
ARX-KW, a family of key wrapping

constructions using SipHash and ChaCha

Satō Shinichi∗

January 20, 2020

Abstract

ARX-KW is a family of key wrapping construction based on add-
rotate-xor primitives: the pseudo-random function SipHash for authen-
tication and the stream cipher ChaCha for confidentiality. This paper
presents ARX-KW, proposes a specific instantiation of ARX-KW and de-
tails the design decisions that were made.

1 Necessity for a new key wrapping construc-
tion

Key wrapping algorithms intend to protect cryptographic keys by encrypting
the keys with a key encryption key (“KEK”). There is no specific requirement
to use a key wrapping algorithm; authenticated encryption works just as well.[5]
The rest of this section explains why existing constructions using the ChaCha
stream cipher for authenticated encryption are not practical for key wrapping.

Unlike a block cipher operating in ECB mode, which only requires a key, the
ciphers in the ChaCha family always require a nonce (number used once) and a
block counter. Reusing the same pair of nonce and block counter with the same
key leads a loss of confidentiality: If two ciphertexts are xored from the same
ChaCha block, the xor of the plaintexts is revealed to an attacker that has both
of the ciphertexts, which allows recovering the plaintexts. It is therefore vital
that a ChaCha block is never repeated for the same key.

Given this, it is necessary to manage nonces and block counters. Typically,
the block counter for every new encryption or decryption operations is set to 0,
reducing the issue to a nonce management problem instead.

ChaCha is specified in multiple variants. Daniel J. Bernstein’s original spec-
ification made use of a 64-bit nonce with a 64-bit block counter.[3] The variant
of ChaCha20 specified by the IETF in RFC 8439 specifies a 96-bit nonce with
a 32-bit block counter.[8] Finally, there is a variant called XChaCha20, which
uses a 192-bit nonce to derive a new key and nonce with one extra invocation
of ChaCha20;[1] it uses the same method as XSalsa20 by Daniel J. Bernstein to
extend the nonce of Salsa20.[4]

∗The author is not currently affiliated with any company or academic institution. Contact:
sato@airmail.cc

1

ARX-KW, a family of key wrapping constructions 2

Of those, only the 192-bit nonce of XChaCha20 can be chosen at random
for many invocations. Due to the birthday paradox, a 96-bit nonce will be
reused with 50 % probability at 296/2 or 248 invocations. In the context of
DRM systems such as Valve’s Steam platform that must handle up to several
thousands of keys, this may be an unacceptable probability.

Given that choosing a nonce at random is not an option, the wrapping pro-
cess must be stateful to avoid nonce reuse. This is not an issue when unwrapping
because the nonce can be stored along with the ciphertext. Alternatively, the
nonce and counter could be treated as a 128-bit number and then that could
be chosen at random for a 50 % collision probability of only after 2128/2 or 264

invocations; for the purpose of this paper, a nonce and counter pair shall be
called the lower quarter block or LQB for short because the last four words of
a 16-word ChaCha matrix are used for the nonce and counter.

The LQB must therefore either be stateful or chosen at random. If it is state-
ful, then the key wrapping process is necessarily stateful; the key unwrapping
process may be stateless if the statefully generated nonce is stored along with
the wrapped key (leading to a size overhead) or the key unwrapping process
may be stateful as well (leading to implementation complexity). If it is chosen
at random, then the key wrapping process and the key unwrapping process may
be stateless, but the nonce is necessarily larger and must be stored along with
the wrapped key in all cases.

Assume that the authentication tag is 128 bits in length and that a single
256-bit key is being wrapped, this leads to a base overhead of 384 bits, plus
64 to 192 bits of nonce if the unwrapping process must be stateless. To reduce
the storage overhead while also allowing operation without keeping state for the
nonce, ARX-KW is proposed.

2 Prior work

Before proposing ARX-KW, a brief overview of existing techniques is given.
The explanations are deliberately simplified down to the actual core ideas of
each technique.

