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Abstract

The Fiat-Shamir transform is a methodology for compiling a (public-coin) interactive proof
system for a language L into a non-interactive argument system for L. Proving security of the
Fiat-Shamir transform in the standard model, especially in the context of succinct arguments, is
largely an unsolved problem. The work of Canetti et al. (STOC 2019) proved the security of the
Fiat-Shamir transform applied to the Goldwasser-Kalai-Rothblum (STOC 2008) succinct inter-
active proof system under a very strong “optimal learning with errors” assumption. Achieving
a similar result under standard assumptions remains an important open question.

In this work, we consider the problem of compiling a different succinct interactive proof
system: Pietrzak’s proof system (ITCS 2019) for the iterated squaring problem. We construct a
hash function family (with evaluation time roughly 2*°) that guarantees the soundness of Fiat-
Shamir for this protocol assuming the sub-exponential (2’”1_6)—hardness of the n-dimensional
learning with errors problem. (The latter follows from the worst-case 27" hardness of lattice
problems.) More generally, we extend the “bad-challenge function” methodology of Canetti
et al. for proving the soundness of Fiat-Shamir to a class of protocols whose bad-challenge
functions are not efficiently computable.

As a corollary (following Choudhuri et al., ePrint 2019 and Ephraim et al., EUROCRYPT
2020), we construct hard-on-average problems in the complexity class CLS C PPAD under
the 2)"-hardness of the repeated squaring problem and the 2-"""“_hardness of the learning
with errors problem. Under the additional assumption that the repeated squaring problem is
“inherently sequential”, we also obtain a Verifiable Delay Function (Boneh et al., EUROCRYPT
2018) in the standard model. Finally, we give additional PPAD-hardness and VDF instantiations
demonstrating a broader tradeoff between the strength of the repeated squaring assumption and
the strength of the lattice assumption.
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1 Introduction

The Fiat-Shamir transform [FS86] is a methodology for compiling a public-coin interactive proof
(or argument) system for a language L into a non-interactive argument system for L. While
originally developed in order to convert 3-message identification schemes into signature schemes,
the methodology readily generalized [BR93| to apply to a broad, expressive class of interactive
protocols, with applications including non-interactive zero knowledge for NP [BR93|, succinct
non-interactive arguments for NP [Mic00, BCS16], and widely used/practically efficient signature
schemes [Sch89].

However, these constructions and results come with a big caveat: the security of the Fiat-
Shamir transformation is typically heuristic. While the transformation has been proved secure
(in high generality) in the random oracle model [BR93, PS96, Mic00, BCS16], it is known that
some properties that hold in the random oracle model — including the soundness of Fiat-Shamir
for certain contrived interactive arguments — cannot be instantiated at all in the standard model
[CGH04,DNRS99, Bar01, GK03,BBH"19].

Given these negative results, security in the random oracle model is by no means the end of
the story. Indeed, the question of whether Fiat-Shamir can be instantiated for any given interac-
tive argument system (and under what computational assumptions this can be done) has been a
major research direction over the last twenty years [DNRS99,Bar01, GK03,BLV06, CCR16,KRR17,
CCRR18,HL18, CCH" 19, PS19, BBHT19, BFJ*19,JJ19,LVW19]. After much recent work, some
positive results are known, falling into three categories (in the decreasing order of strength of
assumptions required):

1. We can compile arbitrary (constant-round, public-coin) interactive proofs under extremely
strong assumptions [KRR17, CCRR18] that are non-falsifiable in the sense of [Nao03].

2. We can compile certain succinct interactive proofs [LFKN92, GKRO08] — and variants of other
interactive proofs not captured in item (3) below, such as [GMW91] — under extremely strong
but falsifiable assumptions [CCHT19].

3. We can compile variants of some classical 3-message zero knowledge proof systems [GMR85,
Blu86, FLS99] under standard cryptographic assumptions [CCH'19,PS19).

Elaborating on item (2) above, what is currently known is that the sumcheck protocol [LEKN92]
and the related Goldwasser-Kalai-Rothblum (GKR) [GKRO08] interactive proof system can be com-
piled under an “optimal security assumption” related to (secret-key) Regev encryption. Roughly
speaking, an optimal hardness assumption is the assumption that some search problem cannot be
solved with probability significantly better than repeatedly guessing a solution at random. This is
an extremely strong assumption that (in the context of Regev encryption) requires careful param-
eter settings to avoid being trivially false.

In this work, we focus on improving item (2); in particular, we ask:

Under what computational assumptions can we instantiate Fiat-Shamir
for an interesting succinct interactive proof?

Instead of considering the [LFKN92, GKRO8] protocols, we work on compiling a protocol of Pietrzak
[Piel8] for the “repeated-squaring language” [RSW96]. At a high level, Pietrzak constructs a



“sumcheck-like” succinct interactive proof system for the computation fy 4(7) = g2T (mod N)
over an RSA modulus N = pq. Compiling this protocol turns out to have applications re-
lated to verifiable delay functions (VDFs) [BBBF18] and hardness in the complexity class PPAD
[CHK™19a, CHK"19b, EFKP19], which we elaborate on below.

Applications. We consider two apparently different questions: the first is that of establishing the
hardness of the complexity class PPAD (“polynomial parity arguments on directed graphs”) [Pap94]
that captures the hardness of finding Nash equilibria in bimatrix games [DGP09, CDT09]; the sec-
ond is that of constructing verifiable delay functions (VDFs), a recently introduced cryptographic
primitive [BBBF18] which gives us a way to introduce delays in decentralized applications such as
blockchains.

The Hardness of PPAD. Establishing the hardness of PPAD [Pap94], possibly under cryp-
tographic assumptions, is a long-standing question in the foundations of cryptography and com-
putational game theory. After two decades of little progress on the question, a recent sequence of
works [BPR15,HY17,CHK " 19a,CHK " 19b, EFKP19] has managed to prove that there are problems
in PPAD (and indeed a smaller complexity class, CLS [DP11]) that are hard (even on average) un-
der strong cryptographic assumptions. The results so far fall roughly into two categories, depending
on the techniques used.

1. Program Obfuscation. Bitansky, Paneth and Rosen [BPR15], inspired by an approach
outlined in [AKV04], showed that PPAD is hard assuming the existence of subexponentially
secure indistinguishability obfuscation (I0) [BGIT01,GGH"13] and one-way functions. This
was later improved [GPS16,HY17] to rely on polynomially-secure functional encryption and
to give hardness in CLS C PPAD.

2. Unambiguously Sound Incrementally Verifiable Computation. The recent beautiful
work [CHK ™ 19a] constructs a hard-on-average CLS instance assuming the existence of a spe-
cial kind of incrementally verifiable computation (IVC) [Val08]. Instantiating this approach,
they show that CLS C PPAD is hard-on-average if there exists a hash function family that
soundly instantiates the Fiat-Shamir heuristic [FS86] for the sumcheck interactive proof sys-
tem for #P [LFKN92]. Two follow-up works [CHK19b, EFKP19] show the same conclusion
if Fiat-Shamir for Pietrzak’s interactive proof system [Piel8] can be soundly instantiated (and
if the underlying “repeated squaring language” is hard).

Regarding the first approach [BPR15, GPS16,HY17], secure indistinguishability obfuscators have
recently been constructed based on the veracity of a number of non-standard assumptions (see,
e.g., [AJLT19,BDGM20]). Regarding the second approach [CHK*19a, CHK'19b, EFKP19], the
hash function can be instantiated in the random oracle model, or under “optimal KDM-security”
assumptions [CCRR18, CCH"19).

In summary, despite substantial effort, there are no known constructions of hard PPAD in-
stances from standard cryptographic assumptions (although see Section 1.3 for a recent independent
work [KPY20] that shows such a result under a new assumption on bilinear groups).

Verifiable Delay Functions. A Verifiable Delay Function (VDF) [BBBF18] is a function f with
the following properties:



e f can be evaluated in some (moderately large) time 7.
e Computing f (on average) requires time close to T', even given a large amount of parallelism.

e There is a time T'+ o(T") procedure that computes y = f(x) on an input = along with a proof
7 that y = f(x) is computed correctly. This proof (argument) system should be verifiable in
time < T' (ideally poly(A,logT'))) and satisfy standard (computational) soundness.

Since their introduction [BBBF18], there have been a few proposed candidate VDF construc-
tions [BBBF18, Piel8, Wes19, dFMPS19, EFKP19]. There are currently no constructions based on
standard cryptographic assumptions, but this is somewhat inherent to the primitive: a secure VDF
implies the existence of a problem which can be solved in time T and also requires (sequential)
time close to 7. Nonetheless, one can ask' whether VDFs can be constructed from “more standard-
looking” assumptions, a question partially answered by [Piel8, Wes19]. In particular, each of their
constructions relies on two assumptions:

(1) The T-repeated squaring problem [RSW96] requires sequential time close to 7.

(2) The Fiat-Shamir heuristic for some specific public-coin interactive proof/argument? can be
soundly instantiated.

The techniques used in both the construction of hard PPAD instances and the construction
of VDFs are similar, and so are the underlying assumptions (this is due to the connection between
PPAD and incrementally verifiable computation [Val08, CHK19a]). In particular, the works
of [CHK"19b, EFKP19] construct hard PPAD (and even CLS) instances under two assumptions:

(1') The T-repeated squaring problem [RSW96]| requires super-polynomial (standard) time for some
T = ),

(2') The Fiat-Shamir heuristic for a variant of the [Piel8] interactive proof system can be soundly
instantiated.

