that will not be used makes little sense.
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5 Experimental Results
First, in Tables 1 and 2, we denote the ranges where we conduct our search for MLP
and CNN hyperparameters, respectively. Note that we selected those ranges as a rough
estimate to expect a good attack performance based on the results from related works.
We could have selected even smaller ranges for certain settings, but that would make
the search too easy for both random search and Bayesian Optimization. Note that the
ranges for MLP still result in a relatively small search space size of 720 hyperparameter
combinations. On the other hand, for CNNs, the exhaustive search should go through
2 488 320 hyperparameter combinations.

We randomly select a profiling model (RS) or run BO for 50 iterations to obtain a
profiling model in all the experiments. Once we obtain a profiling model, we train it for a
certain number of epochs (10 or 50), and then we evaluate it on the test set. For ASCAD
datasets, we use 50 000 traces for training, 2 000 for validation, and 5 000 for testing. For
the CHES CTF dataset, 43 000 are used for training, 2 000 for validation, and 5 000 for
testing.

Table 1: Hyperparameter search space for multilayer perceptron.

Hyperparameter min max step

Dense (fully-connected) layers 2 10 1

Neurons (for dense or fully-connected layers) 100 400 100

Options

Learning Rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Activation function (all layers) ReLU, Tanh, ELU, or SELU

Table 2: Hyperparameters search space for convolutional neural network.

Hyperparameter min max step

Convolution layers 1 4 1

Convolution Filters 8 64 8

Convolution Kernel Size 2 10 1

Pooling Size 2 5 1

Pooling Stride 2 10 1

Dense (fully-connected) layers 1 3 1

Neurons (for dense or fully-connected layers) 100 400 100

Options

Pooling Type max pooling, avg pooling

Learning Rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Activation function (all layers) ReLU, Tanh, ELU, or SELU

5.1 ASCAD Datasets

In this section, we first discuss the results for the ASCAD dataset with the fixed key.
Afterward, we extend our analysis to the setting with random keys.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 2: Search results for MLP with the HW leakage model on ASCAD with fixed key.

5.1.1 ASCAD with a Fixed Key

In Figure 2, we depict the results for three objective functions (accuracy, key rank, and Lm,
and we compare their performance for random search (RS) and Bayesian Optimization
(BO) when tuning MLP profiling models. The profiling models are trained up to ten epochs
with the Hamming weight leakage model. Note that the key rank decreases regardless of
the objective function. Interestingly, we see rather good performance even for accuracy,
which is well-known for not being a good metric for SCA, especially in the HW leakage
model [PHJ+18]. Still, note that the final key rank is rather high, and it is expected
that with any “reasonable” objective, we can improve performance over random guessing
(especially if the dataset is not difficult as is the case with ASCAD with a fixed key). We
can observe a similar performance with accuracy and key rank, while Lm performs better.
Finally, for Lm, BO works significantly better than RS.

Based on the results from the best RS and BO profiling models, we depict guessing
entropy results for a number of different settings (Figure 3). We consider three objectives,
and we train profiling models for 10 or 50 epochs, which results in six settings. When using
BO, we see that accuracy with 50 epochs works the best, as shown in Figure 2a. This
indicates that BO is capable of finding profiling models that generalize well. What is more,
the best performance reaches GE of 1 for around 500 attack traces. When considering
RS, we see that Lm performs the best (as shown in Figure 2c), as it manages to reach GE
equal to 1 for around 250 attack traces already. At the same time, we see accuracy results
with RS requires more traces to reach GE of 1. This is mostly because the well-performing
profiling models are a matter of luck, and we cannot expect that if we train with accuracy,
we can obtain profiling models that provide superior generalization compared to SCA
metrics. Our results show very strong attack performance with already ten epochs, which
is somewhat differing from related works where it is common to train for 100 epochs or
more. Finally, note that in this experiment, we see that there is not much need to use BO
mainly because the search space size is small enough for RS to select it. What is more, we
observe multiple profiling models are performing very well, which confirms our stipulation
that the ASCAD dataset with the fixed key is an easy dataset to attack.

