When Theory Meets Practice: A Framework for
Robust Profiling Side-channel Analysis

Stjepan Picek!, Annelie Heuser?, Lichao Wu'!, Cesare Alippi®*, and Francesco
Regazzoni®*

! Delft University of Technology, The Netherlands
2 CNRS, IRISA, Rennes, France
3 Politecnico di Milano, Milano, Italy
4 Universita della Svizzera Italiana, Lugano, Switzerland
5 University of Amsterdam, The Netherlands

Abstract. Profiling side-channel attacks are considered the most po-
tent form of side-channel attacks. They consist of two steps. First, the
adversary builds a leakage model using a device similar to the target one.
This leakage model is then exploited to extract the secret information
from the victim’s device. These attacks can be seen as a classification
problem, where the adversary needs to decide to what class (and con-
sequently, the secret key) the traces collected from the victim’s device
belong. The research community investigated profiling attacks in-depth,
primarily by using an empirical approach. As such, it emerges that a
theoretical framework to analyze profiling side-channel attacks compre-
hensively is still missing.

In this paper, we propose a theory-grounded framework capable of mod-
eling and evaluating profiling side-channel analysis. The framework is
based on the expectation estimation problem that has strong theoretical
foundations. We quantify the effects of perturbations injected at differ-
ent points in our framework through the robustness analysis, where the
perturbations represent sources of uncertainty associated with measure-
ments, non-optimal classifiers, and countermeasures. Finally, we use our
framework to evaluate the performance of different classifiers using pub-
licly available traces.

1 Introduction

Embedded and cyber-physical devices, connected to form the Internet of Things
(IoT), are pervading every aspect of our lives. Even though they provide funda-
mental services, their use of sensitive data and access to critical infrastructure
brings new security challenges. It follows that security becomes one of the most
important extra-functional requirements that the designer should grant to the
devices. Designing secure embedded devices is extremely challenging for two
main reasons. First, the limited area and energy budget available in these de-
vices are often insufficient to implement full flagged and robust cryptographic
primitives. Second, these devices should be resistant to physical attacks. The

pervasive diffusion of these devices makes them physically available to adver-
saries willing to exploit the implementation’s physical weaknesses to extract the
stored secret information (typically, the secret key).

It is necessary to understand the adversary’s capabilities to achieve resis-
tance against physical attacks. Side-channel attacks (SCAs), in particular pro-
filing ones, are by far the most studied (and the most powerful) physical attacks
since they have been proved to be very effective both in the lab and in real-world
applications [31]. In profiling attacks, the adversary first profiles a device identi-
cal (or, at least similar) to the one that will be attacked. In a second phase, using
this profile and the victim device’s traces, the adversary attempts to recover the
secret key. Common examples of such profiling attacks are template attack [7./9]
as well as supervised machine learning-based attacks [6}/19,23}34}35,/49].

It is well-known that a template attack is the most powerful one from the
information-theoretic perspective (given that certain assumptions hold) [7]. Si-
multaneously, numerous related works experimentally showed how machine learn-
ing techniques perform extremely well in many realistic scenarios, see, e.g., [6,49].
However, there is no guarantee that machine learning techniques would behave
similarly in different scenarios, even if they share characteristics. Still, one would
hope to be able to get answers to more specific questions, e.g.:

1. What machine learning method is optimal for a given side-channel scenario?
2. What machine learning method should be preferred for multiple side-channel
scenarios?
3. Which machine learning method is the most stable one?
Note that, by answering those questions, we also provide insights into connec-
tions among different settings or even countermeasures.

The current state-of-the-art in profiling side-channel analysis progressed tremen-
dously in the last few years. There, deep learning results showed it is possible
to break even implementations protected with countermeasures [6,/23]. More re-
cently, the SCA community started investigating the explainability of machine
learning-based attacks to produce more powerful attacks and novel countermea-
sures [32,46]. Besides, the robustness of specific classifier-distinguisher combi-
nations has been studied in [47]. However, to the best of our knowledge, the
achieved results do not offer strong theoretical insights and theory-based ap-
proaches on the evaluation of the performance of general machine learning-based
attacks. Unfortunately, the exact values for the simulated noise are not openly
available, making a direct comparison with out results not possible. Neverthe-
less, the authors used an approach rather similar to ours to simulate datasets
with added noise, confirming that the simulation-based approach we used in this
paper is well justified. Consequently, a general framework capable of modeling
(and thus, fairly comparing) all the profiling attacks, and their characteristics,
even when used in different conditions, is still missing.

To address this need, in this paper, we propose a framework based on the
analysis of problems approached in probability, which models all the profiling
attacks, allows to analyze their behavior and their performance and gives a
rigorous insight into their robustness. We leverage on problems investigated in

probability since, similarly to that class of problems, also in the case of profiling
side-channel attacks, we are not searching the solution, but a valid answer ac-
cording to a defined probabilistic figure of merit (which in our case can be the
accuracy of the classifier or the guessing entropy). Furthermore, as in the case of
problems approached in probability, we are interested in knowing to what extent
our result has to be considered correct and what maximum error we could ob-
tain. Besides, a formal approach for the analysis (robustness) and changes in the
setup (noise), is still missing. We believe that this is crucial missing information
for researchers and evaluation labs.

Our framework is designed to analyze the behavior of profiling SCAs and
give insights into the robustness of such methods. By robustness, we consider the
system’s ability to tolerate perturbations (random changes affecting the system).
Thus, robustness (or a lack of it) can be considered as a consequence of adding
perturbations to the system. Thus we use robustness analysis as a tool to obtain
insights into the general behavior of profiling attacks, since perturbations are
also commonly occurring in SCA. Different sources of perturbations occur in
profiling SCA due to the presence of:

1. Environment noise.

2. Countermeasures.

3. The differences between the profiling device and the device under attack
(portability).

While the first source of perturbation is immediate, the other two deserve
further explanation. Consider a system with a countermeasure. The profiling
attack does not “know” what the countermeasure is but can only “see” its con-
sequence. This discrepancy can be successfully modeled as a random variable
whose realizations are associated with perturbations affecting the system’s func-
tionality. Finally, while it is common to use the same device for both training
and testing, in reality, there are two devices (the first one to train a model and
the second one to attack). This simplification is reasonable but will introduce
errors where the attack’s performance will be lower than the one measured in
experiments with only one device [3]. Additionally, the difference in the mea-
surements in practice can also arise, for instance, from different probes positions
when using electromagnetic (EM) SCA.

By considering the robustness paradigm, we evaluate a setting that approx-
imates the realistic one, where perturbations must occur and uncertainty is
present. That paradigm is also in the core of the well-known Provably Approx-
imate Correct (PAC) learning [44], where PAC learning theory formalizes the
way computation is carried out within an uncertainty affected environment.

The main contributions of this paper are:

1. We propose a framework capable of modeling and evaluating profiling side-
channel attacks with strong theoretical foundations.

2. We consider the robustness of profiling attacks in 1) the presence of coun-
termeasures and 2) environment settings like feature selection, dataset size,
and hyperparameter tuning.

3. We consider the robustness of profiling attacks for different figures of merit:
accuracy, success rate, and guessing entropy.

The rest of this paper is organized as follows. In Section [2] we discuss re-
lated works and directions commonly investigated in the profiling side-channel
analysis. Section [3] first discusses the threat model, and then it presents an in-
tuitive description of our framework. Afterward, we formally define it through
the expectation estimation problem. Next, Section [4] presents details about our
experimental setting: profiling methods, datasets, figures of merit, and frame-
work parameters we investigate. In Section [5] we validate our framework by
using a technique called stylized facts that compares the behavior of simulations
and real-world data. Additionally, we present an experimental evaluation for
publicly available datasets. Section [6] presents a discussion about general find-
ings from the experiments and advantages/drawbacks of using our framework.
Finally, Section [7] concludes the paper.

2 Related Work

In 1996, Kocher demonstrated the possibility to recover secret data by intro-
ducing a method for exploiting the leakages from the device under attack [24].
This is possible because implementations of cryptographic algorithms leak rel-
evant information about the data processed through physical side-channels like
timing [24], power consumption [25|, EM emanation [36], or sound [14]. The
side-channel attacks are usually divided into two groups: direct attack (see, e.g.,
Simple Power Analysis (SPA) and Differential Power Analysis (DPA) [25]) and
profiling attacks (see, e.g., Template Attack (TA) [7], stochastic models [40], or
a number of machine learning-based techniques as discussed next).

Profiling attacks are carried out in two stages, profiling and attacking. In
the profiling stage, the adversary has full control of cryptographic hardware and
can estimate the leaked information’s probability distribution. In the second
stage, the estimated distribution is used to extract the secret information from
a victim device. Profiling attacks are the most powerful form of side-channel
attacks. Because of this, they define the worst-case security assumptions. TA
is the best (optimal) technique from an information-theoretic perspective if the
attacker has an unbounded number of traces, and the noise follows the Gaussian
distribution [18}|29]. After the template attack, the stochastic models technique
emerged, which uses linear regression in the profiling phase [40]. In years to
follow, researchers recognized certain shortcomings of template attacks and tried
to modify them in order to deal better with the complexity and portability
issues. One example of such an approach is the pooled template attack, where
one pooled covariance matrix is used to cope with statistical difficulties [9].