The assumption (1) (and its weakening, assumption (1’)) is the foundation of the Rivest-Shamir-
Wagner time-lock puzzle [RSW96] and has been around for over 20 years. In particular, breaking
the RSW assumption has received renewed cryptanalytic interest recently [Riv99, Fab19].

On the other hand, as previously discussed, the assumptions (2,2’) are not well understood.
Indeed, our main question about Fiat-Shamir for succinct arguments (if specialized to the [Piel§]
protocol) is intimately related to the following question.

Can we construct hard PPAD instances and VDFs under more well-studied assumptions?

! [BBBF18] explicitly suggested this.

2The two works [Piel8, Wes19] consider qualitatively different interactive argument systems. In this work, we
focus on the [Piel8] protocol since (1) it has unconditional soundness and therefore is more conducive to provable
Fiat-Shamir compilation, and (2) it is more closely related to PPAD-hardness.



1.1 Owur Results

We show how to instantiate the Fiat-Shamir heuristic for the [Piel8] protocol under a quantitatively
strong (but relatively standard) variant of the Learning with Errors (LWE) assumption [Reg09]. We
give a family of constructions of hash functions that run in subexponential (or even quasi-polynomial
or polynomial) time, and prove that they soundly instantiate Fiat-Shamir for this protocol under
a sufficiently strong LWE assumption.

More generally, we extend the “bad-challenge function” methodology of [CCH™19] for proving
the soundness of Fiat-Shamir to a class of protocols whose bad-challenge functions are not efficiently
computable. We elaborate on this below in the technical overview (Section 1.4).

As a consequence, we obtain CLS-hardness and VDFs from a pair of quantitatively related
assumptions on the [RSW96] repeated squaring problem and on the learning with errors (LWE)
problem [Reg09]; the latter can in turn be based on the worst-case hardness of the (approximate)
shortest vector problem (GapSVP) on lattices. In particular, we can base the hardness of CLS C
PPAD, as well as the security of a VDF, on the hardness of two relatively well-studied problems.

Fiat-Shamir for Pietrzak’s Protocol. For our main result, we show that for any € > 0, an LWE
assumption of quantitative strength 27" allows for a Fiat-Shamir instantiation with verification
runtime 2°") on a repeated squaring instance with security parameter A\ = O(nlogn). Such a
result is meaningful as long as the verification runtime is smaller than the time it takes to solve
the repeated squaring problem; the current best known algorithms for repeated squaring run in
heuristic time 200"%) = 20('*) [L,L,MP90].

Here and throughout the paper, we will use (¢,0)-hardness to denote that a cryptographic
problem is hard for ¢-time algorithms to solve with ¢ probability (or distinguishing advantage).

Theorem 1.1. Let € > 0 be arbitrary. Assume that (decision) LWE is (20("1/2),2_"1_6)—hard (or

alternatively, (26("6), 2_”176) -hard for non-uniform algorithms). Then, there exists a hash family H

that soundly instantiates the Fiat-Shamir heuristic for Pietrzak’s interactive proof system [Piel8].
When the proof system is instantiated for repeated squaring over groups of size 20 with A =
O(nlogn), the hash function h from the family H can be evaluated in time 20(X)

Under the assumption that (decision) LWE is (26(”1/2), 2_1°;°n)—hard for some constant ¢ > 0

(or alternatively, (q uasipoly(n), 2~ 10&")—hard for non-uniform algorithms), there exists such a hash
family H with quasi-polynomial evaluation time.

Moreover, the LWE assumption that we make falls into the parameter regime where we know
worst-case to average-case reductions [Reg09, BLPT13,PRS17], so we obtain the following corollary.

Corollary 1.2. The conclusions of Theorem 1.1 (with parameter e < %) follow from the assumption
that the worst case problem poly(n)-GapSVP for rank n lattices requires time ow(n' =) Similarly,
the protocol with quasi-polynomial verification time is sound under the assumption that poly(n)-

GapSVP requires time 2°s(° for some ¢ > 0.

The Shortest Vector Problem (SVP) on integer lattices is a well-studied problem (see discus-
sion in [Peil6, ADRS15]); despite a substantial effort, all known poly(n)-approximation algorithms
for the problem have exponential run-time 24", As a result, our current understanding of the
approximate-SVP landscape is consistent with the following conjecture.



Conjecture 1 (Exponential Time Hypothesis for GapSVP). For any fixred v(n) = poly(n), the
v(n)-GapSVP problem cannot be solved in time 2°(™).

Assuming Conjecture 1, the conclusion of Theorem 1.1 holds for every € > 0; moreover, the
variant of the Theorem 1.1 protocol with quasi-polynomial time evaluation is sound as well.

What about polynomial-time verification? Given a non-interactive protocol for repeated
squaring with 29() verification time (or quasi-polynomial evaluation time), one can always define
a new security parameter k = 290 (or k = 218N to obtain a protocol with polynomial-time
verification. However, this makes use of complezity leveraging [CGGMO0], so (i) this requires
making the assumption that repeated squaring (on instances with security parameter \) is hard for
poly(x(\))-time adversaries, and (ii) the resulting protocol cannot have security subexponential in
K.

If one does not wish to use complexity leveraging, we give an alternative construction that has
(natively) polynomial-time verification, at the cost of a stronger LWE assumption.

Theorem 1.3. Let 6 > 0 be arbitrary and q(n) = poly(n) be a fixed (sufficiently large) polyno-

mial in n. Assume that (decision) LWE is (poly(n),q_‘m) -hard for mon-uniform distinguishers

(or (20(”1/2),q_5”> -hard for uniform distinguishers). Then, there exists a hash family H that

soundly instantiates the Fiat-Shamir heuristic for Pietrzak’s interactive proof system [Piel8] with
poly(\) = poly(nlog n)-time verification. More specifically, the verification time is \O(1/9).

Moreover, this strong LWE assumption still falls into the parameter regime with a meaningful
worst-case to average-case reduction:

Corollary 1.4. The conclusion of Theorem 1.3 follows from the assumption that worst-case y(n)-
GapSVP (for a fized v(n) = poly(n)) cannot be solved in time n°™ with poly(n) space and poly(n)
bits of nonuniform advice (independent of the lattice).

Polynomial-space algorithms for GapSVP have themselves been an object of study for over
25 years [Kan83, KF16, BLS16, ABF'20], but the current best (poly-space) algorithms for this
problem run in time n®*(® for approximation factor n'/¢. Therefore, under a sufficiently strong
(and plausible) worst-case assumption about GapSVP, we have a polynomial-time Fiat-Shamir
compiler without complexity leveraging.

By combining Theorems 1.1 and 1.3 with the results of [CHK*19b, EFKP19], we obtain the
following construction of hard-on-average CLS instances.

Theorem 1.5. For a constant € > 0, suppose that

e n-dimensional LWE (with polynomial modulus) is (20("1/2),2_”176)—hard, and

o The repeated squaring problem on an instance of size 2* requires 2*° 1og(N)“™ i

Then, there is a hard-on-average problem in CLS C PPAD. The same conclusion holds if for
some ¢ > 0,

o LWE is (26("1/2),2_1°g?">c)—ha7"d, and



o The repeated squaring problem is hard for quasi-polynomial time algorithms.

The same conclusion also holds if for some § > 0,

e LWE is (poly(n),q_‘sn) -hard for non-uniform distinguishers, and

o The repeated squaring problem is hard for polynomial time algorithms.

We obtain Theorem 1.5 by plugging our standard model Fiat-Shamir instantiation into the
complexity-theoretic reduction of [CHK*19b].? For use in this reduction, our non-interactive pro-
tocol must satisfy a stronger security notion called (adaptive) unambiguous soundness [RRR16,
CHK " 19a], which we show is indeed the case.

Note that the two hardness assumptions in the theorem statement are in opposition to each
other. As e becomes smaller, the repeated squaring assumption becomes weaker, but the LWE
assumption becomes stronger. In particular, we cannot set ¢ > 1/3 as there are known algorithms
[LLMP90] solving repeated squaring in (heuristic) time 20019,

Additionally, as a direct consequence of Theorem 1.1, we obtain VDFs in the standard model
as long as the underlying repeated squaring problem is sufficiently (sequentially) hard. Recall that
the repeated squaring problem [RSW96] is the computation of the function fy 4(T) = g% (mod
N), for the appropriate distribution on N = pq and g.

Theorem 1.6. For a constant € > 0, suppose that

e LWE is (20(”1/2),2_”1_6>—ha7’d, and

e The repeated squaring problem [RSWI6] over groups of size 200N requires T(1—o(1)) sequen-
tial time for T > 2002,
Then, the repeated squaring function fn,4 can be made into a VDF with verification time 2003) on
groups of size 20N (with \ = O(nlogn)). Similarly, if for some ¢ > 0,

o LWE is (2@<"” 2),2_71°g?">°)—ha7"d, and

e The repeated squaring problem requires T'(1 — o(1)) sequential time for T > 26(105()‘)C+1),

Then, fn,g can be made into a VDF with verification time 20(log(V)+1) Finally, if for some 6 > 0,

o LWE (with modulus q) is (poly(n),q*‘;”) -hard for non-uniform distinguishers, and

e The repeated squaring problem requires T'(1 — o(1)) sequential time for all T = poly(A).
Then, fn,4 can be made into a VDF with XOW/9) time verification.

Theorem 1.6 follows immediately from Theorem 1.1 along with the construction of Pietrzak
[Piel8]. While many of the VDFs in Theorem 1.6 have super-polynomial verification time (and
therefore do not fit the standard definition), they can be converted into (standard) VDFs with
polynomial verification time via complexity leveraging; however, the leveraged VDFs will only
support quasi-polynomial (respectively, g2rolvios 1og,<) time computation (and soundness of the VDF
will only hold against adversaries running in time quasi-polynomial in the new security parameter
k). Because of this, we consider the formulation in terms of super-polynomial time verification to
be more informative.