Next, in Figure 4, we show results for the experiments with the ID leakage model.
The results are similar to the HW leakage model case, but now we see that the accuracy
objective performs the worst for BO. For all three objective functions, we can also notice
that BO performs better. In Figure 5, we show the results for the attack dataset, where
we see that both RS and BO break the dataset easily. When training with 50 epochs,
the best model from BO requires around 130 attack traces, while the best model for RS
requires only around 80 attack traces. Note that both results indicate (significantly) better
attack performance than reported in state-of-the-art [ZBHV19, WAGP20]. Again, the
top performance of RS indicates this dataset is easy to break, and we do not require any
special methodologies to succeed in the attack.
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(a) Bayesian optimization.
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(b) Random search.

Figure 3: The GE comparison with the best MLP models obtained by two searching
methods with HW leakage model on ASCAD with fixed key.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 4: Search results for MLP with the ID leakage model on ASCAD with fixed key.
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(a) Bayesian optimization.
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(b) Random search.

Figure 5: The GE comparison with the best MLP models obtained by two searching
methods with ID leakage model on ASCAD with a fixed key.

Next, we show the results when optimizing CNN hyperparameters. Figure 6 shows the
results for different objectives for CNN in the Hamming weight leakage model. Observe
that the results are significantly worse compared to MLP as now, the search space size is
almost 3 500 times larger. Accuracy and key rank perform similarly, while Lm manages
to reach a significantly lower key rank with BO. Guessing entropy results depicted in
Figure 7 show good performance, where around 1 000 attack traces is enough for most of
the settings to reach guessing entropy of 1. The best performing result is from a random
search where we need only 500 traces to break the target.



14 Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis

0 2 4 6 8
Epochs

0

50

100

150

200

250

Ke
y 

Ra
nk

RA: Key Rank Trial
RA: Average
BO: Key Rank Trial
BO: Average

(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 6: Search results for CNN with the HW leakage model on ASCAD with a fixed
key.
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(a) Bayesian optimization.
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(b) Random search.

Figure 7: The GE comparison with the best CNN models obtained by two searching
methods with HW leakage model on ASCAD with fixed key.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 8: Search results for CNN with the ID leakage model on ASCAD with fixed key.

For the ID leakage model, all three objectives reach a significantly better key rank
compared with the HW leakage model (Figure 8). The best obtained results are for BO
and accuracy as the objective metric. As we are in the ID leakage model, class imbalance
does not pose a problem, and thus, accuracy is also more stable. Considering GE results
in Figure 9, we see that with the random search, we cannot break the target at all. This is
not surprising as the search space is huge, and the chances of randomly selecting a good
profiling model are low. On the other hand, BO works well for both accuracy and Lm.

In Table 3, we compare several architectures for the ID leakage model. We consider
training times, complexity (the number of trainable parameters), and the number of traces
needed to reach GE of 1. First, notice that [BPS+20] considers a significantly larger neural
network, as evident through the training time and the complexity variables. The best
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(a) Bayesian optimization.
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(b) Random search.

Figure 9: The GE comparison with the best CNN models obtained by two searching
methods with ID leakage model on ASCAD with fixed key.

architecture from Zaid et al. [ZBHV19] is the smallest. However, it takes more time than
AutoSCA MLP (as MLP is simpler to train) and AutoSCA CNN when training with ten
epochs. From the performance side, we can see that AutoSCA MLP reaches the best
performance with the shortest training time, while AutoSCA CNN is somewhat worse
than [ZBHV19]. When increasing the training epochs to 50, the attack performance of
both AutoSCA MLP (129) and AutoSCA CNN (158) surpass the best results from related
works. As a trade-off, more training time is needed.

Table 3: Comparison of performance on ASCAD with the ID leakage model.