Alongside such techniques, the SCA community realized that a similar ap-
proach to profiling is used in other domains in the form of supervised machine
learning. Consequently, the researchers started experimenting with different ma-
chine learning methods and evaluating their effectiveness in the SCA context. A
survey of available works reveals several papers that discuss different machine

learning methods, targets, and experimental settings. When considering attacks
on AES (as we do in this paper) and supervised machine learning methods, one
can find a number of papers, see, e.g., [15}/17,/1921}26H29}33}135]. More recently,
deep learning techniques have come into the focus of the SCA community, while
most of the attention went to convolutional neural networks [6}[23.301341|49].

When trying to find a common denominator for those works, the most ob-
vious one is that they report machine learning being able to reach high attack
performance and often outperforming template attacks. Additionally, deep learn-
ing can commonly break the implementations protected with countermeasures
(at least those available in the publicly available datasets). Still, all of these
works have “only” experimental results with sporadic attempts in explaining
why such results are obtained. Besides works that consider how to improve the
attack performance, more recently, there have been several works considering
the topics of explainability and interpretability of deep learning in side-channel
analysis [324|45,/46].

Other aspects of the profiling side-channel attacks have been studied already
in the past. The problem of comparing profiling side-channel attacks has been
tackled by Standaert et al. [42] They proposed to use the information theory-
based methodology to investigate the performance of the different phases of pro-
filing side-channel attacks on exemplary simulated leakages [43]. Their results
show that the quality of the profiling phase can be captured by an information-
theoretic metric, while the key recovery phase is better measured with a security
metric. The analysis of profiling side-channel attacks can also benefit from sim-
plification and optimization. Among such works, a relevant one is from Bronchain
et al., where the authors propose a quantitative tool for leakage certification [5].
Quantitative analysis is carried out by bounding the unknown mutual informa-
tion metric on perceived information and on the hypothetical information. Dur-
vaux et al. addressed the problem of bias in the security evaluation caused by
estimation and assumption errors using sound statistical techniques to quantify
the leakage of a device and guarantee that the amount of information extracted
is close to the maximum achievable with a perfect model [10].

3 General Framework

In this section, we start by we introducing the threat model. Afterward, we
provide intuitive description of our framework, followed by the discussion on the
expectation estimation problem and robustness analysis. Finally, we discuss how
to introduce the robustness analysis into the profiling SCA framework.

3.1 Threat Model

We investigate a typical profiling side-channel setting. We consider this to be a
de-facto standard as a number of certification laboratories are evaluating hun-
dreds of security-critical products with this model daily.

In this setting, the adversary has access to a clone device running the target
cryptographic algorithm. The clone device can be queried with a known key and
plaintext while the corresponding leakage trace is stored. Ideally, the adversary
can perform an infinite number of queries and can construct the corresponding
database of side-channel leakage traces to characterize a precise profiling model.
After the characterization is done, the adversary queries the victim device with
known plaintext to obtain the secret key. The key recovery is carried out by com-
paring the side-channel leakage traces from the victim device with the profiling
model previously characterized.

Since the focus of this paper is power and electromagnetic attacks, in the
rest of the paper, when discussing profiling attacks, we consider profiling attacks
that use power or electromagnetic radiation as side-channel. Furthermore, in
this paper, we consider only those scenarios where the paradigm is supervised
learning, and the task is classification, i.e., to learn a mapping f between a set
of input variables X an output variable Y (f: X — Y).

3.2 Intuitive Description of the Framework

The previous works on profiling side-channel attacks discussed in Section [2] pro-
vide a detailed overview of the attacks and methodology used. Still, they do not
abstract the specificity of the attack to a higher-level framework. As a result, a
complete analysis of the attack characteristics is empirical, and so is the direct
comparison of different profiling techniques.

Figure [1| depicts the generic framework we propose to model profiling side-
channel attacks. Recall, during such attacks, the adversary attempts to recover
the secret (typically, the key) of a cryptographic device in two phases, commonly
known as the profiling and attacking phase. The profiling of the device D (the
physical realization of a cryptographic primitive), depicted on the right part of
the figure, consists of collecting several leakage traces z;,1 < i < n where n is
the number of traces taken corresponding to the encryption of a certain number
of plaintexts PT and a number of known keys K. For each trace x;, we obtain T'
time samples (also known as features or attributes): z; = x; 1,...,2; 7. During
the profiling phase, for each of the traces x;, we additionally obtain the label of
the trace y;, which denotes the actual value the trace has (where the connection
between the label and the key/plaintext includes the sensitive operation like
the S-box and an appropriate leakage model). The leaked traces are typically
altered by a random perturbation 016 that can be caused by measurement or
algorithmic noise but also by the operation of a side-channel countermeasure.
The leakage trace and the corresponding plaintext are used to derive an estimate
of the secret key K. These estimates of the secret key, along with the traces, are
used to train a classifier C, depicted in the left part of Figure [I} The specific
classifier can be arbitrarily selected from the corpus of all possible classifiers
suitable for side-channel recovery. Each classifier is trained on the training set
in the sense that different training sets of the same size will generate different
classifier (profiling) models. To model this phenomenon, we consider the given
classifier’s output influenced by a specific perturbation d26, which implies we

are assuming that the intensity (variance) of two perturbations can be the same
(i.e., different points are characterized by the same signal-to-noise ratio (SNR) or
values affected by perturbations insist on the same bounded interval). Without
loss of generality, we consider §10 and 20 to be equal to 66 since here, we do
not differentiate between the perturbations coming from one or the other source.
The estimated values of the labels g; are compared to the actual ones and used
to estimate the classifier’s robustness.

The robustness problem we consider here can be solved by considering the
robustness of randomized algorithms [1]. In the particular randomized algorithm
setting, we are interested in quantifying the robustness of an algorithm utilizing
a suitable figure of merit. In our setting, we aim to quantify the robustness of a
profiling side-channel attack (first seen as a supervised machine learning prob-
lem) to the perturbations caused by the measurement noise or countermeasures
but also the intrinsic noise of a specific classifier. The framework we consider is
general, which means it supports any profiled/supervised method and model, as
well as any figure of merit. To validate our framework, in Section [5] we select to
work with a number of common SCA classifiers and figures of merit.

Our framework proposes one theoretical interpretation for an analysis that
is currently mostly done empirically. Consequently, we can achieve two goals:

1. The connection with well-understood problems (expectation estimation prob-
lem and robustness problem) allows us to model each profiling side-channel
attack and thus compare, in an objective and rigorous way, the performance
of different classifiers in a specific scenario.

2. A quantitative estimate of the confidence of our results. Ultimately, we will
be able to answer the questions like “Which classifier family behaves better
in some specific scenario?” and “How to compare different profiling side-
channel attacks?”.

3.3 Expectation Estimation Problem and Robustness

This section aims to answer two questions that will be used in subsequent deriva-
tions and provide some common nomenclature. First, how to estimate the ex-
pected value of a function by identifying the minimum number of samples grant-
ing to build an approximation with an arbitrary level of accuracy € and confi-
dence § (Section [3.3). Second, how to estimate the robustness of a system once
affected by perturbations. To achieve this, we introduce the basic theory behind
the expectation estimation problem and robustness analysis.

The Chernoff Bound The framework for expectation estimation we use is
built starting from the Chernoff bound. In a nutshell, the Chernoff bound is
a way to estimate the probability distribution of an unknown variable. The
main advantage of the Chernoff bound is that it has extremely mild and quite
generic assumptions that are fulfilled by an extremely large number of problems.
Informally, the requirement of the Chernoff bound we use here is simply that
the variable we are considering is bounded.

"(971s josBIRD ‘PAST SAINSBAULIDIUNOD ‘9STOU JO
[9A9] ‘UOTYRULIOJUT [OUURYD-0PIS ‘*5'0 ‘FULIOPISU0D) Jose)ep (¢ ‘[ppout oFexea] (g ‘yoejye Surygold (T :Aue
sypr0ddns JYIomouIeI] SIYT, "OPIS 3JO[IBJ 9} UO SIOYISSR]D JUOIOHIP [BI0AdS A pojousp se ‘yoeije surjgord
Aue sp10ddns 1 ‘OLI0UAS ST YI0MOUIR 81} 90UIG *(P[oq Ul 213y o) Jo 4red jysir) eseyd yoejye pue (poq
ut oan3y oYy Jo pred 9o7) eseyd Surgord "yoeiye oY) Jo seseryd om) are o19yJ, ‘suolyeqiniied sqissod
JO SUOIIRDO[O} S9I0USP SUI[Pal oY], ‘SISA[RUR [duURYD-0pIs Suljgoid oy} I10J Jromourelj ayJ, :T “S1q

,mc_,cﬂ 1

Y

PR

J31JISSE[D B JO
sisfjeue ssausnqoy

R -

a RS S I ;

20 fAe]

ux = ax I B zh g

More precisely, the Chernoff bound allows determining the number of sam-
ples needed to estimate a probability with arbitrary accuracy in the estimate
approximation and confidence in the made statement. The Chernoff bound can
also be used to estimate the expected value of random variable according to esti-
mation accuracy and confidence levels set by the designer [8]. We now define the
Chernoff bound formally. The Chernoff bound for a generic probability density
function and continuous variable 1) can be derived from the Hoeffding inequality
for the empirical mean [20].