30ur protocol differs very slightly from the formulation in [CHK'19b], but the difference is irrelevant to the
reduction.



1.2

Comparison with Prior Work

Cryptographic Hardness of PPAD. As described in the introduction, prior works on the cryp-
tographic hardness of PPAD fall into two categories — those based on obfuscation and ones based
on incrementally verifiable computation (IVC). The obfuscation-based constructions all make cryp-
tographic assumptions related to the existence of indistinguishability obfuscation or closely related
primitives that we currently do not know how to instantiate based on well-studied assumptions.
(For the latest in obfuscation technology, we refer the reader to [JLMS19,JLS19].) We therefore
focus on comparing to the previous IVC-based constructions.

[CHK'19a] constructs hard problems in CLS under the polynomial hardness of #SAT
with poly-logarithmically many variables along with the assumption that Fiat-Shamir can
be soundly instantiated for the sumcheck protocol [LFKN92]. The latter follows either in
the random oracle model or under the assumption that a LWE-based fully homomorphic en-
cryption scheme is “optimally circular-secure” [CCH'18, CCH"19] for quasi-polynomial time
adversaries.

While the hardness of #SAT (with this parameter regime) is a weaker assumption than the
subexponential hardness of repeated squaring, the [CHK'19a] (standard model) result has
the drawback of relying on an optimal hardness assumption. Roughly speaking, an optimal
hardness assumption is the assumption that some search problem cannot be solved with
probability significantly better than repeatedly guessing a solution at random. This is an
extremely strong assumption that requires careful parameter settings to avoid being trivially
false.

In contrast, our main LWE assumption is subexponential (concerning distinguishing advan-
tage 27" ) and follows from the worst-case hardness of poly(n)-GapSVP for time 2"
algorithms. Even our most optimistic LWE assumption (as in Theorem 1.3) follows from a
form of worst-case hardness quantitatively far from the corresponding best known algorithms.

[CHK*19b, EFKP19] construct hard problems in CLS assuming the polynomial hardness
of repeated squaring along with a generic assumption that the Fiat-Shamir heuristic can
be instantiated for round-by-round sound (see [CCHT18, CCH"19]) public-coin interactive
proofs. The latter can be instantiated either in the random oracle model, or under the
assumption that Regev encryption (or ElGamal encryption) is “optimally KDM-secure” for
unbounded KDM functions [CCRR18].

The [CCRR18] assumption is (up to minor technical details) stronger than the optimal se-
curity assumption used in [CHK19a] (because the security game additionally involves an
unbounded function), so the [CHK19b, EFKP19] are mostly framed in the random oracle
model. In this work, we give a new Fiat-Shamir instantiation to plug into the [CHK™19b,
EFKP19| framework.

VDFs. We compare our construction of VDFs to previous constructions [BBBF18, Piel8, Wes19,
dFMPS19,EFKP19].

[BBBF18] and [dFMPS19] give constructions of VDFs from new cryptographic assumptions
related to permutation polynomials and isogenies over supersingular elliptic curves, respec-
tively. These assumptions are certainly incomparable to ours, but we rely on the hardness of
older, more well-studied problems.



o [Piel8, EFKP19] have the same basic VDF construction as ours; the main difference is that
they use a random oracle to instantiate their hash function, while we use a hash function in
the standard model and prove its security under a quantitatively strong variant of LWE.

e [Wesl9] also builds a VDF based on the hardness of repeated squaring, but by building a
different interactive argument for computing the function and assuming that Fiat-Shamir can
be instantiated for this argument. Again, this assumption holds in the random oracle model,
but we know of no instantiation of this VDF in the standard model.

On the negative side, our main VDF (for the natural choice of security parameter) has verifi-
cation time 20(*); this can be thought of as polynomial-time via complexity leveraging, but this
results in a VDF that is only quasi-polynomially secure. Alternatively, based on our optimistic
LWE assumption, we only obtain a VDF with large polynomial (i.e. A/ for small §) verification
time. As a result, we consider our VDF construction to be a proof-of-concept regarding whether
VDFs can be built based on “more standard-looking assumptions”, in particular, without invoking
the random oracle model.

1.3 Additional Related Work

[BG20] constructs hard instances in the complexity class PLS — which contains CLS and is
incomparable to PPAD — under a falsifiable assumption on bilinear maps introduced in [KPY19]
(along with the randomized exponential time hypothesis (ETH)).

In recent independent work, [KPY20] constructs hard-on-average CLS instances under the
(quasi-polynomial) [KPY19] assumption. In fact, they give a protocol for unambiguous and incre-
mentally verifiable computation for all languages decidable in space-bounded and slightly super-
polynomial time.

1.4 Technical Overview

We now discuss the ideas behind our main result, Theorem 1.1, which is an instantiation of the
Fiat-Shamir heuristic for the [Piel8] repeated squaring protocol. In obtaining this result, we also
broaden the class of interactive proofs for which we have Fiat-Shamir instantiations under standard
assumptions.

The main tool used by our construction is a hash function family H that is correlation intractable
[CGHO4] for efficiently computable functions [CLW18, CCH"19]. Recall that a hash family H is
correlation intractable for ¢-time computable functions if for every function f computable time t,
the following computational problem is hard: given a description of a hash function A, find an input
x such that h(z) = f(z). We now know [PS19] that such hash families can be constructed under
the LWE assumption.

Correlation Intractability and Fiat-Shamir. In order to describe our result, we first sketch

the [CCH'19] paradigm for using such a hash family H to instantiate the Fiat-Shamir heuristic.
For simplicity, consider a three-message (public-coin) interactive proof system (3-protocol)

as well as its corresponding Fiat-Shamir round-reduced protocol Ilgg 3, for a hash family H.



v If Check(z, a, 8,7) = 1, accept.

Figure 1: A Y-protocol II.

PFS (x, h) VFS (:,C7 h)

0.:=h(a)y A=k
and Check(z, a, 3,v) = 1, accept.

Figure 2: The Protocol 1lpg 7.

Moreover, suppose that this protocol II satisfies the following soundness property (sometimes
referred to as “special soundness”): for every ¢ L and every prover message «, there exists at
most one verifier message 3*(z, ) allowing the prover to cheat.*

It then follows that if a hash family # is correlation intractable for the function family f,(a) =
B*(z, a), then H instantiates the Fiat-Shamir heuristic for I.> This is because a cheating prover Prg
breaking the soundness of IIgg 3, must find a first message a such that its corresponding challenge
h(z, ) is equal to the bad challenge f;(«) (or else it has no hope of successfully cheating).

Therefore, using the hash family of [PS19], we can (under the LWE assumption) do Fiat-Shamir
for any protocol II whose “bad-challenge function” f,(a) is computable in polynomial time; this
has the important caveat that the complexity of computing the hash function h is at least the
complexity of computing f,(a).

This paradigm seems to run into the following roadblock: intuitively, for protocols II of interest,
computing f,(«) appears to be hard rather than easy. For example,

1. For a standard construction of zero-knowledge proofs for NP such as [Blu86], computing
fz(a) involves breaking a cryptographically secure commitment scheme.

2. For (unconditional) statistical zero knowledge protocols such as the [GMR&5] Quadratic
Residuosity protocol, computing f,(«) involves deciding the underlying hard language L.

3. For doubly efficient interactive proofs such as the [GKROS8] interactive proof for logspace-
uniform NC, computing f,(«) again involves deciding the underlying language L; in this case,
L is in P, but this Fiat-Shamir compiler would result in a non-interactive argument whose
verifier runs in time longer than it takes to decide L.

The work [CCHT19] resolves issues (1) and (2) in the following way: in both cases, we can
arrange for f,(a) to be efficiently computable given an appropriate trapdoor: in the case of [Blu86],
the commitment scheme can have a trapdoor allowing for efficient extraction, while in the case

“The prover can cheat on a pair (c, 3) if and only if there exists a third message « such that (z, o, 8, v) is accepted
by the verifier.
5To obtain adaptive soundness, we modify the protocol to set f = h(z,«) and instead consider the function

f(xva) = ﬂ*(x,a).



of [GMRS5], f.(a) is efficient given an appropriate NP-witness for the complement language L.
However, we have no analogous resolution to (3), which is the setting of interest to us.’

The bad-challenge function of the [Piel8] protocol. With this context in mind, we now
consider the [Piel8] protocol.” This protocol (like the [GKRO8] protocol and the related sumcheck
protocol [LFKN92]) is not a constant-round protocol, but is instead composed of up to polynomially
many “reduction steps” of the following form.

P(N =pq,T.g.h=g") V(N.T,g,h)
Compute u = gQT/2 v
r
Compute ¢’ =u-g",h' =h-u" Compute ¢’ =u-g",h' =h-u"

Recurse on the statement (N, T/2,g’,h').

Figure 3: One reduction step of the [Piel8] protocol.

That is, the prover sends u, the (supposed) “halfway point” of the computation, yielding two
derivative claims: u = gQT/2 and h = u2"®. The verifier then challenges the prover to prove a
random linear combination of the two statements: h - u" = (u - gT)QT/Q.

Soundness can then be analyzed in a “round-by-round” fashion [CCH'19]: if you start with a
false statement (or if you start with a true statement but send an incorrect value @ # u), there is
at most one® bad challenge r* resulting in a recursive call on a true statement.