[BPS+20] [ZBHV19] AutoSCA MLP AutoSCA CNN

Complexity 66 652 444 16 960 478 656 54 752

Traces to reach GE = 1 1 476 191 251/129 498/158

Training time (s) 5 475 253 81/405 116/550

5.1.2 ASCAD with Random Keys

In Figure 10, we depict the results for the HW leakage model and MLP. Observe that here,
key rank as the objective for BO reaches by far the best results. Both accuracy and Lm

perform similarly for RS and BO, and in line with results in the previous section. Guessing
entropy results are shown in Figure 11. Observe Lm results are the best for both RS and
BO. Again, we do not see a significant difference concerning the number of training epochs.
BO with Lm and 50 epochs reaches the best performance where it requires only around
800 traces to reach GE equal to 1. As this dataset is more difficult than the dataset with
the fixed key, we see that MLP with RS has more issues reaching top performance, and
BO should be already considered a preferable option for hyperparameter tuning.

Next, we consider the ID leakage model and MLP for the ASCAD dataset with random
keys (Figure 12). As there are more labels in this leakage model (256 classes) and the
dataset is more difficult compared to ASCAD with a fixed key, now we can observe that
BO is significantly better than RS regardless of the objective. The best results are again
reached for Lm, which confirms that this metric is indeed connected to the profiling model
performance and should be considered as a viable choice for deep learning-based SCA.
Figure 13 shows corresponding GE results, where RS needs fewer traces to reach GE of 1
compared to BO. Indeed, we observe we can break the target with around 2 000 attack
traces, while with BO, we need around 4 000 traces.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 10: Search results for MLP with the HW leakage model on ASCAD with random
keys.
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(a) Bayesian optimization.
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(b) Random search.

Figure 11: The GE comparison with the best MLP models obtained by two searching
methods with the HW leakage model on ASCAD with random keys.
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(a) Objective: accuracy.

0 2 4 6 8
Epochs

0

50

100

150

200

250

Ke
y 

Ra
nk

RA: Key Rank Trial
RA: Average
BO: Key Rank Trial
BO: Average

(b) Objective: key rank.
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(c) Objective: Lm.

Figure 12: Search results for MLP with the ID leakage model on ASCAD with random
keys.

Finally, we display the results for ASCAD with random keys and CNN architectures.
First, in Figure 14, we show the results for the HW leakage model. Observe that accuracy
and Lm give similar results, while the key rank objective is somewhat better. Translating
these into the attack performance, we show guessing entropy in Figure 15. Interestingly,
we still see that RS has better performance, as the best performing profiling model requires
around 1 000 traces to break the target.

Figure 16 shows results for the ID leakage model and CNN. Observe that all three
objectives struggle to reach good performance, suggesting that our profiling models will
have problems with generalization. Such intuition is confirmed in Figure 17, where we
display GE results. Here, BO works significantly better as it manages to reach GE of 1 for
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(a) Bayesian optimization.
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(b) Random search.

Figure 13: The GE comparison with the best MLP models obtained by two searching
methods with the ID leakage model on ASCAD with random keys.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 14: Search results for CNN with the HW leakage model on ASCAD with random
keys.

0 1000 2000 3000 4000 5000
Attack Traces

0

50

100

150

200

250

Gu
es

sin
g 

En
tro

py

Lm_10_epoch
Lm_50_epoch
Key_rank_10_epoch
Key_rank_50_epoch
Acc_10_epoch
Acc_50_epoch

(a) Bayesian optimization.
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(b) Random search.

Figure 15: The GE comparison with the best CNN models obtained by two searching
methods with the HW leakage model on ASCAD with random keys.

around 3 000 attack traces (accuracy and 50 epochs). For RS, no results are suggesting we
can break the target. These results are in line with our previous observations as the more
difficult the dataset and leakage model (concerning the number of classes), the smaller are
the chances that RS can find well-performing architecture.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: Lm.

Figure 16: Search results for CNN with the ID leakage model on ASCAD with random
keys.
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(a) Bayesian optimization.
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(b) Random search.

Figure 17: The GE comparison with the best CNN models obtained by two searching
methods with ID leakage model on ASCAD with random keys.

5.2 CHES CTF Dataset
This section provides experimental results with MLPs and CNNs for the CHES CTF
dataset on the Hamming weight leakage model. The training set contains a fixed key that
is different from the fixed key in the validation set. Therefore, we omit results for the ID
leakage model as it requires a training set with variable keys (or at least a training set
with the same key as the validation set) if the S-box output in the first AES round is used
as a leakage model. Moreover, we show only results for the validation key rank and Lm

as search metrics for this dataset. We do not discuss the validation accuracy as a search
metric because the results were very poor in all scenarios.