Let z1,- - -z, be a sequence of independent random variables so that each x;
is almost surely bounded by the interval [a;, b;], i.e., Pr(z; € [a;,b;]) = 1. Then,
defining the empirical mean E, = %Z?Zl x;, we have that for any e value the
Hoeffding inequality for the empirical mean:

—2e2p2

Pr (|Bn — Bl 2 ¢) < 250 te7 (1)

holds where F is the expectation operator. Note that in the rest of the paper,
we use u(+) notation to denote a generic function accepting any number of argu-
ments, and we specify the parameters and the role of the function in the text.
Eq. can be rewritten as:

—262n2

Pr (|En — BB, < e) >1 - 2eTmtie? (2)

If £, is the estimate p,(y) of a probability El, e.g., (p(v) = Pr(u(v) < «) for
a given positive scalar v and a loss function u(v)), we have that for a generic
random variable 1; the indicator function:

s 1w <) ={ g ult) 57

assumes values in {0,1}. As a consequence, a; = 0,b; = 1 and Eq. becomes
Pr(|E, — BB <€) > 1-2¢72,

Since, pn(7) = E, and E[p,(v)] = p(y) we derive

2 —2ne?
Pr(|pn(v) — p(y)| <€) >1—2e7 2", (3)
Finally, we derive the Chernoff bound by requesting confidence § < 2e—2n€’.
1 2
> —lIn-. 4
=52 (4)

The Chernoff bound states that if we sample from the domain of random
variable 1 according to its probability density function, then the Eq. holds
with confidence 4. In other words, we can build an approximation p,, of unknown
probability p(vy) with accuracy €, and the statement will hold with confidence 6.

5 Note that may not always be the case, but we consider such “interesting” cases in
this paper.

The Expectation Estimation Problem The expectation estimation problem
we consider is based on the Chernoff bound. In its generic formulation, the
expectation estimation problem consists of identifying the minimum number
of samples needed to achieve an arbitrary level of accuracy and confidence in
approximating the expected value of a given function u(%)).

Let u(y)) € [0,1] be a Lebesgue measurable function (as defined in Ap-
pendix over ¥ C R! and fv be the probability density function of a random
variable ¢ defined over ¥. The expectation estimation requires evaluation of the
expected mean:

Elu(y)] = L W) fu (). (5)

Since the evaluation of the expected mean defined in Eq. is generally
computationally hard problem for a generic function, an approximation is built
starting from n i.i.d. samples 91, -+ ,¢;,- -+ , 9, drawn from 1 according to fy.
We call

n

Bu(u(w)) = =3 u(d) ©

i=1

the empirical mean. It should be commented that E,, (u(¢)) is a random variable
depending on the particular realization of the n samples. The Chernoff bound
can be used to build an accurate approximation of Eq. through Eq. @ at
accuracy level € and confidence 6.

E,(u(v)) is the estimate of the figure of merit. By assuming that the condi-
tion u(%) € [0, 1] we immediately derive the bound on n thanks to the Hoeffding’s
inequality. In general, it is enough to require u(1);) to be bounded, e.g., to the
same a; = a,b; = b,i =1,...,n. If that is the case, the bound on the number of
samples becomes:

~———In-—. (7)

Note, there is a connection between the expectation estimation problem
we consider here and the probability estimation problem commonly considered
in SCA. In fact, the expectation estimation problem (including the Chernoff
bounds) is computed starting from the expected values, ultimately relying on
values obtained through the probability estimation problem.

Robustness Robustness of a system refers to the ability to tolerate perturba-
tions that might affect its structural parameters and, in turn, its performance,
measured utilizing a given figure of merit. In practice, what is desirable is that
the system continues to work even in the presence of a perturbation, and what
is to be estimated is the capability of correctly operating when perturbations
occur. In our case, the system is the profiling attack, and we want to evaluate
the robustness of such attacks for all possible effects that can affect the success
of an attack (measurement noise, portability of the classifier, countermeasures).
Ultimately, we want to understand under which conditions the attack is still

10

possible. More formally, a system/function g(6, z) is robust with respect to per-
turbations 60 € A € R! at level v € RT when, given a discrepancy function
u(g(0,2),9(0,00,z)) € U C R the system experiences a degradation in perfor-
mance within ~:

u(60) = u(g9(0,x),9(0,00,2)) <~, Vo0 e AVeeX. (8)

In the rest of the paper, we assume that the perturbation level can become
arbitrarily large so that no small perturbation theories are viable. u(d6) repre-
sents the perturbation impact on the system’s behavior, as observed through the
figure of merit. Note that u(66) does not have an explicit function in the inputs
in the sense that if inputs are in there, they are finite in number and fixed and
belong to the set X, which is the discrete set containing a finite number of input
instances.

In this setting, we need to determine the smallest v satisfying the previ-
ous expression. Since this can be computationally intractable, we move to a
probabilistic setting. There, a computation is robust at level v with probabil-
ity 1 — n for the perturbation space A when 7 is the smallest value such that
Pr(u(60) <~) > 1—mn, V60 € A. Here, 1 is a small positive value in [0, 1] and
1 — 7 is the confidence level.

Once defined p(7y) to be the probability that w(d6) < v for an arbitrary but
given ~ value:

p(y) = Pr(u(d8) <) for each 60 € A. 9)

Eq. (9) can be estimated with Chernoff and the minimum performance level (or
degradation of that level, depending on if the smaller value is better or vice
versa) 7 identified through the performance level set I" = {v1, -+ ,v}). More
precisely, we use the Chernoff bound to build an approximation of unknown
probability p(y) with accuracy e for a confidence ¢ as detailed in the example
below.

Next, we provide an example for profiling SCA.

Ezample 1. Let us consider a setup with accuracy € = 0.1 and confidence § = 0.1.
The Chernoff bound (Eq. () gives n > 149.7 to achieve the desired level of
accuracy and confidence. This means that we need to repeat the experiment 150
times to understand if the algorithm (classifier) is robust. Next, let us consider a
setting where the perturbation impact u(d6) is 10% of the signal. Then, we can
ask what the degradation of the performance v considering guessing entropy is.
More precisely, what will be the change in the guessing entropy value caused by
perturbing the system?

Remark 1. We note that the experiment as discussed in Example [1| can be done

for one or more perturbation levels and one or more performance levels v € I'.

3.4 Profiling SCA Framework

We now express profiling side-channel attacks as the expectation estimation
problem. The starting point is to map the steps of profiling analysis to the

11

framework depicted in Figure[l] The first phase of profiling side-channel attacks
is the training phase, which is represented by the bold part of Figure [T} The
training phase begins with the collection of the traces corresponding with the
encryption of several plaintext and keys.

Formally, during the encryption, the secret key k* is processed with ¢ plain-
texts or ciphertexts of the cryptographic algorithm, while the attacker collects
a set of traces x. In the case of AES, typically k* and ¢ are processed in bytes,
which reduces the attack complexity. The mapping y maps the plaintext or the
ciphertext t € T and the key k* € K to a value that is assumed to relate to
the deterministic part of the measured leakage . We denote the output of y as
the label, which is coherent with the terminology used in the machine learning
community. For profiling, there are two common models to define y(t, k*) so to
calculate the labels of the measurement traces:

— intermediate value (ID) model: in this leakage model, the attacker considers
an intermediate value of the cipher or the distance between two consecu-
tive values processed. When considering the AES cipher, this leakage model
results in 256 labels.

— Hamming weight (HW) model: in this leakage model, the attacker assumes
the HW of the intermediate value model. When considering the AES cipher,
this leakage model results in 9 labelsm

Considering the intermediate value, the profiling model may be more accurate
but requires more resources. In particular, to gain stable estimations for each
possible value, an attacker needs a sufficient number of measurements per value.
Additionally, as the attacker needs to iterate through all values in the profiling
phase as well as for each measurement in the attacking phase, the computational
complexity may become high - especially when targeting ciphers operating on
more than 8-bit.

The HW model’s preference is related to the underlying device (e.g., for some
devices, the power consumption is assumed to be roughly proportional to the
number of bit transitions) and the lower complexity. In our analysis, we consider
both leakage models for all datasets and profiling methods.

In the attack phase, the goal is to make predictions about the occurring labels

y<t01ak2)a e 7y(tllN3 k:)v

where k) is the secret unknown key on the device under the attack.

4 Experimental Setting

This section discusses the datasets, machine learning classifiers, and the frame-
work’s experimental settings we consider.