To invoke the [CCH'19] paradigm, we ask: how efficiently can we compute the function
f(N,T,g,h,u) =r*? To answer this question, let § denote a fixed group element of order ¢(N)/2
such that g, h,u € (). Letting v, n,w denote the discrete logs of g, h, and u in base g, we see that
(for corresponding challenge r) the statement (N,T/2,¢',h’) is true if and only if

n+r-w=2"%(w+r-v) (mod ¢(N)/2).
As a result, we see that r can be efficiently computed from the following information:
e The discrete logarithms 7, w, v, and
e The factorization of N.

While the factorization of N can be known a priori in the security reduction (similar to prior work),
the discrete logarithms depend on the prover message u and (adaptively chosen) statement (g, h).
We conclude that the “bottleneck” for computing f is the problem computing a constant number
of discrete logarithms in Z, .

Since computing discrete logarithms over Z; is believed to be hard, and is not known to have a
trapdoor, it appears unlikely that this approach would allow us to rely on the polynomial hardness

5The only current known Fiat-Shamir instantiation for the [GKROS] protocol utilizes a compact correlation
intractable hash family (in the sense that the hash evaluation time is independent of the time to compute the
correlation function/relation) which we only know how to build from an optimal security assumption [CCH'19].

"For this overview, we ignore the details of working over the group QR C Zy, and the corresponding technical
challenges.

8To guarantee this property, r is selected from a range smaller than either of the prime factors of N.
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of the [PS19] hash family. However, it is plausible that we could use a variant of the [PS19] hash
family supporting super-polynomial time computation (proven secure under a super-polynomial
variant of LWE) to capture the complexity of computing discrete logarithms.

Unfortunately, the naive version of this approach fails: the best known runtime bounds? for
computing discrete logarithms over Z for p = 20( are of the form 20"?) [Ad179,Pom8&7], and the

best known heuristic algorithms (plausibly) run in time 20(A1/%) [LLMP90]. If we were to instantiate
the [PS19] hash family to support functions of this complexity, we could prove the soundness of
Fiat-Shamir for the [Piel8] protocol, but the resulting non-interactive protocol would run in time
20(A'7?) (or in time 2000 with a heuristic security proof); these are the same runtime bounds
for the best known algorithms for solving the repeated squaring problem [Dix81, Pom87, LLMP90]
(via factoring the modulus N). In other words, the verifier would run in enough time to be able
to solve the repeated squaring problem itself. This is a very similar problem to issue (3) regarding

the [LFKN92, GKRO08] protocols, so we appear to be stuck.

Computing bad-challenge functions with low probability. We overcome the above problem
with the following idea:

What if we give up on computing the bad-challenge function exactly, and instead
compute it using a faster randomized algorithm with low success probability?

In other words, we consider a new variant of the [CCH™19] framework for instantiating Fiat-Shamir
in the standard model, where:

e An interactive protocol II is characterized by some bad-challenge function f,

e f can be computed by a time t algorithm (or size s circuit) with some small but non-trivial
probability 4.

e The hash function H is assumed to be correlation intractable — with sufficiently strong quan-
titative security — against adversaries running in time ¢ (or with size s).

Then, it turns out that the resulting non-interactive protocol is sound! Informally, this is because
if f is “approximated” by a time ¢-computable randomized function g, (in the sense that g,(x) and
f(z) agree with probability § on a worst-case input), then an adversary breaking the protocol Ilgg %
will break the correlation intractability of H with respect to g (rather than f) with probability 4.
More formally, a cheating prover Ppiq yields an algorithm that breaks the correlation intractability
of H with respect to f, which in turn breaks the correlation intractability of H with respect to g,
(for hard-coded randomness r) with probability ¢ - m (since g, and f agree on an arbitrary

input with probability at least §). Therefore, if H is (t,d - A=“(}))-secure, we conclude that rs
is sound.

This modification allows us to instantiate Fiat-Shamir for the [Piel8] protocol. In particular,
we make use of folklore'® [CCRRI18] preprocessing algorithms for the discrete logarithm problem

9See [JOP14] for a detailed discussion of the state-of-the-art on discrete logarithm algorithms.

10WWe are not aware of prior work considering this particular time-probability trade-off, but the necessary smooth
number bounds appear in [CEP83, Gra08]. Quite curiously, [CCRR18] considers the poly(\)-time variant of this
algorithm to give evidence against the optimal hardness of computing discrete logarithms over Z, . That was bad for
them, but for us, the non-optimal hardness is a feature!
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over Z, that run in time 22 and have success probability 2-A7°. More specifically, we consider a
computation of the bad challenge function f(N,T, g, h,u) in the following model:

e Hard-code (1) the factorization N = pq, (2) an appropriately chosen group element § of
high order, and (3) 201\ discrete logarithms (of fixed numbers modulo p and modulo g,
respectively) in base g.

e Compute a (constant-size) collection of worst-case discrete logarithms by the standard index
calculus algorithm [Ad179] in time 2°(*) with success probability 2~ .

This can be thought of as either a non-uniform 20()-time algorithm, or a 2°*)-time algorithm
with 200"%)_time preprocessing.'! By using this algorithm for the computation of the bad-challenge
function f(N,T,g,h,u), we obtain a Fiat-Shamir instantiation with verification time 20(X) _ g
meaningful result as long as this runtime does not allow for solving the repeated squaring problem.
Finally, the required assumption is that the [PS19] hash function is correlation intractable for
adversaries that succeed with probability 2_’\175, which holds under the claimed LWE assumption
with parameters (n, q) for A = nlogg.

Generalizations. In this overview, we focused specifically on the [Piel8] protocol, but our tech-
niques give general blueprints for obtaining Fiat-Shamir instantiations. We believe these blueprints
may be useful in future work, so we state them (as “meta-theorems”) explicitly here:

e Fiat-Shamir for protocols with low success probability bad-challenge functions.
Our approach shows that if an interactive protocol 11 is governed by a bad-challenge function f
that is computable by an efficient randomized algorithm that is only correct with (potentially
very) low probability, it is still possible to instantiate Fiat-Shamir for IT under a sufficiently
strong LWE assumption.

e Fiat-Shamir for discrete-log based bad-challenge functions. Our approach also shows
that if a protocol II is governed by a bad-challenge function f that is efficiently computable
given oracle access'? to a discrete log solver (over Zy for p < 20(’\)), then it is possible to
instantiate Fiat-Shamir for II under a sufficiently strong LWE assumption.

We formalize both of these “meta-theorems” in the language of correlation intractability (rather
than Fiat-Shamir) in Section 3.

Organization. The rest of the paper is organized as follows. Section 2 consists of the relevant
preliminaries to describe and prove our results. In Section 3, we state and prove our results about
low-success probability bad-challenge functions (and discrete-log based bad-challenge functions in
particular) through the lens of correlation intractability. In Section 4, we formalize the round-by-
round soundness property necessary to conclude the “adaptive unambiguous soundness” [CHK19a]
of the round-reduced [Piel8] protocol that suffices for CLS-hardness. In Section 5, we describe and
analyze (our variant of) the [Piel8] protocol within the outlined framework and prove Theorem 1.1.
Finally, in Section 6, we apply Theorem 1.1 to obtain Theorem 1.5 and Theorem 1.6.

1This second variant allows for an invocation of correlation intractability against uniform adversaries in the security
proof.

12Crucially, we must also bound the number of calls that can be made to the oracle to be at most poly log(A) to
get a meaningful result.

12



2 Preliminaries

2.1 Repeated Squaring modulo a Composite

Following [Piel8, CHK*19b], we consider the following formulation of the RSW time-lock puzzle
[RSWY6]. For an integer N = pq, recall that Zj; is defined to be the group of units mod N,
QR is defined to be the group of quadratic residues mod N, and QR;{[ is defined to be the set

{l‘ :0<z <% and (%) = 1}, where (5) is defined to be the Jacobi symbol.
We now define (our variant of the) RSW moderately hard function.

° Setup(lA): On input the security parameter, sample an integer N = pq along with a group
element § € Zy such that p, ¢ are uniformly random safe primes in the range (2}, 221 and §
has order ¢(N)/2 in Zjy (for example, § can be the CRT lift of any generator for Z and any
generator for Z;). Let p’ = %,

generates QR . Output (N, g).

q = q;21 (primes by construction), and note that g := §?

e Function evaluation. Define the function

Ing(T) = g2T (mod N).

We note that for any (N, g), the function fx 4(T) can be computed in time 7.'3 We now consider
two hardness assumptions related to the RSW moderately hard function.

Definition 2.1 (£(A\)-RSW Hardness Assumption). For some efficiently computable function T(-),
computing fn.g(T(N)) for (N, g) < Setup(1*) requires time t(\).

For our main result on PPAD-hardness, we will assume the 2*°-RSW hardness assumption for
some constant € > 0.

Definition 2.2 ((o, p)-RSW Sequentiality Assumption). For some efficiently computable function
T("), computing fn (T (X)) for (N,g) «+ Setup(1}) requires o(T) sequential time for algorithms
with p(A\, T) parallel processors.

For our main VDF construction, we assume the (o, p)-RSW sequentiality assumption for some
large parallelism function p(\, 7) = A*() and sequentiality parameter o(T) = T'(1—o0(1)) to obtain
a VDF with verification time 2*°. By redefining the security parameter, this leads to a VDF with
poly-time verification that can evaluate up to quasi-polynomial time computation. As discussed in
the introduction, other parameter settings are possible (under different hardness assumptions).

2.2 Learning with Errors

The following preliminaries about the Learning with Errors (LWE) problem are based on [Peil6].

Definition 2.3 (LWE Distribution). For any s € Zy and any distribution x C Zq, the LWE
distribution Asy € Zy X Zg is sampled by choosing a € Zj uniformly at random, sampling e < X,
and outputting (a,b = (s,a) + e).