The NIST key wrapping algorithm KW-AE requires a block cipher that
operates on 128-bit blocks.[5] It works by splitting the input into half-blocks of
64-bits starting with a static 64-bit initialization vector (IV). The IV is concate-
nated with the first half-block of input and processed as an input block to the
block cipher. The first half-block of the ciphertext is stored. Then the second
half-block of the ciphertext is concatenated with the second half-block of the
ciphertext xor a round number. The first half-block of the ciphertext is stored.
Repeat this until there are no more plaintext half-blocks. On decryption, this
process is reversed; the plaintext is considered authenticated if the first plaintext
half-block equals the static IV.

Another algorithm proposed for key wrapping is the SIV block cipher
mode of operation by Rogaway and Shrimpton.[9] It generates a counter for
the CTR block cipher mode of operation using a function called S2V. S2V takes
an arbitrary amount of inputs, which form additional authenticated data, except
for the last, which is the plaintext; each input is processed using CMAC. The
resulting MACs are xored into an accumulator, which is doubled and reduced
modulo 2128 between each step; the final MAC is also xored with the last n

ARX-KW, a family of key wrapping constructions 3

bits of plaintext, where n is the size of a block cipher block (and the size of
the accumulator). The output of S2V is used as a counter value for the actual
encryption operation.

The GCM-SIV block cipher mode of operation proposed by Gueron
and Lindell works similarly.[6] It generates a counter for the CTR block cipher
mode of operation using GHASH – a keyed universal hash function – over the
additional data and plaintext (plus a block that encodes the lengths of the
two inputs) and encrypting that with a subkey. Some of the lower bits of the
counter are cleared, assuming no overlap in the higher bits, to avoid overlapping
counter values. AES-GCM-SIV sacrifices another bit in the counter to encrypt
the generated counter using the same key as used for the actual encryption.

Various aspects of these algorithms are unsuitable for a construction around
the ChaCha family of ciphers, however: KW-AE is tied to the properties of a
block cipher; ChaCha being a family of stream ciphers cannot be adapted to it
whatsoever. SIV relies on CMAC and takes extra steps to be able to handle
arbitrary amounts of pieces of additional data; CMAC cannot be replicated with
stream ciphers, and while the measures taken to accommodate multiple pieces
of additional data are not an issue per se, simplifications can be made if it is
known that there will be no additional data. GCM-SIV is oriented around the
CTR block cipher mode of operation, which makes it effectively oriented around
stream ciphers and thus suitable; in fact, the AES-GCM-SIV construction can
be trivially instantiated with Poly1305 and ChaCha instead of GHASH and
AES-CTR, respectively. However, the effective resulting 95-bit nonce may be
uncomfortably small.

The core idea from the SIV constructions, however, is clear: Generate a
counter for the CTR block cipher mode of operation given a block cipher by
using a message authenticator over the plaintext. As the CTR block cipher
mode of operation effectively turns a block cipher into a stream cipher, this
core idea can be reused. In particular, Gueron and Lindell have shown that the
Universal-SIV scheme is safe to use;[6] the Universal-SIV scheme requires an
ε-XOR universal hash function processed by a pseudo-random function (PRF).

3 Generating the nonce

A randomly chosen nonce and counter may be used to process a message larger
than one block; each block causes the counter to be incremented by one, so
that the probability of a collision increases with the total size of all processed
messages. Unlike general-purpose encryption, key wrapping involves short, high-
entropy inputs; this issue is therefore intentionally ignored in this paper. A
ChaCha block is 64 bytes in length, thus allowing encryption of up to 512b̃its
of key material, or two 256-bit ChaCha keys.

The base nonce generation works the same for the two base variants of ARX-
KW. The nonce is generated using an instantiation of SipHash. SipHash is a
family of pseudo-random functions; as all PRFs are also MACs, it is suitable
as the nonce generation function for ARX-KW, combining the element an ε-
XOR universal hash and the subsequent invocation of a PRF as required by
Gueron and Lindell into the single SipHash operation. Additionally, SipHash
is optimized for short inputs,[2] which is especially useful in the context of key
wrapping. Extended-nonce variants for use with XChaCha prepend a static

ARX-KW, a family of key wrapping constructions 4

value to the tag generated by SipHash to obtain the nonce.
Unlike GCM-SIV, the output of SipHash can be used without first being

encrypted because of its properties as a PRF. Similarly unlike AES-SIV, ARX-
KW does not need to take special measures to preserve boundaries of inputs –
such as doubling an accumulator – as there is no additional data. This allows
ARX-KW to have the most simple possible way of using the output of the
authenticator: The output can be used without any changes to itself.