7 One more common leakage model would be the Hamming distance leakage model,
which would also result in 9 labels.

12

4.1 Datasets

In our experiments, we consider several publicly available datasets representing
a typical sample of commonly encountered scenarios and one simulated traces
dataset (used for the framework validation). The datasets we use are the de-facto
standard for SCA and are commonly considered in machine learning-based SCA
research.

ASCAD Datasets The target platform is an 8-bit AVR microcontroller (AT-
mega8515) running a masked AES-128 implementation, and traces are made us-
ing electromagnetic emanation [2]. There are two versions of the ASCAD dataset:
one with a fixed key with 50 000 traces for profiling/training and 10000 for test-
ing. The second version has random keys, and the dataset consists of 200 000
traces for profiling and 100000 for testing. For both versions, we attack the
key byte 3, which is the first masked byte. For the version with the fixed key,
we use a pre-selected window of 700 features, while for the version with ran-
dom keys, the window size equals 1400 features. These datasets are available at
https://github.com/ANSSI-FR/ASCAD.

CHES CTF Dataset This contains AES-128 measurements, released in 2018
for the Conference on Cryptographic Hardware and Embedded Systems (CHES).
The traces consist of masked AES-128 encryption running on a 32-bit STM mi-
crocontroller. In our experiments, we consider 43 000 traces for the training set,
which contains a fixed key. The validation and test sets consist of 1000 traces
each. The key used in the training and validation set is different from the key for
the test set. We attack the first key byte. Each trace consists of 2200 features.
This dataset is available at https://chesctf.riscure.com/2018/news,.

Simulated Dataset The circuit we simulated to obtain the simulated traces
is a reduced portion of the AES algorithm, composed of a key addition fol-
lowed by an S-box lookup. The obtained data are then stored in a register. The
flow used to generate the simulated traces is implemented using state-of-the-art
commercial electronic design automation commodities and is derived from the
simulation flow presented by Regazzoni et al. [37]. The test circuit is designed
using HDL language, synthesized with a synthesis tool (Synopsys design com-
piler), and placed and routed with an automated tool (Cadence Encounter). The
final circuit, together with the parasitic extracted using the extractor build in
the place and route tool, are simulated at SPICE level using Synopsys Nanosim,
where the simulation resolution has been set to 1ps, thus producing, for each
input-output pair, a trace of 5000 data points. The target technological library
used in the process is the Nangate 45 nm library. At the end of the simulation
process, this dataset contains 256 simulated traces of execution, one for each
S-box output and, being obtained from simulation, free from environmental or
measurement noise.

13

https://github.com/ANSSI-FR/ASCAD
https://chesctf.riscure.com/2018/news

4.2 Figures of Merit

We consider two standard metrics when conducting SCA: success rate and guess-
ing entropy. Additionally, we consider one common machine learning metric:
accuracy.

Most of the time, in side-channel analysis, an adversary is not only interested
in predicting the labels y(-, k) in the attacking phase for which accuracy is a
good metric but aims at revealing the secret key k. For this, common measures
are the success rate (SR) and the guessing entropy (GE) of a side-channel at-
tack [43]. In particular, let us assume, given) amount of traces in the attacking
phase, an attack outputs a key guessing vector g = [g1, g2, - .., g|k|] in decreasing
order of probability with |K| being the size of the keyspace. So, g; is the most
likely and gk the least likely key candidate.

— Guessing entropy. It is the average position of &} in g.

— Success rate. It is defined as the average empirical probability that g;
is equal to the secret key kY. In this paper, we calculate the number of
required trace to reach a success rate greater than 90%, which is denoted
as Tspr>0.9. Aligned with the common implementations in the literature,
guessing entropy and success rate are calculated by averaging the key rank
results for 100 times.

— Accuracy. It is defined as the ratio of the correctly classified examples and
the total number of examples.

4.3 Profiling methods — Classifiers

It is not a trivial task to select the best classifier for the given problem. Some
classifiers can still be regarded as a usual choice when a highly accurate classifi-
cation is sought [12]. To provide relevant experiments, we select several classifiers
that are a common choice in SCA, as discussed in Section

Template Attack The template attack (TA) relies on the Bayes theorem and
considers the features as dependent [7]. In the state-of-the-art, template attack
relies mostly on a normal distribution. Accordingly, a template attack assumes
that each P(X = Z|Y = y) follows a (multivariate) Gaussian distribution param-
eterized by its mean and covariance matrix for each class Y. The authors of [9)
propose to use only one pooled covariance matrix averaged over all classes Y to
cope with statistical difficulties and thus lower efficiency. In our experiments, we

use the pooled template attack.

Naive Bayes The Naive Bayes (NB) classifier is based on the Bayesian rule but
is labeled “Naive” as it works under a simplifying assumption that the predictor
features are mutually independent among the features, given the class value [13].
The existence of highly correlated features in a dataset can influence the learning
process and reduce the number of successful predictions. NB assumes a normal
distribution for predictor features and outputs posterior probabilities as a result
of the classification procedure [13].

14

Radial Kernel Support Vector Machines Radial Kernel Support Vector
Machines (denoted SVM in this paper) is a kernel-based machine learning fam-
ily of methods that are used to classify both linearly separable and linearly
inseparable data accurately. The idea for linearly inseparable data is to trans-
form them into a higher dimensional space using a kernel function, wherein the
data can usually be classified with higher accuracy. The scikit-learn implemen-
tation we use considers libsvm’s C-SVC classifier that implements SMO-type
algorithm [11]. The multi-class support is handled according to a one-vs-one
scheme.

Random Forest Random Forest (RF) is a well-known ensemble decision tree
learner [4]. Decision trees choose their splitting attributes from a random subset
of k attributes at each internal node. The best split is taken among this randomly
chosen attributes.

Multilayer Perceptron The multilayer perceptron (MLP) is a feed-forward
neural network that maps sets of inputs onto sets of appropriate outputs. MLP
consists of multiple layers (at least three) of nodes in a directed graph, where
each layer is fully connected to the next one, and training of the network is done
with the backpropagation algorithm [16].

Convolutional Neural Networks Convolutional neural networks (CNNs)
commonly consist of three types of layers: convolutional layers, pooling lay-
ers, and fully connected layers. The convolution layer computes the output of
neurons that are connected to local regions in the input, each computing a dot
product between their weights and a small region they are connected to in the
input volume. Pooling decrease the number of extracted features by performing
a down-sampling operation along the spatial dimensions. The fully-connected
layer (the same as in MLP) computes either the hidden activations or the class
scores.

4.4 Points of Interest

For NB, SVM, RF, MLP, and TA, we use the 50 most important features, as
commonly done in related works. To select those features, we use the Pearson
correlation coefficient [22]:

S (@ - D) —9)
y) = N N '
VX - 225N - 9)?

For the CNN classifier, we do not conduct any feature selection but instead use
the full set of available features (raw traces or window of traces).

Pearson(z,

(10)

15

Hyperparameter Tuning We conduct a tuning phase to select hyperparam-
eters for which classifiers perform well over considered datasets. We emphasize
that the tuned parameters represent a reasonable choice that exhibits good be-
havior but should not be considered the best possible ones. A more detailed
tuning could result in a somewhat improved performance if concentrating on
any specific scenario. Nevertheless, since we consider scenarios where we intro-
duce perturbations in the testing phase, there is no guarantee that good initial
hyperparameters would still be suitable for the added noise traces. In fact, the
hyperparameter tuning does not affect our framework: not-so-careful parameter
tuning is considered as one of the noise settings considered in our framework
(Figure . For TA and NB, there are no hyperparameters to tune. For SVM,
there are two significant tuning parameters: the cost of the margin C' and the
kernel parameter v. We conduct a grid search for C' = [0.001,0.01,0.1,1] and
~v = [0.001,0.01,0.1,1]. In the end, we select C' = 1 and v = 1. For RF, we
experiment with a different number of trees I = [10, 50, 100, 200, 500, 1 000] and
select 200 traces for our architecture. For MLP with feature selection, we in-
vestigate tanh and ReLU activation functions, sgd and adam optimizers, and
architectures of shape (50,25, 10, 50), (50, 30, 50), (50, 30, 20, 50). After the tun-
ing phase, we decide to use the tanh activation function, adam optimizer, and
(50, 30,20, 50) configuration of layers/nodes. For RF, MLP, and SVM, we use
5-fold cross-validation.

For CNN, we consider the optimized networks and hyperparameters from [38]
for both ASCAD and CHES CTF datasets. Note that these networks are opti-
mized for both HW and ID leakage models, and we directly apply them to our
experiments. The detailed architectures are listed in Appendix [Bl For all tests,
we use a validation dataset of 5000 traces.

4.5 Framework Setting

We conduct our experiments for a scenario where ¢ = 0.1 and § = 0.1. The
Chernoff bound (Eq. () gives n > 149.7 to achieve the desired level of accu-
racy and confidence. Consequently, we set n = 150 in our experiments, which
means that every experiment is repeated 150 times to obtain statistically sig-
nificant results. Next, we select to work with noise a equal to 0.005 that goes
in the range [—« - if, « - if], where if denotes the intensity factor in the range
[1,30]. By doing so, we will evaluate noise levels up to 15% of the signal, which
would capture many realistic settings (more noise is, of course, possible). More
precisely, we can consider our scenario as working with 30 different noise intensi-
ties (perturbations). Recall, the noise we inject could arise from various sources
in practical applications, for example:

— variations between the profiling and attacking device [3],

— environmental noise between acquisition campaigns,

(minor) changes in the experimental setup (probes, devices, hyperparame-
ters, points of interest).