1 . . . . . .
3As in prior work, we measure time complexity in terms of group operations.
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Definition 2.4 (Decision LWE). Let m = m(n) > 1, ¢ = q(n) > 2 be integers, and let x(n) be
a probability distribution on Zge,). The Decision-LWE, , 4, problem, parameterized by n, is to
distinguish whether m(n) independent samples are drawn from As, (fors that is sampled uniformly
at random) or are drawn from the uniform distribution.

For the rest of this paper, we will write LWE in place of Decision-LWE. Next, we consider
quantitative hardness assumptions related to LWE.

Definition 2.5 ((T',0)-LWE assumption). Any T'(n)-time algorithm A solves L\WE,, p, .\ with dis-
tinguishing advantage at most O(d(n)).

The discrete Gaussian distribution with mean ¢ and standard deviation parameter s is a distri-
bution supported over Z and assigns probability mass pc s(z) o e~ ™(@=9)?/s* {5 a number ¢ € Z.

Worst-Case to Average-Case Reduction. When the LWE error distribution is instantiated
with a discrete Gaussian distribution, we obtain a beautiful worst-case to average-case reduction
which says that solving LWE gives us a worst-case algorithm for an approximate decisional version
of the lattice shortest vector problem. The connection is stated formally below, with the most
general version due to Brakerski et al. [BLP13].

Theorem 2.6. [Reg09, BLP" 13, PRS17] Let n,m,q,x be parameters that define the LWE prob-
lem as above, where x is the discrete Gaussian distribution over Z with parameter aq for some
a = a(n). If the (T'(n),d(n))-LWE assumption is false, then there is a T'(n)-time algorithm

for the worst-case O(n/a)-approzimate GapSVP problem on n-dimensional lattices where T' =
poly (n, m,logq,T, 1/5) .

Moreover, the space complexity of this worst-case algorithm is bounded by poly (n, m,q,T, log(1/5)).

2.3 Correlation Intractable Hash Families

Definition 2.7. For a pair of efficiently computable functions (n(-), m(-)), a hash family with input
length n and output length m is a collection H = {hy : {0,1}**) x {0,1}"M — {0,1}™M ey of
keyed hash functions, along with a pair of p.p.t. algorithms:

o H.Gen(1*) outputs a hash key k € {0,1}°%).

e H.Hash(k,x) computes the function hy(k,x). We may use the notation h(k,x) to denote hash
evaluation when the hash family is clear from context.

As in prior works [CCH™ 19, PS19] we consider the security notion of correlation intractability
[CGHO4] for single-input relations and its restriction to (single-input) functions.

Definition 2.8 (Correlation Intractability). For a given relation ensemble R = {Ry C {0,1}™) x
{0,113} a hash family H = {hy : {0,1}*N x {0,1}"X) — {0,1}™N} s said to be R-correlation
intractable with security (s, d) if for every s-size A = { Ay},

keyiﬁn(m [(:c,h(k,:v)) € R] = O(8(\)).
zA(k)
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We say that H is R-correlation intractable with security § if it is (A, d)-correlation intractable for
all ¢ > 1. Finally, we say that H is R-correlation intractable if it is (\°, %)—corr’elation intractable
for all c > 1.

To allow for a uniform security reduction in our results, we also consider the following modified
definition.

Definition 2.9 (Correlation Intractability against Uniform Adversaries). Let R denote a collection
of relation ensembles with input length function n(-) and output length function m(-). A hash family
H is said to be R-correlation intractable with security (7', 0) against uniform adversaries if every T-time
adversary A wins the following game with probability at most O(d6(\)):

1. A(1*) outputs the description of a relation R € R and sends it to a challenger.
2. The challenger samples a hash key k < H.Gen(1") and sends k to A.
3. A, giwen k, returns an input x € {0,1}"N . A wins if (x, hi(x)) € R.

Definition 2.10 (Correlation Intractability for Functions). For a given function ensemble F =
{fr: {0,131 = {0,1}™NY, 4 hash family H = {hy : {0,1}%W) x {0,1}*N — {0,1}™N} is said
to be f-correlation intractable with security (s, d) if for every s-size A = { A},

e [k, 2) = f(z)] = O(BV)).
—H.Gen(1%)
x—A(k)

We say that H is f-correlation intractable with security 0 if it is (A, 0)-correlation intractable for all
¢ > 1. Finally, we say that H is f-correlation intractable if it is (\°, %)—correlatz’on intractable for
all ¢ > 1.

Remark 2.1. We can define correlation intractability for functions against uniform adversaries
similarly to Definition 2.9.

We note that syntactically, correlation intractability for functions implies correlation intractabil-
ity for relations that are implicitly described by (partial) functions.

Definition 2.11 (Unique Output Relation). We say that a relation R is a unique output relation
if for every input x, there exists at most one output y such that (x,y) € R.

Lemma 2.12. Suppose that R is a class of unique output relations. Let F denote a class of
functions such that for all R € R, there exists a function f € F “explaining R” in the sense
that for all (z,y) € {0,1}* x {0,1}*, if R(z,y) = 1 then f(x) = y. Then, if a hash family H is
correlation intractable for F, then it is correlation intractable for R with the same parameters.

In our constructions, we will make use of the correlation intractable hash family of [PS19]; in
particular, we make use of the fact that it inherits strong quantitative security from the underlying
LWE assumption.

“This was implicit in prior works, but we make the distinction explicit here.
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Theorem 2.13 ( [PS19], slightly modified). Assume the (T -n*W1),§)-hardness of \WE,, ;1.4 for
sufficiently large ¢ = poly(n,m) and m = n[logq]). Then, for every polynomial function ¢(n), there
is a hash family H = {hy : {0,1}° x {0,1}* — {0,1}™} that is (T - (1), §)-correlation intractable
for all T-time computable functions f : {0,1}¢ — {0,1}™.

Proof (sketch). The [PS19] construction (making use of a polynomial modulus ¢) consists of two
parts: a hash family for branching programs, followed by a “bootstrapping step” via levelled FHE.
The security of the bootstrapping step follows from a comparatively weaker LWE security invocation
(as a larger security parameter for the FHE scheme can be chosen without affecting the output
length of the overall hash function), so we focus on the branching program step. Their hash
function for branching programs is constructed to have output length n[log¢q| and has a security
proof consisting of two steps: a “leftover hash lemma” argument for the (statistically hiding)
fully homomorphic commitments, and a direct invocation of LWE,, ;,41,4, . By choosing large
enough public parameters for the fully homomorphic commitment scheme (which does not effect
the output length of the hash function), the leftover hash lemma can be made to guarantee ¢~"-
statistical indistinguishability of this step in the security proof. Finally, the security reduction from
LWE,, ;m+1,4, Tuns in time 7" - poly(n,logq). This completes the proof of Theorem 2.13. O

Remark 2.2. In our later constructions, we will consider functions f computed in an “online-
offline” model, where f € Size(.S) is computable by a size S circuit C, but the circuit requires time
T > S to construct. Theorem 2.13 above then says that correlation intractability for f can be
built from a non-uniform LWE assumption for size S-n®()-size adversaries, but the same argument
shows that one can instead rely on a uniform LWE assumption for time T - n¥() adversaries.

2.4 Interactive Proofs and Arguments

We being by recalling the definitions of interactive proofs and arguments.

Definition 2.14. An interactive proof (resp., interactive argument) for a promise problem L =
(Lyes, Lno) s a pair (P, V') of interactive algorithms satisfying:

e Completeness. For any x € Lyes, when P and V interact on common input x, the verifier
V' outputs 1 with probability 1.

e Soundness. For any x € L,,N{0,1}" and any unbounded (resp., polynomial-time) interac-
tive P*, when P* and V (z) interact, the probability that V outputs 1 is a negligible function
of n.

The protocol is public coin if each of V'’s messages is an independent uniformly random string of
some length (and the verifier’s decision to accept or reject does not use any secret state). In this
setting, we will denote prover messages by (aq,...,cq) and verifier messages by (51,...,0Be—1) in a
2¢ — 1-round protocol.

Definition 2.15. A non-interactive argument scheme (in the CRS model) is for a promise problem
L = (Lyes, Lno) s a triple (Setup, P, V') of non-interactive algorithms with the following properties:

e Setup(1™) outputs a common reference string crs.

e P(crs,x) outputs a proof .
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o V(crs,z,m) outputs a bit b € {0,1}
It satisfies the notions of completeness and (computational) soundness as above.

Remark 2.3. Given an argument system II, we consider three important complexity measures of
1I:

e The runtime of the prover P on an instance of size n.

e The quantitative soundness of II; that is, how long a cheating prover P* can run with the
guarantee that soundness is unbroken.

e The runtime of the verifier V' on an instance of size n. For a nontrivial argument system, this
quantity should be smaller than the previous two.

In this paper, we will sometimes consider non-interactive protocols with a crs whose length
is superpolynomial in the instance size n or security parameter A. In this situation, we will still
parameterize prover efficiency, verifier efficiency, and quantative soundness as functions of (n, \)
rather than the Prover/Verifier input length (which is at least the length of the crs).