SipHash is always used with 128-bit output. While a 64-bit authentication
tag would be sufficient for the key (as demonstrated by the 64-bit tag in NIST
KW-AE), a 128-bit nonce is required for a comfortable security margin as noted
in section 1.

4 Specification of the ARX-KW constructions

ARX-KW is a cipher for deterministic authenticated encryption without addi-
tional data. It is specified in four base variants:

E ARX-KW-R-c-d -E1 takes a 386-bit key. The first 128 bits are used as the key
for SipHash c-d, the remaining 256 bits are used as the key for ChaChaR.

G ARX-KW-R-c-d -G2 takes a 256-bit key. The 256-bit key is used to encrypt
384 zero bits with ChaChaR, of which the first 128 bits are used as the key
for SipHash c-d, the remaining 256 bits are used as the key for ChaChaR.

EX ARX-KW-R-c-d -EX3 works like the E variant, but uses XChaChaR instead
of ChaChaR. The nonce is generated by prepending the string “arbitrEX”
(encoded in ASCII) to the SipHash output.

GX ARX-KW-R-c-d -GX works like the G variant, but uses XChaChaR instead
of ChaChaR. The nonce is generated by prepending the string “arbitrGX”
(encoded in ASCII) to the SipHash output.

The values 2, 4 and 8 are recommended for the c, d and R parameters, respec-
tively; following Aumasson, R has been reduced from the common 20 rounds of
ChaCha to only 8;[7] XChaCha is used with reduced rounds here as well, both
for the derivation of the new key and the new encryption.

The rest of this paper will assume this particular parameter choice to provide
concrete algorithms. If in doubt, the GX variant should be chosen for any given
application.

The G and E variants are unspecified for plaintexts and ciphertexts
longer than the size of a ChaCha block (64 bytes). The GX and EX
variants are intended for those scenarios.

It should be noted that ARX-KW is deterministic encryption. As such, it
will leak by design whether two plaintexts were identical. This is not considered
to be an issue because key wrapping involves high-entropy input, so plaintexts
are not expected to be identical unless they refer to the same key. This may,
however, still be an issue to be aware of in certain contexts, namely when a

1The E stands for extended key.
2The G stands for generated key.
3The X stands for the X in XChaCha.

ARX-KW, a family of key wrapping constructions 5

key that is known to have been compromised is reused in other contexts and an
attacker may be able to observe the wrapped key in both contexts.

Deterministic encryption was an intentional choice to avoid storage overhead
for keys at rest. All variants of ARX-KW take no nonce arguments and produce
a static, 128-bit overhead for the ciphertext tag, i. e. an overhead of only 50 %
of a ChaCha key.

4.1 The ARX-KW-8-2-4-E variant

The ARX-KW-8-2-4-E encryption procedure takes a 386-bit key K and a plain-
text P to produce a ciphertext C and an authentication tag T . The first 128 bits
of K are used as the subkey K1 for SipHash-2-4, the remaining 256 bits are
used as the subkey K2 key for ChaCha8. This variant trades off extending
K by 128 bits to save one invocation of ChaCha8 during the encryption and
decryption processes.

First, SipHash-2-4 is run over P to obtain T . T is then used for the nonce and
counter values of ChaCha8; it does not matter whether the original variant of
ChaCha or the IETF variant of ChaCha is used – it just moves where application
code interfacing with a library must split T . ChaCha mandates that both nonce
and counter are all parsed as 32-bit, little-endian units. ChaCha8 with the LQB
set to T is then used to encrypt P into C. Finally, C and T are returned.

The decryption procedure takes C and T . T is used to populate the LQB
as for encryption. It then runs ChaCha8 over C to obtain a plaintext candidate
P ′. It then runs SipHash-2-4 over P ′ to obtain a tag T ′. If T is equal to T ′,4

return P ′ as plaintext, else return ⊥.