— effect of countermeasure randomness.

16

‘We emphasize that we do not claim that all countermeasures can be modeled
with Gaussian noise. Our claim is that all the countermeasures can be modeled
as noise (trivially, as they make the model more difficult to fit), then a robustness
framework allows fair and insightful comparison. Gaussian noise was the model
used for the settings we considered, but our framework can analyze any noise
used to model countermeasures.

5 Framework Validation and Application

In this section, we first use our framework with the simulated traces to validate
its correctness. Next, we use it to evaluate the profiling attacks’ performance on
the publicly available datasets.

Note that our framework considers the setting where we add noise to the
attack traces only. This simulates the behavior one would encounter in, e.g.,
1) portability due to differences between profiling device and the device under
attack, 2) real-world applications due to the changes in the environment setup
(e.g., changes in the probe location for EM acquisition [3], environment noise,
etc.), 3) targets with countermeasures as they would cause differences between
profiling and testing device, and 4) changes in the hyperparameter setting as
suboptimal hyperparameter choices result in less powerful profiling models that
cannot fit the leakage well. We do not add perturbation to both training and
attack traces, as this would simulate different devices (when, e.g., testing the
influence of a specific countermeasure, one needs to consider it both for the
profiling and attack phases). Finally, we do not add perturbation to the training
phase only as it would serve as a regularization factor that helps the classification
procedure [23]. Additionally, we emphasize that this evaluation aims not to find
the best performing methods but to confirm our framework’s validity and obtain
information about the robustness of profiling methods.

In Algorithm [I} we present the pseudocode of the procedure we follow to
assess the robustness of a certain classifier against perturbations in the attack
phase. Since the number of experiments (samples) equals 150 (n = 150) and the
number of intensities equals 30 (f = 30), it means that for each scenario, we
need to run the attack 4500 times.

Remark 2. By following Algorithm [T} we observe we need to define appropriate
~, which denotes the performance (degradation) level, and perturbation w(d6).
Then, the function verification-problem returns 1 if the performance of the
classifier due to the perturbation causes degradation no larger than . Finally,
only if all n experiments return 1, we consider the classifier robust concerning a
specific perturbation and performance level.

Ezample 2. Let us consider guessing entropy as a metric and performance level
v = 5. This means that guessing entropy can be up to value 5. Furthermore, we
take the perturbation of 10%. Finally, let ¢ = 0.1 and 6 = 0.1, which results in
n = 150. This means we need to run Algorithm [If 150 times. If for all 150 times
the function verification-problem returns 1, then we say that the classifier

17

Algorithm 1 Algorithm to solve the probabilistic robustness evaluation prob-
lem [1].

Identify the perturbation space A and the random variable 60 with pdf fs¢ over A;
Select the accuracy € and confidence §

Identify the interested performance level set I' = {1, , &}
Pn,r ()= verification-problem(A4, fso,u(60), I, €, J)
use pn,r(7)

Function verification-problem (A, fs9,u(d0), I, €,0):

Draw n > ﬁ ln§ samples 6§61, --- , 00, from 00 according to fs¢

For each v € I' estimate

) = D009 <), T(utn) <) = { g uiGE 7

Return pn,r

is 5 GE-robust for perturbation of 10%. If the function returns 0 in any of the
experiments, then the classifier is not robust for that specific performance level
and perturbation.

5.1 Framework Validation on Simulated Traces

In general, it is not an easy problem to validate a theoretical framework for ma-
chine learning as one needs to consider all possible scenarios. As this is impossible
in practice, we first use the concept of stylized facts, which is a generalization
that summarizes data. More precisely, we examine the framework’s behavior
with the simulation data and compare it with real data. If the simulation data
behaves in the same manner as the real data, we can assume that the frame-
work can indeed be used with real data. Naturally, this approach must handle
certain inaccuracies as simulation data is far from a perfect representation of
the real data. Here, we use the simulated traces where we add Gaussian noise,
as discussed in the next section.

Simulated Traces - Data Augmentation and Noise Addition Recall,
our simulated dataset contains 256 traces, one for each possible S-box output
value and 5000 features. We select 50 features that correspond to the highest
correlation between the traces and the S-box output to match our other datasets.
Next, we extend this dataset with additional traces to build a reliable profiling
model. We do this by adding Gaussian noise to the simulation traces:

X' '=X+N. (11)

We make the simplified but still commonly used assumption that the noise is
univariate Gaussian distributed with zero-mean, i.e., N ~ N(0,0%) where o is
the standard deviation. We repeat this procedure 15000 times to create 15000

18

noisy traces with o = (0, 0.5]. Note that our final dataset contains approximately
the same number of traces for each S-box output value. We divide the simulated
and data augmented dataset into 10 000 traces for training and 5000 for testing.
We denote this dataset as AES_SIM.

From Figures to we depict the behavior for the simulated dataset
(AES_SIM) when adding perturbations. The solid line represents GE mean of
150 tests, while the faded area represents the corresponding variation. Since
almost all the classifiers can break the target for the ID leakage model for all in-
tensity levels, we only present the results for the HW leakage model as it carries
more information. First, we notice that while the mean values of all three metrics
are different, all classifiers behave the same in general. However, the variation of
the metric increases when the intensity increases. This demonstrates that per-
turbation makes the attack more difficult, even when considering such a simple
dataset and a small level of perturbation. Now, in accordance with Algorithm [T}
we consider how many times an experiment returned value 1. The first perfor-
mance value where all 150 experiments return 1 represents the achieved robust-
ness level. We denote it as {metric}-based security level. The corresponding
figures are presented in Figures [2d] to For instance, the random forest clas-
sifier for GE and intensity 5 (corresponding to perturbation of 2.5%) would be
GE 37-robust, as the worst value over 150 experiments equals 37. Thus, while
GE values indicate good behavior (as in most of the experiments, GE reaches
a low value indicating the target is broken), the robustness analysis shows that
the algorithm is not robust for this noise level.

7 250 5000
0.275 = NB = nNB |- NB

— = RF o - RF
0250 - SVM 200 - SVM 4000
- TA - TA

w— MLP - MLP
150 3000

0.225

© 0.200
e}

|
Tsr>09

2
0175 100 — 2000

0.150

50 1000
0.125

0100 o
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 3
Intensities Intensities Intensities

(a) HW, ACC. (b) HW, GE. (c) HW, Tsr=0.9.

5000
— e —

IS
o

°
©
£
E
N
i
S

4000

3000

°
>

2000 fer~ e~ ~— N

ACC-based Security Level
°
=

°

¢ 1000

=
Tsn=0s-based Security Level

GE-based Security Level
|

°
o
a
&
E\
\
\

0

5 10 15 20 25 3 5 10 15 20 25
Intensities Intensities

5 10 15 20 25 3

(d) ACC-based security ntensities (f) Tsr>o.0-based security
level. (e) GE-based security level. level.

Fig.2: AES_SIM datasets with HW leakage model.

19

In the second experiment with the simulated dataset, we aim to confirm
that perturbed traces represent a good approximation of various countermea-
sures. Consequently, we use the same 15000 traces as before (256 simulated
traces data augmented to 15000 traces with Gaussian noise). On this dataset,
we again consider 30 perturbation intensities (Gaussian noise from 0% to 15%
of the signal). Additionally, we introduce hiding countermeasures to the dataset,
where we consider clock jitter and desynchronization countermeasures [48]. Then,
under the assumption that our framework can model the behavior of various
countermeasures, we expect that the attack results for datasets with clock jit-
ter or desynchronization countermeasures are similar to the simulated dataset
with added hiding countermeasures (for instance, we can estimate signal-to-noise
(SNR) ratio for both datasets, and expect the results to be similar for similar
SNR values). As a result, we use traces with 1/2 point(s) of desynchronization
or 1/2/3 of the clock jitters level. One can expect that with an increased coun-
termeasure level, the SNR of the traces is reduced. We show some characteristic
results in Figure |3} Acronym _Desync denotes desynchronization added to the
traces and _C'J clock jitter added. Full lines depict the perturbation experiments,
and dotted lines denote the +10% ranges. Crosses and triangles denote the result
obtained for the same profiling model if, instead of perturbations, one consid-
ers the dataset with countermeasures. The results clearly show that traces with
countermeasures are matched with the perturbed traces. This indicates that our
framework can model various countermeasures, and consequently, it can be used
to estimate the influence of adding countermeasures to a target. Indeed, by con-
sidering the results for various intensities, we can extrapolate whether a certain
attack method is robust and the influence on the attack performance if adding
a specific countermeasure to the target.