Definition 2.16 (Fiat-Shamir Transform). Let II denote a public coin interactive proof (or ar-
gument) system 11 that has € prover messages and ¢ — 1 verifier messages of length m = m(\).
Then, for a hash family H = {{hy : {0,1}* — {0,1}"”()‘)},66{0,1}@,\, we define the Fiat-Shamir
non-interactive protocol Ilpg 3 = (Setup, Prg, Vig) as follows:

e Setup(1Y): sample a hash key k < H.Gen(1%).
o Pps(x): forie€ {l,...,L}, recursively compute the following pairs (o, By):

— Compute oy = P(7; for 7, = (z, 1, B1, -« -y -1, Bi—1)-

— Compute B; = hi(Ti—1,q).
Then, Pps(x) outputs m = (au, B, ..., qp).
o Vpg(crs,z,m) parses m = (aq, b1, ..., ap) and verifies that:
— Bi = hg(Ti—1, ) forall1<i<{—1, and
- V(x,m) =1.
We note the following facts about Ilps 3

e The honest prover complexity of llgs 14 is equal to the honest prover complexity of II with an
additive overhead of computing £ — 1 hash values.

o The verifier complexity of llgs 3, is equal to the verifier complexity of 11 with the same hashing
additive overhead.

o The protocol Ilgs 31 is not necessarily sound, even if 11 is sound and H is a “strong crypto-
graphic hash function.”
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Finally, we define the notion of unambiguous soundness [RRR16], which is crucial for our PPAD-
hardness result. For non-interactive arguments, the soundness notion we consider is adaptive in
that we allow the prover P* to adaptively choose the statement x after seeing the crs.

Definition 2.17 (Unambiguous Soundness [RRR16, CHK*19a]). A public-coin interactive proof
system II is unambiguously sound if (1) it is sound, and (2) for every x € L and every (complete)
collection of verifier messages (B1,...,Be—1), there exists a distinguished proof ©*(x, 1, ..., Be-1)
such that the following soundness condition holds: For all x € L and all cheating provers P*,
the probability that the transcript (P*(x),V(z)) contains a proof m such that V(x,m) = 1 and

m # 1%z, B, ..., Be—1) is negligible.

Definition 2.18 (Adaptive Unambiguous Soundness). A non-interactive argument system 11 =
(Setup, P, V) is adaptively unambiguously sound against (uniform or nonuniform) time T adver-
saries if for all instances x € L and all common reference strings crs, there exists a “distinguished
proof” w*(crs, z) such that the following soundness condition holds: For all time T cheating provers
P*, the probability that P*(crs) = (x,7) where V(z,m) = 1 and either x ¢ L or m # n*(crs,x) is
negligible.

2.5 Non-trivial Preprocessing Algorithms for the Discrete Logarithm Problem

In this section, we describe a family of randomized algorithms for solving the (worst-case) discrete
logarithm problem over Z, for a prime p. This will be necessary for the analysis of our variant of
Pietrzak’s interactive proof system of repeated squaring, and for its associated Fiat-Shamir hash
function.

The algorithm is a simple variant of the index calculus algorithm, as presented in [CCRR18],
but with different parameter choices. We present the algorithm, analyze its runtime, and state
(with citation) its success probability.

Given an arbitrary generator g for Z; for p = 20 and a time bound ¢, we consider the
following preprocessing algorithm for discrete logarithms with base g.

e Offline Phase: for all 1 < k < ¢, compute the discrete logarithm of k in base g, and store
the answer «ay.

e Online Phase: given challenge h, define i/ = h - g~" for a uniformly random r, and check

if ' € 7Z factors into a product of elements of the set {2,...,t}. If such a factorization
W =ky-...-kyis found, then output the discrete logarithm r + k1 + ko + ... + k. Otherwise,
output L.

For a runtime analysis, note that each discrete logarithm in the offline phase can be computed
in time 20A"%) via the algorithm of [Ad179, Pom87], so the entire offline phase can be computed in
time ¢ - 2002

The online phase can be computed in time ¢ - poly(\), with the most expensive step being the
attempted factorization of b’ via trial division.

Finally, since A’ is a uniformly random element of {1,...,p — 1}, the success probability of
one iteration of the online phase is simply the probability that a random element of {1,...,p — 1}
has no prime factor larger than ¢. Based on smooth number estimates (such as those following
from [CEPS83]; see [Gra08] for a survey of results), we note the following special cases.
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Theorem 2.19 (Follows from [CEP83]). The following probability bounds hold:

o Fort =\, the algorithm has success probability at least 97t (1=o(1)),

S S
o Fort =218 the algorithm has success probability at least 21050 (1 0(1)).

- A7 (1-0(1))
o For sufficiently large t = 2°X) | the algorithm has success probability at least 2~ 10820

We note that this algorithm, in the regime ¢ = poly(\), was considered in [CCRR18] as evidence
against the optimal security of discrete log over Z; a simple application of Rankin’s method [Ran38]
sufficed for their calculations, but we are interested in analyzing larger values of ¢.

3 Correlation Intractability for Special Inefficient Functions

In this section, we show how to construct correlation-intractable hash families that support certain
functions f that are not necessarily efficiently computable. Specifically, we handle functions that
can be computed by a randomized algorithm that is only correct with low probability(Section 3.1).
As a special case (by appealing to Section 2.5), this implies that we can handle functions f that
are efficient given a small number of calls to a discrete log oracle (Section 3.2).

3.1 A Self-Reduction for Correlation Intractability

We first show the following simple self-reduction for correlation-intractable hash families.

Theorem 3.1. If a hash family H is (s,d)-correlation intractable for all non-uniform time t-
computable functions, then it is (s, %)—correlation intractable for all functions f that are computable
in the following preprocessing model:

e Preprocessing Phase: In unbounded time, output the description of a randomized function
gr TuUNNING in time t.

e Online Phase: Given an input x, compute g.(x).

e Correctness Guarantee: For all inputs x, we have that Pr[g,(x) = f(x)] > €.

Proof. Given a function f computable in the above preprocessing model, suppose that an adversary
A breaks the (s, ¢)-correlation intractability of H. Then, A(k) finds an input x such that hy(z) =
f(x) with probability at least g. But for a uniformly random r, we are guaranteed that (for any
fixed x), f(x) = gr(x) with probability at least e. From this, we conclude that for a random r, the
exact same adversary A(k) finds an input x such that hi(z) = g.(x) with probability at least 4,

breaking the (s, d)-correlation intractability of H. O

Remark 3.1. If the preprocessing phase of this online-offline algorithm can be implemented in some
(uniform) time 7', then correlation intractability against uniform adversaries (with the appropriate
parameters) is also preserved.
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3.2 (I for Efficient Functions Relative to Discrete-Log

By combining Theorem 3.1 with the non-trivial discrete log algorithms in Section 2.5 as well as the
construction of correlation-intractable hash families due to [PS19] (Theorem 2.13), we obtain a CI
construction for a class of functions that are efficient relative to a discrete log oracle. We formalize
the result as follows.

Definition 3.2. We say that a function f is (T,q,¢)-computable given a discrete log oracle if f is
computable by an oracle algorithm A®C), where

e A runs in time T,
e A makes at most q queries to O,
e FEvery query (g,h,p) to O has length at most £, and
e O(g,h,p) computes the discrete logarithm of h with respect to g in the group 7.
Theorem 3.3. Let € > 0 be arbitrary. Assume that (decision) LWE is (20(”1/2), 2_”176)—hard (or

alternatively, (20(”6), 2_”1_€>-ha7’d for non-uniform algorithms) for some q = poly(n). Then, for

m = nlogq and every polynomial function £(n), there exists a hash family H mapping {0,1}) —
{0,1}™ such that

o H is correlation intractable for all functions f that are (2" ,polylogn, O(m))-computable
given a discrete log oracle, and

e A hash function h from H can be evaluated in time 20(n°)

Under the assumption that (decision) LWE is (20("1/2), 2_10g72")—hard for some constant ¢ > 0

(or alternatively, (q uasipoly(n), 2_10é2”)—hard for non-uniform algorithms), there exists such a hash
family H where

e H is correlation intractable for all functions f that are (quasipoly(n), poly log n, O(m))-computable
given a discrete log oracle, and

e A hash function h from H can be evaluated in time quasipoly(n).

Finally, under the assumption that (decision) LWE is (poly(n),q_‘sn) -hard for mon-uniform

(n1/2) 1

4
such a hash family H where

distinguishers (or (20 ”) -hard for uniform distinguishers) for a fized § > 0, there exists

e H is correlation intractable for all functions f that are (n'/%, O(1), O(m))-computable given
a discrete log oracle, and

e A hash function h from H can be evaluated in time n®1/9).

Remark 3.2. Looking ahead, Theorem 3.3 is not directly used in this work to obtain our main
theorem (Theorem 1.1). The reason for this is due to technicalities about preprocessing and non-
uniformity when describing the [Piel8] protocol and its bad challenge function. A more complicated
version of Theorem 3.3 could be directly used to prove Theorem 1.1, but we prefer to state a simpler
version of Theorem 3.3 and then directly analyze the [Piel8] protocol in Section 5.1.
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4 Round-by-Round (Unambiguous) Soundness and Fiat-Shamir

Following [CCH"18, CCH"19], we consider the notion of round-by-round soundness to capture a
particular kind of soundness analysis for super-constant round interactive proofs. Since we are in-
terested in unambiguous soundness for our protocol, we define an analogous notion of “unambiguous
round-by-round soundness” and note (as in [CCH"18]) that correlation intractability for an appro-
priate relation suffices for a hash family to instantiate the Fiat-Shamir heuristic for unambiguously
round-by-round sound interactive proofs.

Definition 4.1 (Unambiguous Round-by-Round Soundness, adapted from [CCH'18]). Let II =
(P, V) be a 20 — 1-message public coin interactive proof system for a language L.

We say that I1 has unambiguous round-by-round soundness error €(-) if there exist functions
(State, NextMsg) with the following syntaz.

e State is a deterministic (not necessarily efficiently computable) function that takes as input
an instance x and a transcript prefix T and outputs either acc or rej.

e NextMsg is a deterministic (not necessarily efficiently computable) function that takes as
input an instance x and a transcript prefic T and outputs a (possibly aborting) prover message
ae{0,1}*U{L}.