Algorithm 1: ARX-KW-8-2-4-E encryption

Data: key K of 384 bit length
plaintext P no longer than 512 bits
Result: ciphertext C
128-bit authentication tag T

K1 ← K0...128

K2 ← K128...384

T ← SipHash-2-4(key=K1, msg=P)
C ← ChaCha8(key=K2, counter=T 0...64, nonce=T 64...128, msg=P)
return C, T

4This comparison is to be done using a constant-time comparison function.

ARX-KW, a family of key wrapping constructions 6

Algorithm 2: ARX-KW-8-2-4-E decryption

Data: key K of 384 bit length
ciphertext C no longer than 512 bits
authentication tag T
Result: ciphertext C
authentication tag T

K1 ← K0...128

K2 ← K128...384

P ′ ← ChaCha8(key=K2, counter=T 0...64, nonce=T 64...128, msg=C)
T ′ ← SipHash-2-4(key=K1, msg=P ′)
if T = T ′ then

return P ′

else
return ⊥

4.2 The ARX-KW-8-2-4-G variant

The ARX-KW-8-2-4-G encryption procedure takes a 256-bit key K and a plain-
text P to produce a ciphertext C and an authentication tag T . The only dif-
ference between this and ARX-KW-8-2-4-E is how the subkeys K1 and K2 are
generated, hence this description is abbreviated.

First, the 256-bit key K is used to encrypt a 386-bit all-zero message using
ChaCha8 with an all-zero LQB to obtain a 128-bit key K1 for SipHash-2-4 and
a 256-bit key K2 for ChaCha8. Then, SipHash-2-4 is run over P to obtain T . T
is then used for the nonce and counter values of ChaCha8. ChaCha8 with the
LQB set to T is then used to encrypt P into C. Finally, C and T are returned.

The decryption procedure takes C and T . T is used to populate the LQB
as for encryption. It then runs ChaCha8 over C to obtain a plaintext candidate
P ′. It then runs SipHash-2-4 over P ′ to obtain a tag T ′. If T is equal to T ′,
return P ′ as plaintext, else return ⊥.

Algorithm 3: ARX-KW-8-2-4-G encryption

Data: key K of 256 bit length
plaintext P no longer than 512 bits
Result: ciphertext C
128-bit authentication tag T

G← ChaCha8(key=K, counter=0, nonce=0, msg=0384)
K1 ← G0...128

K2 ← G128...384

T ← SipHash-2-4(key=K1, msg=P)
C ← ChaCha8(key=K2, counter=T 0...64, nonce=T 64...128, msg=P)
return C, T

ARX-KW, a family of key wrapping constructions 7

Algorithm 4: ARX-KW-8-2-4-G decryption

Data: key K of 256 bits length
plaintext P no longer than 512 bits
authentication tag T
Result: ciphertext C
authentication tag T

G← ChaCha8(key=K, counter=0, nonce=0, msg=0384)
K1 ← G0...128

K2 ← G128...384

P ′ ← ChaCha8(key=K2, counter=T 0...64, nonce=T 64...128, msg=C)
T ′ ← SipHash-2-4(key=K1, msg=P ′)
if T = T ′ then

return P ′

else
return ⊥

4.3 The ARX-KW-8-2-4-EX variant

The ARX-KW-8-2-4-EX encryption procedure takes a 386-bit key K and a
plaintext P to produce a ciphertext C and an authentication tag T . The first
128 bits of K are used as the subkey K1 for SipHash-2-4, the remaining 256 bits
are used as the subkey K2 key for XChaCha8.

First, SipHash-2-4 is run over P to obtain T . The string 61 72 62 69 74

72 45 58 is concatenated with T , which is then used for the nonce value of
XChaCha8. XChaCha8 is then used to encrypt P into C. Finally, C and T are
returned.

The decryption procedure takes C and T . The string 61 72 62 69 74

72 45 58 is concatenated with ′T , which is then used for the nonce value of
XChaCha8. It then runs XChaCha8 over C to obtain a plaintext candidate P ′.
It then runs SipHash-2-4 over P ′ to obtain a tag T ′. If T is equal to T ′, return
P ′ as plaintext, else return ⊥.

It was considered to instead tweak 128-bit SipHash to return a 192-bit value
to use directly as a nonce. However, doing so would have hampered implementa-
tion simplicity because this would have meant existing SipHash implementations
could not be leveraged without changes.