Figure 18 shows results for a 50-iteration search for both BO and RS methods when the
hyperparameter search method tries to find the best MLP model. In these cases, validation
key rank and Lm are used as the objective function to be minimized and maximized,
respectively. As we can see, BO tends to find more successful profiling models when
compared to RS when we search for hyperparameters in the ranges provided in Table 1.

Figures 19 provides the GE results for the best models that are selected according to
each search method when MLPs are considered. These best models are retrained at the end
of the search process and, this time, for 10 and 50 epochs. Comparing Figures 19a and 19b,
we can observe that GE results obtained from the best model when BO is considered are
very similar to the GE results obtained with RS. For the best models, in case validation
key rank is the objective function, BO requires fewer traces to converge when the model is
retrained for 50 epochs. For other scenarios, results are similar and all models required
between 800 and 1 500 traces to reach guessing entropy equal to 1.
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(a) Objective: key ranking. (b) Objective: Lm

Figure 18: Search results for MLP with the HW leakage model for the CHES CTF dataset.

(a) Bayesian Optimization (b) Random Search

Figure 19: The GE comparison with the best MLP models obtained by two searching
methods with HW leakage model on CHES CTF dataset.

Figure 20 shows hyperparameter search results for CNNs for the Hamming weight
leakage model. Again, the analysis is performed for 50 iterations, and both methods
(BO and RS) search for hyperparameters according to the ranges provided in Table 2. In
Figure 20a, we can observe that the average key rank in all ten executed epochs is lower
for BO if compared to RS in case of the validation key rank is used as the objective metric
to be minimized. When Lm metric is used as the objective function to be maximized in
the BO process, results for both search methods are similar, as seen in Figure 20b.

Results in Figure 21 indicate GE for the best models in case CNNs are considered by
the search methods. In this case, we can clearly see that BO tends to find a CNN model
that provides better generalization results than RS. This difference is more evident when
the validation key rank is used as the objective function. When the best model obtained
from BO is retrained for 50 epochs, this model requires approximately 1 400 traces to reach
GE equal to 1, while GE for the same scenario with random search was not able to reach
GE equal to 1 after the processing of 5 000 attack traces. As the search space is larger for
CNNs than MLPs, an optimized search method such as BO methods tends to work better.
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(a) Objective: key ranking. (b) Objective: Lm

Figure 20: Search results for CNN with the HW leakage model for the CHES CTF dataset.

(a) Bayesian Optimization (b) Random Search

Figure 21: The GE comparison with the best CNN models obtained by two searching
methods with HW leakage model on CHES CTF dataset.

6 Conclusions and Future Work

In this paper, we propose Bayesian Optimization for the deep learning-based SCA hyper-
parameter tuning. We develop a custom framework that supports both machine learning
and side-channel metrics, and we evaluate the performance of such obtained profiling
models with random search and state-of-the-art results. We can observe that BO works
well and produces a large number of highly-fit profiling models. Interestingly, we also see
that random search can find excellent profiling models, where for several settings, results
obtained from random search are even the best. This raises the question of whether we
indeed need methodologies for finding neural network architectures, or more precisely, can
we make good methodologies on datasets that are so easy to break? Naturally, random
search results need to be considered from a proper perspective as we pre-select some
“reasonable” ranges. Extending the ranges makes the problem more difficult for a random
search. Thus, going there is a trade-off between the hyperparameter tuning and the
assumptions on the architectures one makes. Indeed, our results show there are so many
top-performing profiling models that it becomes difficult to properly judge the merits of
methodologies. Due to those issues, we believe the automated tuning process as the one
we present here should be the first choice when running deep learning-based SCA.
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We plan to extend our analysis to more datasets and different types of Bayesian
Optimization in future work. Indeed, in this work, we considered only one surrogate model
(Gaussian process) and one acquisition function (upper confidence bound). While those
choices are reasonable for the settings we explore, further investigation should be done to
judge specific design choices’ merits.
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