5000 5000

4000 4 4000

3000+ 3000

9
9

Tsr>o0
Tsr>o0

2000 1 2000

A NB_Desync

1000 - — B 1000 X NB O
A NB_Desync A MLP_Desync

X NB_C X MLP_C)

0 T T T y y [o] T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Intensities Intensities
(a) HW. (b) ID.

Fig. 3: Results for perturbed traces and traces with added countermeasures.

These experiments confirm the validity of our framework.

20

5.2 Publicly Available Datasets and Framework Evaluation

In this section, we present and briefly discuss several characteristic scenarios for
publicly available datasets. In these experiments, we consider multiple intensities
and performance levels. The figures show results for classifiers with and without
feature selection. In Figure [4] we depict results attacking the ASCAD dataset
with a fixed key. First, in terms of the ACC-based security level (Figures
and . We observe that for both leakage models, the classifiers behave 1) “sta-
ble” in the sense that the corresponding figure of merit with the increase in the
perturbation level slightly decreases, or 2) “resilient”, as we observe no influence
of perturbation to the attack performance. Note that CNN performs much better
than simpler attacks and deteriorates marginally even for the highest intensity
level. The reason accuracy with the ID leakage model is much lower is that we
deal with the scenario with 256 labels, so these results are not surprising as the
classification task is much more difficult.

Next, in Figures and we depict the results for the GE-based security
level for both leakage model. When considering the HW leakage model (Fig-
ure , the CNN classifier manages to break the target regardless of the per-
turbation level. Besides that, none of the classifiers can retrieve the key with the
given number of attack traces. Meanwhile, we observe that some classifiers per-
form relatively stable but poorly (i.e., SVM). We can call this type of behavior
“no learning” as the architecture is not sensitive to noise since it did not learn
to fit the data. When using the ID leakage model, NB, RF, and MLP perform
much better, where the influence of introduced perturbation can also be seen.
As expected, CNN performs the best, while SVM and TA present “no learning”
properties. For instance, for CNN (regardless of the leakage model), we obtain
the result that the classifier is GE 0-robust for any perturbation level we consid-
ered. The best “stability” of results for CNN happens for GE, which is expected
as GE uses the information from the whole key guessing vector.

Finally, in Figures [Id and [4f] we depict the results for the SR-based security
level for both leakage model. Note that here the lower the value, the better is
attack. As mentioned, only the CNN classifier can break the target regardless
of the level of perturbation. Thus the SR-based security level for the rest of
the classifiers is larger than 5000. Therefore, only CNN results are shown here.
Interestingly, although Tsgr~g.9 slightly increases with the increasing level of
perturbation, the variations are limited in a small range. This indicates the stable
performance of the optimized model (and that the best guess is significantly
better than other guesses, so perturbation does not cause significant changes).
This type of model resilience would be helpful when attacking the traces with
variation (i.e., attacking the traces acquired from a different device).

After testing ASCAD with a fixed key, we attack the ASCAD with randoms
keys dataset. The results are presented in Figure [f] Similar to the observation
from Figure [4, we see that the ACC-based security level decreases with more
noise being added. Still, there are classifiers, such as TA and SVM, that per-
form stable regardless of intensity ("no learning”). In terms of GE-based security
level, besides SVM (“no learning”) and CNN (“Resilient”), the rest of the clas-

21

5000

o
N
b
2
H

2

H

4000

°
N
3

2

3000

2000

H
G
g

based Security Level

ACC-based Security Level
o o
5 G

GE-based Security Level

% 1000

Tsa>09°

°
°
&

0
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Intensities Intensities Intensities

(a) HW, ACC-based secu- (b) HW, GE-based security (¢) HW, Tsrso.9-based se-
rity level. level. curity level.

5000

250 F———
0.007

4000

°
°
8
]
B

0.005 3000

0.004 2000

GE-based Security Level

°
°
8
&

K

2 1000

ACC-based Security Level
Tsr>o0s-based Security Level

0.002

. . . | o . . .
5 10 25 3 5 10 25 30 5 10 15 20 25 30
Intensities

15 2
Intensities

15 2
Intensities

(d) ID, ACC-based security (e) ID, GE-based security (f) ID, T'sg>o.9-based secu-
level. level. rity level.

Fig. 4: Results attacking ASCAD (fixed key) dataset.

sifiers follow “unstable” behavior. Here, by ”unstable” behavior, we mean large
oscillations for different perturbation levels. This behavior happens either due
to overfitting or underfitting of the model. Finally, Tsg~¢.9-based security level
clearly shows the stable performance of the CNN classifier, which again confirms
the superior of such an optimized model in fighting with noise addition. In gen-
eral, we observe that the dataset with random keys is less robust than a dataset
with the fixed key. Additionally, since the dataset is more difficult to attack,
there is a clear benefit from using a more powerful classifier (CNN) that also
uses more features (1400 vs. 50).

Finally, we test the CHES_CTF dataset. The results are presented in Figure[6}
Note that this dataset has limited ID leakage. Thus only the HW leakage model
is tested. In terms of the ACC-based security level, we see a significant drop
for the TA classifier, indicating its ‘inability to deal with large levels of noise,
which is also confirmed when looking at the GE-based security level. In terms
of GE-based security level, we again see that besides SVM (“no learning”) and
CNN (“Resilient”), the rest of the classifiers follow a combination of “stable”
and “unstable” behavior. For Tsr~o.9-based security level, CNN shows stable
performance, but it requires significantly more traces to reach the same success
rate level. This observation is aligned with the observation from the previous
datasets.

Based on the obtained results, we see that CNNs (deep learning) perform
the best, which adds to them the third advantage compared to simpler ma-
chine learning techniques. Indeed, deep learning has an advantage over simpler

22

0.275

— e

OO — o — s
2 — T

3
20225
2z
S 0.200
32
8
& 0175
3
2 0150
90125
S

B4
0.100

0.075{

— e
o

5 10

15
Intensities

20

25

30

5000

4000

3000

based Security Level

2000

% 1000

Tsa>09°

GE-based Security Level
G \

Intensities

0
5 10 15 20 25 30

Intensities

(a) HW, ACC-based secu- (b) HW, GE-based security (¢) HW, Tsrso.9-based se-

rity level.

0.0055
5 0.0050
3

2 0.0045
3 0.0040
b

20,0035 {\
H \
£ 0.0030
3

2 0.0025

0.0020

5 10

level.

15 2
Intensities

(d) ID, ACC-based security (e) ID, GE-based security (f) ID, T'sg>o.9-based secu-

25

3

level.

curity level.

GE-based Security Level

5

level.

10

15 2
Intensities

25

5000

4000

3000

2000

2 1000

Tsr=os-based Security Level

o

5 10 15 20 25 30
Intensities

rity level.

Fig. 5: Results attacking ASCAD (random keys) dataset.

machine learning techniques as it does not require feature engineering and can
break targets protected with countermeasures. Now, we additionally observe that
it provides more robustness than simpler machine learning techniques. It would
be interesting to evaluate the robustness behavior for portability cases, as there,
deep learning is known to easily overfit (granted, on simple targets) [3].

These experiments show that our framework can help analyzing the profiling
side-channel attacks in a new way and obtaining more information than com-
monly used analysis techniques.

6 General Observations and Remarks

There are four main types of behavior one can expect when modeling the system
with perturbations. We give the list in the order from the most preferred to the
least preferred setting (where preference is aligned with the attacker perspective):

1. “Resilient” behavior. In this setting, the classifier is resilient to perturba-
tions, which means that its performance remains practically unchanged even
in the presence of noise. Naturally, after some point, the performance starts
to deteriorate, and then, the behavior resembles one of the following types.

2. “Stable” behavior. In this setting, the classifier is affected by perturbation,
and the performance is gradually decreased.

23

ACC-based Security Level

°
=
GE-based Security Level

°
o
&

|

|
[
Tsa>09°

5000

4000

o
3000

H
G
g

based Security Level

2000

% 1000

0
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Intensities Intensities Intensities

(a) HW, ACC-based secu- (b) HW, GE-based security (¢) HW, Tsrso.9-based se-
rity level. level. curity level.

3.

Fig. 6: Results attacking CHES_CTF dataset.

“Unstable” behavior. Here, a small perturbation results in a significant per-
formance drop or very erratic behavior, i.e., a jump between good and poor
performance.

“No learning” behavior. With this behavior, the perturbation does not in-
fluence the performance of the profiling method. This happens because the
classifier, even before perturbation, was not working (e.g., classifying all
measurements into the Hamming weight 4 [34]), and naturally, making the
problem more difficult cannot improve the behavior but also cannot deteri-
orate it. While this behavior has certain similarities with the first one, the
underlying idea is different. Here, the classifier never works, while in the
“Resilient” setting, it is stable up to a certain level of perturbation (i.e., no
difference between that level of perturbation and no perturbation).

Besides these four types, several subtypes can be recognized by combining the
basic behaviors’ traits.

The main advantages of using the proposed framework are:

— The framework allows an objective and reliable way to estimate the perfor-

mance of the profiling side-channel analysis.

— The framework supports considering robustness analysis in different ways.