ARX-KW, a family of key wrapping constructions 8

Algorithm 5: ARX-KW-8-2-4-EX encryption

Data: key K of 384 bit length
plaintext P
Result: ciphertext C
128-bit authentication tag T

K1 ← K0...128

K2 ← K128...384

T ← SipHash-2-4(key=K1, msg=P)
N ← 61 72 62 69 74 72 45 58 || T
C ← XChaCha8(key=K2, counter=0, nonce=N , msg=P)
return C, T

Algorithm 6: ARX-KW-8-2-4-EX decryption

Data: key K of 384 bit length
ciphertext C
authentication tag T
Result: ciphertext C
authentication tag T

K1 ← K0...128

K2 ← K128...384

N ← 61 72 62 69 74 72 45 58 || T
P ′ ← XChaCha8(key=K2, counter=0, nonce=N , msg=C)
T ′ ← SipHash-2-4(key=K1, msg=P ′)
if T = T ′ then

return P ′

else
return ⊥

ARX-KW, a family of key wrapping constructions 9

4.4 The ARX-KW-8-2-4-GX variant

The ARX-KW-8-2-4-GX encryption procedure takes a 256-bit key K and a
plaintext P to produce a ciphertext C and an authentication tag T . The only
difference between this and ARX-KW-8-2-4-E is how the subkeys K1 and K2

are generated.
First, the 256-bit key K is used to encrypt a 386-bit all-zero message using

ChaCha8 with an all-zero LQB to obtain a 128-bit key K1 for SipHash-2-4 and
a 256-bit key K2 for XChaCha8. Then, SipHash-2-4 is run over P to obtain T .
The string 61 72 62 69 74 72 47 58 is concatenated with T , which is then
used for the nonce value of XChaCha8. XChaCha8 is then used to encrypt P
into C. Finally, C and T are returned.

The decryption procedure takes C and T . The string 61 72 62 69 74

72 47 58 is concatenated with ′T , which is then used for the nonce value of
XChaCha8. It then runs XChaCha8 over C to obtain a plaintext candidate P ′.
It then runs SipHash-2-4 over P ′ to obtain a tag T ′. If T is equal to T ′ return
P ′ as plaintext, else return ⊥.

Algorithm 7: ARX-KW-8-2-4-GX encryption

Data: key K of 256 bit length
plaintext P
Result: ciphertext C
128-bit authentication tag T

G← ChaCha8(key=K, counter=0, nonce=0, msg=0384)
K1 ← G0...128

K2 ← G128...384

N ← 61 72 62 69 74 72 47 58 || T
C ← XChaCha8(key=K2, counter=0, nonce=0, msg=P)
return C, T

Algorithm 8: ARX-KW-8-2-4-GX decryption

Data: key K of 256 bits length
plaintext P no longer than 512 bits
authentication tag T
Result: ciphertext C
authentication tag T

G← ChaCha8(key=K, counter=0, nonce=0, msg=0384)
K1 ← G0...128

K2 ← G128...384

N ← 61 72 62 69 74 72 47 58 || T
P ′ ← XChaCha8(key=K2, counter=0, nonce=N , msg=C)
T ′ ← SipHash-2-4(key=K1, msg=P ′)
if T = T ′ then

return P ′

else
return ⊥

ARX-KW, a family of key wrapping constructions 10

5 Speed

The following speeds were measured using a Sandy Bridge processor that was
released in early 2011. The executable was compiled from the unoptimized
reference implementation written in C using Clang 8.0.1 with these flags: -O3

-flto -march=native.

Encryption
Algorithm Message length Cycles Cycles per Byte
ARX-KW-8-2-4-E 32 597 19
ARX-KW-8-2-4-G 32 811 25
ARX-KW-8-2-4-EX 32 873 27
ARX-KW-8-2-4-GX 32 968 30

Decryption
Algorithm Message length Cycles Cycles per Byte
ARX-KW-8-2-4-E 32 505 16
ARX-KW-8-2-4-G 32 817 26
ARX-KW-8-2-4-EX 32 809 25
ARX-KW-8-2-4-GX 32 1023 32

6 Intellectual Property

As far as I am aware to the best of my knowledge, ARX-KW is not affected
by any patents; I do not intend to hold or apply for any patent which may
affect the ARX-KW construction, its reference implementation or any optimized
implementation thereof.