We additionally require that the following properties hold.
1. If x € L, then State(z, () = rej, where () denotes the empty transcript.

2. If State(z, 7) = rej for a transcript prefix T, then NextMsg(x,7) = L. That is, NextMsg(z, T)
is only defined on accepting states.

3. For every input x and partial transcript = = T;, then for every potential prover message
aj+1 # NextMsg(x, 7), it holds that

Pr [State(m,7|ai+1|ﬁi+1) = acc] < e(n)
6’L+1

4. For any full®® transcript T, if State(z,7) = rej then V(x,7) = 0.

We say that II is unambiguously round-by-round sound if it has unambiguous round-by-round
soundness error € for some €(n) = negl(n).

Remark 4.1. Note that a proof system that satisfies unambiguous round-by-round soundness also
satisfies standard unambiguous soundness. Indeed, if a proof system II satisfies unambiguous round-
by-round soundness, every statement z € L and collection of verifier messages (1, ..., ¢—1) has
an associated “distinguished proof” defined by iterating the NextMsg function on the appropriate
partial transcripts. It is (statistically) hard for a cheating prover P* to find any proof 7 other
than 7 = 7*(x, B1,...,Be—1) because finding such a proof violates unambiguous round-by-round
soundness at whichever round 7 first deviates from 7*.

With this definitional framework, a direct adaptation of ( [CCH™ 18], Theorem 5.8) yields the
following result.

15By a full transcript, we mean a transcript for which the verifier halts.
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Theorem 4.2. Suppose that Il = (P, V') is a 20 — 1-message public-coin interactive proof for a lan-
guage L with perfect completeness and unambiguous round-by-round soundness with corresponding
functions (State, NextMsg). Let X,, denote the set of partial transcripts (including the input and
all messages sent) and let'Y,, denote the set of verifier messages when 11 is executed on an input of
length n.

Finally, define the relation ensemble R = Rstate NextMsg @5 follows:

x € {0,1}",
(n) def ~ «a # NextMsg(x, 7)
RState,NextMsg - ((ZL‘, T|O‘)7ﬁ) . and

State(z, T|a|) = acc

If a hash family H = {Hn : Xy, = Yo} is T - XM _correlation intractable for R, then the round-
reduced protocol Ilpg 74 is an adaptively unambiguously sound argument system (against time T\
cheating provers) for L.

Finally, we consider the special case where the relation Rsiate NextMsg associated to a protocol
IT is a unique output relation (Definition 2.11).

Definition 4.3 (Bad Challenge Function). Let IT denote a public-coin interactive proof system sat-
isfying unambiguous round-by-round soundness with associated functions (State, NextMsg). Suppose
that the relation Rsiate NextMsg @S defined above is a unique output relation.

We say that a function fstate NextMsg &S @ bad challenge function for II if for all partial transcripts

(iU,T), and all Ueﬂﬁer messages 67 Zf (xh—? 5) € RState,NextMsg; then 6 = fState,NextMsg(xyT)

Invoking Lemma 2.12 and Theorem 4.2, we obtain the following corollary.

Corollary 4.4. In the setting of Theorem 4.2, if f is a bad challenge function for Il and H
is T - XU _correlation intractable for f, then IIgs 3 is an adaptively unambiguously sound non-
interactive argument system against T - AW _time cheating provers.

5 Fiat-Shamir for the Repeated Squaring Protocol

In this section, we describe our variant of the [Piel8] repeated squaring protocol, analyze its round-
by-round unambiguous soundness (Definition 4.1), and show that the protocol has an associated
bad-challenge function (Definition 4.3) that allows for the desired Fiat-Shamir instantiation (The-
orem 1.1).

5.1 Our Variant of the Repeated Squaring Protocol

For ease of notation and analysis, we adopt the following variant of Pietrzak’s protocol [Piel8].
While it is essential for us to use a protocol with unambiguous soundness, our deviation from the
variant of [CHK'19b] is voluntary. For simplicity, we only consider T' = 2! to be a power of 2.

e Setup: Sample (N, g) < Setup(1?) for the RSW function (Section 2.1).

e Initial Claim: On input 7', the prover outputs h = 92T = fng(T). The implicit claim is
that A is indeed equal to fn 4(7T).
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¢ Round-by-Round Reduction given a claim (N, T, g;, h;), the prover and verifier execute
a 2-round reduction step that outputs a new claim:

e
— With % + O(1) group operations, the prover computes u; = 91‘2 * along with the unique
square root v; of u; such that v; € QRE. In particular, this v; is equal to one of :I:giQT/%l.
The prover outputs (u;, vi).
— The verifier checks that v; € QRE and that U,LZ = u;; if a check fails, the verifier aborts.
Otherwise, the verifier samples a random string r; < {0, 1}A.

— The prover and verifier recurse on the new claim (N,T/2, gi11 = u; - g}, hiv1 = hi - u}).
e Base Case: On the final claim (N, 1, g¢, ht), the verifier accepts if and only if hy = g2.

We denote this main interactive protocol by II. We now proceed to analyze its soundness
properties.

5.2 Unambiguous Round-by-Round Soundness and Bad-Challenge Function

We show that II satisfies unambiguous round-by-round soundness and has an associated bad chal-
lenge function f : Zy x Zn — {0, 1})‘ that has a non-trivial preprocessing algorithm.

We begin by defining the functions (State, NextMsg), using the fact that every partial transcript
(z,7) has an associated “current claim”.

e State(x, ) is defined to be acc if and only if all prover messages (u,v) pass the verifier’s local
check (that v? = u and v € QR};) and the “current claim” of the form h; = g7t is true.
% and v; € %g,

(2
e NextMsg(z,7) is defined (for accepting states) to be (u;,v;) for u; = g;fi/ ;
the appropriately chosen square root in QRT\,. For rejecting states, NextMsg(z,7) = L by
definition.

T, /21

Theorem 5.1. The protocol 11 satisfies unambiguous round-by-round soundness with associated
functions (State, NextMsg). Moreover, II has a bad challenge function f.

Proof. Properties (1), (2), and (4) of unambiguous round-by-round soundness follow immediately
from the definitions of (State, NextMsg). What remains is to verify property (3), which follows from
two facts that we will prove:

e At each step ¢ of the round-by-round reduction, if Claim i is false, then for every prover
message (u;j,v;), there is at most one challenge r* such that Claim i + 1 is true.

e At each step 4, if Claim i is true, then for every prover message (u;, v;) that deviates from the
correct messages, there is at most one challenge r* such that Claim i + 1 is true.

To prove this, we consider the reduction step for an arbitrary verifier message r;:

R T _ r
hiv1 = hi-ug,giv1 = u; - g;

Let (n,w,~) denote the discrete logarithms of (h;, g;,u;), respectively, in base g. We then see
that Claim ¢ 4 1 is true if and only if

n+rw=2"w+rq) (modpq),
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which is true if and only if
r(w—25/27) =212 — 5 (mod p'q).
We then have two cases to analyze:

e Case 1: If w = 2%/2y, then the equality above holds if and only if n = 2Ti/2 as well,
which is exactly the case that Claim ¢ was true and u; is the correct prover message. v; must
additionally be the correct prover message because of the verifier’s local check.

e Case 2: If w # 27/2~, then either the verifier rejects some pair (u,v) (if the local check
on (u,v) fails) or we are guaranteed that w — 27/2y ¢ {0,p'q'} (because we are guaranteed
that g; and w; are both in QRy). This implies that w — 27i/2 has additive order at least
min(p’, ¢'), and hence there is at most one choice of r satisfying the above equation in the
range {0,1,...,2 — 1}.

This completes the analysis. In fact, the analysis above shows that for every step of the round-
by-round reduction, there is a bad challenge function f;(N, g,T;, gi, hi, u;) governing the soundness
of the ith reduction, so we also conclude the existence of a bad challenge function f. O

Having showed that IT has a bad challenge function f, we now describe and analyze an algorithm
for computing it.
First, we note that the function f; can be computed exactly as follows:

1. Given (N, g,T;, gi, hi,u;), compute the three discrete logarithms n,w,~y as above as well as
the factorization N = pg = (2p' + 1)(2¢' + 1).

2. Solve the linear equation
r(w—27/27) =212 —y  (mod p'¢).

for r, and output the unique solution r* (if one exists) in the range [2*]. This second step
is efficient: first compute 27i/2 (mod p'q’), and then solve the linear equation via a GCD
computation.

Since step (1) of this computation is extremely inefficient to compute exactly, this description
is insufficient for our purposes. However, by invoking Theorem 2.19, we can show the following
efficiency property of f.

Theorem 5.2. The bad challenge function f can be computed by a preprocessing algorithm with
any one of the three following efficiency guarantees:

~ - _Q Alfe
e Offline time 2002 online time 200 | and success probability 2 <'°g2(”)

~ . Q) (1_
e Offline time 200‘1/2), online time 2'°8N° . poly(\), and success probability 2105315 o))

e Offline time 260‘1/2), online time A/ - poly(\), and success probability 9=0A(g—o(1)

Proof. The algorithm is as follows.
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e Offline phase: factor N in time 20*""*) using Dixon’s factorization method [Dix81, Pom8&7].

Also, compute g, a square root of g that has order ¢(N)/2.

e Compute the discrete logarithms of g;, h;, u; (in base §) modulo p and the discrete logarithms
of gi, hi,u; (in base §) modulo g using the preprocessing algorithm from Section 2.5.'6 With
the appropriate parameter choice, this contributes 20"%) offline time, 29(*) online time,

7)\1—6

and has success probability 21e*() ,

e Compute n,w, and v by halving the six discrete logarithms above and using the Chinese
remainder theorem.

e Finish the computation of r* as above.