Indeed, here we opted to analyze the classifiers’ robustness to the addition
of noise in the attack phase. This approach fits different scenarios, from
portability, changes in the dataset size, countermeasures, hyperparameter
changes EL classifiers change, etc. Still, we could also evaluate the robustness
concerning some other perturbation like the addition or removal of features
from traces or pre-processing approaches [48].

— With our framework, it is possible to “map” different setting: for instance,

8

1) to see what level of perturbation causes the classifiers to behave in the
same way, or, 2) at what point the suboptimal hyperparameter results in the
same behavior as an added perturbation.

Depending on the scenario, it can be convenient to consider the change in the hy-

perparameter as a different classifier or as a perturbed classifier.

24

Ultimately, our framework allows us to directly apply to the profiling side-
channel analysis problem the whole body of knowledge developed in years of
studying the robustness problem. Based on these advantages, we immediately
see one very practical application of our framework: to help designers/manufac-
turers to make more secure systems. With it, we can observe the added benefit
of a certain countermeasure and if it is sufficient to prevent a certain type of
attack. Thus, by using this framework, we can design systems that are more
secure against various types of attacks.

Our framework is based on robustness analysis. We inherit the advantages of
such an approach, but also the limitations. We list two of them, discussing their
direct implication to the profiling side-channel attacks problem:

— One needs to know what to evaluate, i.e., what perturbation to take into
account.

— Observing the robustness does not necessarily tell us how to make the clas-
sifier more robust.

Note that those limitations are not connected with the SCA domain but rather
the robustness analysis. Indeed, one needs to know what to evaluate and why
that would make sense. Finally, to make the classifier more robust, one would
need to conduct perturbations in the sense of the hyperparameter changes.

In this paper, we modeled the perturbations as Gaussian noise added to the
attack traces only. This allowed us to reach the following general conclusions
based on our experimental results:

— There are four main types of behaviors we can observe with classifiers.

— Easier datasets or leakage models with fewer labels are, in general, more
resilient to perturbations.

— Deep learning is, in general, more resilient to perturbations.

— Different types of countermeasures can have the same effect on the classifier,
and different types of countermeasures can be approximated with Gaussian
noise.

7 Conclusions

In this paper, we concentrate on profiling side-channel attacks and uncertain-
ties stemming from the experimental results. To that end, we propose a general
framework that can be used to analyze the behavior of any profiling side-channel
attack (i.e., a method performing the classification task). Our framework sup-
ports datasets with any characteristics as well as different leakage models. To
offer such a general behavior, we model it as the expectation estimation prob-
lem to achieve any desired accuracy and confidence level. After we model the
classifiers, we use the robustness analysis to estimate their performance in the
presence of perturbations. Such an analysis allows us to answer which classifier
is the most robust for a specific scenario. We give robustness analysis for sev-
eral figures of merit: accuracy, success rate, guessing entropy, and the number of
traces to reach a specific attack performance.

25

We believe our framework will be a powerful tool that will allow researchers
to compare various classifiers’ behavior more fairly than it is done up to now.
Since profiling SCA in realistic settings should consider different profiling and
attacking devices, we expect that our framework will allow more than just con-
necting SCA with problems that have reliable theoretical results. More precisely,
our framework allows modeling the realistic behavior of profiling SCA, where un-
certainty must occur due to several different noise sources.

We note that our framework can be demanding: to conduct a proper analysis,
the Chernoff bound requires a large number of experiments, which potentially
can be a prohibiting factor for specific computationally intensive classifiers or
very large datasets. One easy way how to circumvent this is to parallelize the
process for different perturbation levels. Another interesting direction would be
to consider different sources of perturbations, e.g., not only adding removing
noise but also adding/removing features from a dataset.

References

1. Auepi, C. Intelligence for Embedded Systems: A Methodological Approach.
Springer Publishing Company, Incorporated, 2014.

2. BENADJILA, R., PrOUFF, E., STRULLU, R., CAcLI, E., AND DuMAs, C. Deep
learning for side-channel analysis and introduction to ASCAD database. J. Cryp-
togr. Eng. 10, 2 (2020), 163-188.

3. BHASIN, S., CHATTOPADHYAY, A., HEUSER, A., JAP, D., PICEK, S., AND SHRI-
VASTWA, R. R. Mind the portability: A warriors guide through realistic pro-
filed side-channel analysis. In 27th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020
(2020), The Internet Society.

4. BREIMAN, L. Random Forests. Machine Learning 45, 1 (2001), 5-32.

5. BRONCHAIN, O., HENDRICKX, J. M., MASSART, C., OLSHEVSKY, A., AND STAN-
DAERT, F.-X. Leakage certification revisited: Bounding model errors in side-
channel security evaluations. In Annual International Cryptology Conference
(2019), Springer, pp. 713-737.

6. CacLi, E., Dumas, C., AND PrOUFF, E. Convolutional Neural Networks with
Data Augmentation Against Jitter-Based Countermeasures - Profiling Attacks
Without Pre-processing. In Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings (2017), pp. 45-68.

7. CHARI, S., Rao, J. R., AND RoHATCI, P. Template Attacks. In CHES (August
2002), vol. 2523 of LNCS, Springer, pp. 13—-28. San Francisco Bay (Redwood City),
USA.

8. CHERNOFF, H. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math. Statist. 28, 4 (12 1952), 493-507.

9. CHOUDARY, O., AND KunN, M. G. Efficient template attacks. In Smart Card
Research and Advanced Applications - 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers (2013),
A. Francillon and P. Rohatgi, Eds., vol. 8419 of LNCS, Springer, pp. 253-270.

10. DurvAux, F., STANDAERT, F.-X., AND VEYRAT-CHARVILLON, N. How to certify
the leakage of a chip? In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2014), Springer, pp. 459-476.

26

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

253.

26.

27.

28.

Fan, R.-E., CHEN, P.-H., AND LiN, C.-J. Working Set Selection Using Second
Order Information for Training Support Vector Machines. J. Mach. Learn. Res. 6
(Dec. 2005), 1889-1918.

FERNANDEZ-DELGADO, M., CERNADAS, E., BARRO, S., AND AMORIM, D. Do we
Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal
of Machine Learning Research 15 (2014), 3133-3181.

FRrRIEDMAN, N., GEIGER, D., AND GOLDSzMIDT, M. Bayesian Network Classifiers.
Machine Learning 29, 2 (1997), 131-163.

GENKIN, D., SHAMIR, A., AND TROMER, E. Acoustic cryptanalysis. Journal of
Cryptology 30, 2 (Apr 2017), 392-443.

GILMORE, R., HANLEY, N.; AND O’NEILL, M. Neural network based attack on
a masked implementation of AES. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (May 2015), pp. 106-111.
GOODFELLOW, 1., BENGIO, Y., AND COURVILLE, A. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

HEUSER, A., PICEK, S., GUILLEY, S., AND MENTENS, N. Lightweight ciphers and
their side-channel resilience. IEEE Transactions on Computers PP, 99 (2017), 1-1.
HEUSER, A., RiouL, O., AND GUILLEY, S. Good is Not Good Enough — Deriving
Optimal Distinguishers from Communication Theory. In CHES (2014), L. Batina
and M. Robshaw, Eds., vol. 8731 of Lecture Notes in Computer Science, Springer.
HEUSER, A., AND ZOHNER, M. Intelligent Machine Homicide - Breaking Crypto-
graphic Devices Using Support Vector Machines. In COSADE (2012), W. Schindler
and S. A. Huss, Eds., vol. 7275 of LNCS, Springer, pp. 249-264.

HoEFFDING, W. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58, 301 (1963), 13-30.
HospopAR, G., GIERLICHS, B., DE MULDER, E., VERBAUWHEDE, [., AND VAN-
DEWALLE, J. Machine learning in side-channel analysis: a first study. Journal of
Cryptographic Engineering 1 (2011), 293-302. 10.1007/s13389-011-0023-x.
JaMES, G., WITTEN, D., HAsTIE, T., AND TIBSIHRANI, R. An Introduction to
Statistical Learning. Springer Texts in Statistics. Springer New York Heidelbert
Dordrecht London, 2001.

Kim, J., PICEK, S., HEUSER, A., BHASIN, S., AND HANJALIC, A. Make some noise.
unleashing the power of convolutional neural networks for profiled side-channel
analysis. JACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 3 (2019), 148-179.
KoCHER, P. C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Proceedings of CRYPTO’96 (1996), vol. 1109 of LNCS,
Springer-Verlag, pp. 104-113.

KoOCHER, P. C., JAFFE, J., AND JUN, B. Differential power analysis. In Proceedings
of the 19th Annual International Cryptology Conference on Advances in Cryptology
(London, UK, UK, 1999), CRYPTO ’99, Springer-Verlag, pp. 388-397.

LERMAN, L., BONTEMPI, G., AND MARKOWITCH, O. Power analysis attack: An
approach based on machine learning. Int. J. Appl. Cryptol. 3, 2 (June 2014),
97-115.

LERMAN, L., BONTEMPI, G., AND MARKOWITCH, O. A machine learning approach
against a masked AES - Reaching the limit of side-channel attacks with a learning
model. J. Cryptographic Engineering 5, 2 (2015), 123-139.