The reference implementation5 has been dedicated to the public domain
through the Creative Commons CC0 waiver. The ChaCha8 part of the reference
implementation was built on Monocypher, which is also dedicated to the public
domain through CC0; the SipHash part of the reference implementation was
taken without modification from the SipHash reference implementation, which is
also dedicated to the public domain through CC0. No optimized implementation
is provided.

5The reference implementation is available from https://gitlab.com/SATOshinichi/

arxkw.

ARX-KW, a family of key wrapping constructions 11

7 Test vectors

This section provides the final values for a set of inputs. All values are specified
in hexadecimal notation and specified as a sequence of bytes without explicit
endianness; the underlying primitives consume and produce sequences of bytes.

7.1 ARX-KW-8-2-4-E

K: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b

1c1d1e1f202122232425262728292a2b2c2d2e2f

P: deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef

deadbeef

T: c4f21d3b4dbcc566c3a73bbc59790f2f

C: e6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c3

53bb1eb1

7.2 ARX-KW-8-2-4-G

K: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b

1c1d1e1f

P: deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef

deadbeef

T: 016325cf6a3c4b2e3b039675e1ccbc65

C: f63830f5148a039b6aacc4b9b6bc281d7704d906e4b5d91e045a62cd

fc25eb10

7.3 ARX-KW-8-2-4-EX

K: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b

1c1d1e1f202122232425262728292a2b2c2d2e2f

P: deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef

deadbeef

N: 6172626974724558c4f21d3b4dbcc566c3a73bbc59790f2f

T: c4f21d3b4dbcc566c3a73bbc59790f2f

C: 02a55ab1d7f549db160e8ecb33e1c6d65a05d0ebaba54dc071228578

7c8a62db

N: 6172626974724558c4f21d3b4dbcc566c3a73bbc59790f2f

7.4 ARX-KW-8-2-4-GX

K: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b

1c1d1e1f

P: deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef

deadbeef

N: 6172626974724758016325cf6a3c4b2e3b039675e1ccbc65

T: 016325cf6a3c4b2e3b039675e1ccbc65

C: 2f83f391c97f3606ccd5709c6ee15d66cd7e65a2aeb7dc3066636e8f

6b0d39c3

N: 6172626974724758016325cf6a3c4b2e3b039675e1ccbc65

ARX-KW, a family of key wrapping constructions 12

References

[1] Scott Arciszewski. XChaCha: eXtended-nonce ChaCha and
AEAD XChaCha20 Poly1305. Internet-Draft draft-irtf-cfrg-xchacha-01, In-
ternet Engineering Task Force (IETF) Secretariat, July 2019. URL: https:
//www.ietf.org/internet-drafts/draft-irtf-cfrg-xchacha-01.txt.

[2] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-
Input PRF. In Progress in Cryptology – INDOCRYPT 2012, volume 7668
of Lecture Notes in Computer Science, pages 489–508, 2012.

[3] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In Workshop Record of
SASC 2008: The State of the Art of Stream Ciphers, pages 273–278, 2008.

[4] Daniel J. Bernstein. Extending the Salsa20 nonce. In Workshop Record of
Symmetric Key Encryption Workshop 2011, 2011. URL: http://skew2011.
mat.dtu.dk/proceedings/Extending%20the%20Salsa20%20nonce.pdf.

[5] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Methods for Key Wrapping. Special Publication 800-38F, National Institute
of Standards and Technology (NIST), December 2012.

[6] Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant
Authenticated Encryption at Under One Cycle per Byte. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, page 109–119, New York, NY, USA, 2015. Association
for Computing Machinery.

[7] Jean-Philippe Aumasson. Too Much Crypto. Cryptology ePrint Archive,
Report 2019/1492, 2019. Version 20200103111400; URL: https://eprint.
iacr.org/2019/1492.

[8] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC
8439, Internet Engineering Task Force (IETF), June 2018.

[9] Phillip Rogaway and Thomas Shrimpton. Deterministic Authenticated-
Encryption: A Provable-Security Treatment of the Key-Wrap Problem. In
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pages 373–390, 2006.