The claimed efficiency follows directly from Theorem 2.19. O

Remark 5.1. In order to match the preprocessing model defined in Section 3.1, we note that the
modulus N = pq is not considered part of the “input” to the protocol, but is instead considered a
global public parameter.

Finally, by combining Theorem 5.1 (the existence of a bad-challenge function f for II), Theo-
rem 5.2 (the low-probability preprocessing algorithm for f), Corollary 4.4 (hash families that are
correlation intractable for a function f suffice to compile interactive protocols with bad-challenge
function f), Theorem 3.1 (relating CI for efficient deterministic functions to CI for functions com-
putable via low-probability preprocessing algorithms), and Theorem 2.13 (CI for efficient functions
exist under LWE), we obtain Theorem 1.1, which we restate here for convenience. We note that the
LWE security parameter n is related to the repeated squaring security parameter A via the relation
A =nlog(q) = O(nlogn).

Theorem 5.3 (Theorems 1.1 and 1.3, restated). Let € > 0 be arbitrary. Assume that (deci-
sion) LWE is (20("1/2),2*"1_ )—hard (or alternatively, (20("6), 9—n'"
gorithms). Then, there exists a hash family H that soundly instantiates the Fiat-Shamir heuristic
for the [Pie18] interactive proof system. A hash function h from the family H can be evaluated in

€

)—hard for non-uniform al-

time 200%) for repeated squaring over groups of size 20N with \ = O(nlogn).
Under the assumption that (decision) LWE is (20(”1/2), 2_1080")—hard for some constant ¢ > 0

(or alternatively, (q uasipoly(n), 2_10$">—hard for non-uniform algorithms), there exists such a hash
family H with quasi-polynomial evaluation time.

Finally, under the assumption that (decision) LWE is (poly(n),q_(sn) -hard for mon-uniform
distinguishers (or (20(”1/2),61_5”) -hard for uniform distinguishers) for a fized § > 0, there exists

such a hash family H with evaluation time \O(/9).

6 Applications to PPAD-Hardness and VDFs

Having proved Theorem 1.1, we now conclude our main applications, Theorem 1.5 and Theorem 1.6.
Theorem 1.5 follows directly from Theorems 1.1 and 1.3 along with the work of [CHK*19b, EFKP19,

16Note that § generates Z; and Z; when reduced modulo p and g respectively, so the hypotheses of the algorithm
are satisfied.
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CHK " 19a], while Theorem 1.6 follows from Theorems 1.1 and 1.3 as an instantiation of the [Piel§]
protocol in the standard model.
For each of the two applications, we state the relevant definitions and re-state the main theorems.

6.1 Hardness in PPAD and CLS
The following preliminaries are taken from [CHK'19b]. We first recall the definition of PPAD.

Definition 6.1 (End-of-Line Problem). An instance of the End-of-Line (search) problem consists
of a pair (S,P) of circuits computing functions from {0,1}" — {0,1}"™. We assume without loss
of generality that P(0™) = 0™ and S(0™) # 0™ (as this can be checked efficiently). A solution to
the search problem is a vertex v € {0,1}™ such that P(S(v)) # v or S((P(v)) # v # 0™.

Definition 6.2 (PPAD). The complezity class PPAD s the subclass of TFNP (search problems
with efficient verification such that every instance is guaranteed to have a solution) consisting of
all problems that are polynomial-time reducible to End-of-Line.

To obtain hardness for PPAD (and indeed the subclass CLS [DP11]), we construct a hard
instance of the “relaxed sink-of-verifiable-line problem” [CHK ™ 19a).

Definition 6.3 (rSVL). An instance of the relaxed sink-of-verifiable-line (rSVL) (promise) problem
consists of two circuits (S,V), a distance L € [2™], and a “source vertez” vg € {0,1}"™. We are
promised that for every pair (v,i) € {0,1}™ x [L] such that v = S*(vg), it holds that V(v,i) =1. A
solution to the problem is one of the following two types:

e The sink: a vertex v € 0,1™ such that V(v,L) =1, or
e False positive: a pair (v,i) € {0,1}™ x [L] such that v # S*(vg) but V(v,i) = 1.

We note that rSVL is itself not a total search problem, but it is known [CHK™19a] that rSVL
reduces to some total search problems (indeed, even problems in CLS).
Our CLS-hardness result relies on the following theorem implicit in [CHK19b].

Theorem 6.4 (Implicit in [CHK19b]). Suppose that Fiat-Shamir for the [Piel8] interactive proof
system (as defined in Section 5.1) can be instantiated using some efficiently computable hash family
H so that the resulting non-interactive argument system is adaptively unambiguously sound (Defi-
nition 2.18). Then, there is an efficient construction of a hard-on-average rSVL problem.

We note two differences between our setting and the setting of [CHKT19b]. First, our variant
of the [Piel8] is not identical to theirs; however, the differences are insubstantial to their hardness
reduction.'” Second, the verification procedure in (one variant of) our non-interactive protocol takes
time 29X rather than poly(\); this is resolved by redefining the security parameter xk = 20(X) and
then running their reduction to produce rSVL instances where the circuits (S, V) are poly(k)-size
and the problem is hard for poly(x)-time algorithms.

With the two modifications above, by combining Theorem 6.4 with Theorems 1.1 and 1.3, we

obtain our main PPAD-hardness result, Theorem 1.5.

"What is important is that our protocol satisfies adaptive unambiguous soundness and has a similarly efficient
merging procedure (see Section 4.4, Property 3 in [CHKT19b]. This allows for their construction of “unambiguously
ging g
sound incrementally verifiable computation” [CHK+19a] to go through.
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Theorem 6.5 (Theorem 1.5, restated). For a constant € > 0, suppose that
e n-dimensional LWE (with polynomial modulus) is (20(”1/2),2*”1_6)—hard, and

)\)w(l)

o The repeated squaring problem on an instance of size 2* requires 2*° log( time.

Then, there is a hard-on-average problem in CLS C PPAD. The same conclusion holds if for
some ¢ > 0,

o LWE is (20("1/2),27W)-ham’, and

o The repeated squaring problem is hard for quasi-polynomial time algorithms.
The same conclusion also holds if for some § > 0,

e LWE is (poly(n),q*‘s”> -hard for non-uniform distinguishers, and

o The repeated squaring problem is hard for polynomial time algorithms.

6.2 Verifiable Delay Functions
The following definition is taken from [BBBF18].

Definition 6.6 (Verifiable Delay Function). A wverifiable delay function (VDF) is a triple of algo-
rithms (Setup, Eval, Verify) with the following syntaz.

e Setup(1*,t) is a randomized algorithm that takes as input the security parameter 1 along
with a time bound t. It outputs public parameters pp.

e Eval(pp, z) takes an input x (along with the public parameters pp) and returns an output y
along with a proof m.

o Verify(pp, z,y,7) takes as input the public parameters pp, and input x, an output y, and a
proof w. It outputs a bit b € {0,1}.

The scheme must satisfy the following properties.

e Correctness: For all pp in the support of the distribution Setup(1*,t), we have that Verify(pp,
x,y,m) =1 for y = Eval(pp, x).

e Soundness: Suppose that a poly(t, \)-time algorithm A(pp) is given the public parameters
as input (for pp < Setup(1},t) and outputs a triple (x,y,m). Then, the probability that
y # Eval(pp, z) and Verify(pp, z,y, m) = 1 is negligible.

e (0,p)-Sequentiality: suppose that a o(t) parallel time algorithm A(pp,x) (with p(\,t)-
parallelism) is given public parameters pp < Setup(1*,t) and a uniformly random input x.
Then, the probability that A(pp,x) = Eval(pp, z) is negligible.

o Efficiency: The algorithms Setup and Verify runs in time poly(\,logt)'®. The algorithm
Eval(pp, ) runs in parallel time t poly(logt, \)-wise parallelism.

18We can achieve this efficiency via complexity leveraging, but more generally allow for sub-exponential time setup
and verification.
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The parameter regime of interest is when o(t) = ¢(1 — o(1)) is very close to ¢, and p(\,t) is
relatively large. Combining our Fiat-Shamir result (Theorems 1.1 and 1.3) with the construction
of Pietrzak [Piel8], we immediately obtain our VDF result (Theorem 1.6).

Theorem 6.7 (Theorem 1.6, in more detail.). For a constant ¢ > 0, suppose that
o LWE is (2%” 2>,2—n”)-hard, and

e The repeated squaring problem [RSWI6] over groups of size 2000 requires (o(t), p(\,t)) se-
quential time for t > 20X,

Then, the repeated squaring function fn 4 can be made into a VDF with (o(t), p(\, t))-sequentiality.

The algorithms (Setup, Verify) of this scheme run in time 2002 op groups of size 20 (with

A= 0O(nlogn)). Similarly, if for some ¢ > 0,
o LWE is (2@<”” 2),2_71°g?”>‘3)—hard, and

e The repeated squaring problem requires (o(t),p(A\,t)) sequential time for t > QO(logO‘)CH),

Then, fn 4 can be made into a VDF with (o(t), p(\,t))-sequentiality. The algorithms (Setup, Verify)
of this scheme Tun in time 20(log(N)H) Finally, if for some § > 0,

o LWE is (poly(n),q_[;”) -hard for non-uniform distinguishers, and

e The repeated squaring problem requires (o(t),p(\,t)) sequential time for all t = poly(n).

Then, fn,4 can be made into a VDF with (o(t), p(A, t))-sequentiality. The algorithms (Setup, Verify)
of this scheme run in time \O(1/9),
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