LERMAN, L., MEDEIROS, S. F., BONTEMPI, G., AND MARKOWITCH, O. A Machine
Learning Approach Against a Masked AES. In CARDIS (November 2013), Lecture
Notes in Computer Science, Springer. Berlin, Germany.

27

http://www.deeplearningbook.org

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

LERMAN, L., POUSSIER, R., BONTEMPI, G., MARKOWITCH, O., AND STANDAERT,
F. Template attacks vs. machine learning revisited (and the curse of dimension-
ality in side-channel analysis). In Constructive Side-Channel Analysis and Secure
Design - 6th International Workshop, COSADE 2015, Berlin, Germany, April 13-
14, 2015. Revised Selected Papers (2015), S. Mangard and A. Y. Poschmann, Eds.,
vol. 9064 of Lecture Notes in Computer Science, Springer, pp. 20—-33.

MAGHREBI, H., PORTIGLIATTI, T., AND PROUFF, E. Breaking cryptographic im-
plementations using deep learning techniques. In Security, Privacy, and Applied
Cryptography Engineering - 6th International Conference, SPACE 2016, Hyder-
abad, India, December 14-18, 2016, Proceedings (2016), pp. 3-26.

MANGARD, S., OswALD, E., AND Poprp, T. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1, http:
//wuw .dpabook.org/.

MASURE, L., Dumas, C., AND PROUFF, E. Gradient visualization for general char-
acterization in profiling attacks. In Constructive Side-Channel Analysis and Se-
cure Design - 10th International Workshop, COSADE 2019, Darmstadt, Germany,
April 3-5, 2019, Proceedings (2019), 1. Polian and M. Stéttinger, Eds., vol. 11421
of Lecture Notes in Computer Science, Springer, pp. 145—-167.

PICEK, S., HEUSER, A., AND GUILLEY, S. Template attack versus Bayes classifier.
Journal of Cryptographic Engineering 7, 4 (Nov 2017), 343-351.

PICEK, S., HEUSER, A., Jovic, A., BHASIN, S., AND REGAZZONI, F. The curse of
class imbalance and conflicting metrics with machine learning for side-channel eval-
uations. TACR Transactions on Cryptographic Hardware and Embedded Systems
2019, 1 (Nov. 2018), 209-237.

Picek, S., HEUSER, A., Jovic, A., LubpwiG, S. A., GUILLEY, S., JAKOBOVIC,
D., AND MENTENS, N. Side-channel analysis and machine learning: A practical
perspective. In 2017 International Joint Conference on Neural Networks, IJCNN
2017, Anchorage, AK, USA, May 14-19, 2017 (2017), pp. 4095-4102.
QUISQUATER, J.-J., AND SAMYDE, D. Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In Smart Card Programming and Security
(Berlin, Heidelberg, 2001), I. Attali and T. Jensen, Eds., Springer Berlin Heidel-
berg, pp. 200-210.

REcAzzoni, F., CEVRERO, A., STANDAERT, F.-X., BADEL, S., KLUTER, T.,
BRiIsK, P., LEBLEBICI, Y., AND [ENNE, P. A design flow and evaluation framework
for DPA-resistant instruction set extensions. In CHES09, C. Clavier and K. Gaj,
Eds., vol. 5747 of LNCS. Springer, Sept. 2009, pp. 205-19.

Rusbuk, J., Wu, L., PERIN, G., AND PICEK, S. Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analysis. Cryptology
ePrint Archive, Report 2021/071, 2021. https://eprint.iacr.org/2021/071.
RuDIN, W. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., New York,
NY, USA, 1987.

SCHINDLER, W., LEMKE, K., AND PAAR, C. A Stochastic Model for Differential
Side Channel Cryptanalysis. In CHES (Sept 2005), LNCS, Ed., vol. 3659 of LNCS,
Springer, pp. 30-46. Edinburgh, Scotland, UK.

SmiTH, L. N. Cyclical Learning Rates for Training Neural Networks. In 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV) (mar 2017),
TEEE, pp. 464-472.

STANDAERT, F.-X., KOEUNE, F., AND SCHINDLER, W. How to compare profiled
side-channel attacks? In International Conference on Applied Cryptography and
Network Security (2009), Springer, pp. 485-498.

28

http://www.springer.com/
http://www.dpabook.org/
http://www.dpabook.org/
https://eprint.iacr.org/2021/071

43. STANDAERT, F.-X., MALKIN, T. G., AND YUNG, M. A unified framework for the
analysis of side-channel key recovery attacks. In Advances in Cryptology - EURO-
CRYPT 2009 (Berlin, Heidelberg, 2009), A. Joux, Ed., Springer Berlin Heidelberg,
pp- 443-461.

44. VALIANT, L. Probably Approxzimately Correct: Nature’s Algorithms for Learning
and Prospering in a Compler World. Basic Books, Inc., New York, NY, USA, 2013.

45. VAN DER VALK, D.; AND PICEK, S. Bias-variance decomposition in machine
learning-based side-channel analysis. Cryptology ePrint Archive, Report 2019/570,
2019. https://eprint.iacr.org/2019/570.

46. VAN DER VALK, D., PICEK, S., AND BHASIN, S. Kilroy was here: The first step
towards explainability of neural networks in profiled side-channel analysis. Cryp-
tology ePrint Archive, Report 2019/1477, 2019. https://eprint.iacr.org/2019/
1477.

47. WHITNALL, C., AND OswALD, E. Robust profiling for dpa-style attacks. In In-
ternational Workshop on Cryptographic Hardware and Embedded Systems (2015),
Springer, pp. 3-21.

48. Wu, L., AND PICEK, S. Remove some noise: On pre-processing of side-channel
measurements with autoencoders. JACR Transactions on Cryptographic Hardware
and Embedded Systems 2020, 4 (Aug. 2020), 389-415.

49. ZAD, G., BossUET, L., HABRARD, A., AND VENELLI, A. Methodology for effi-
cient cnn architectures in profiling attacks. TACR Transactions on Cryptographic
Hardware and Embedded Systems 2020, 1 (Nov. 2019), 1-36.

A Lebesgue Measurability

The first requirement that we have to fulfill is that the expected value we want to
compute exists. In other words, we require that the integrals we need to compute
are well defined, namely that the functions we need to compute are measurable.
The most common type of integrals is the integrals of Lebesgue, which are well
defined on functions that are Lebesgue measurable.

A generic function u(¢),v € ¥ C R! is Lebesgue measurable with respect to
¥ when its generic step-function approximation Sy obtained by partitioning ¥
in N arbitrary domains grants that

lim Sy = u(v)
N—o00
on set ¥ — (2, 2 C R! being a null measure set |39].

The assumptions on Lebesgue measurably are extremely soft. In essence, no
engineering-related mathematical computations are Lebesgue non-measurable:
every time we integrate, we implicitly assume the function is Lebesgue measur-
able. The functions we consider in this paper are Lebesgue measurable, so the
integrals we compute in Section [3] are well-defined.

B CNN Hyperparameters and Architectures

In Table [I} we present the hyperparameters of the tested CNN architectures
from [38].

29

https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/1477
https://eprint.iacr.org/2019/1477

Table 1: Common hyperparameters for all the reported best architectures.

Convolutional Padding Type SAME
Pooling Type Average Pooling
SoftMax Initializer Glorot Uniform
Initializer for other layers He Uniform
Activation function SeLU
Optimizer Adam

Train Epochs 50
Learning Rate One Cycle Policy

We present the best obtained architectures in Tables 2] Note that all the
tables use the following notation:
Convolutional = C(filters, kernel_size, strides)
Batch Normalization = BN
Average Pooling = P(size, stride)
Flatten = FLAT
Fully-connected = FC(size)
SoftMax = SM(classes)

Table 2: Common hyperparameters for all the reported best architectures.
ASCAD (fixed key) HW C(2,25,1), P(4,4), FLAT, FC(15), FC(10), FC(4), SM(9)
ASCAD (fixed key) ID C(128,25,1), P(25,25), FLAT, FC(20), FC(15), SM(256)
ASCAD (random keys) HW C(4,50,1), P(25,25), FLAT, FC(30), FC(30), FC(30), SM(9)
ASCAD (random keys) ID C(128,3,1), P(75,75), FLAT, FC(30), FC(2), SM(256)
CHES CTF HW C(2,2,1), P(7,7), FLAT, FC(10), SM(9)

30

	When Theory Meets Practice: A Framework for Robust Profiling Side-channel Analysis
	Introduction
	Related Work
	General Framework
	Threat Model
	Intuitive Description of the Framework
	Expectation Estimation Problem and Robustness
	Profiling SCA Framework

	Experimental Setting
	Datasets
	Figures of Merit
	Profiling methods – Classifiers
	Points of Interest
	Framework Setting

	Framework Validation and Application
	Framework Validation on Simulated Traces
	Publicly Available Datasets and Framework Evaluation

	General Observations and Remarks
	Conclusions
	Lebesgue Measurability
	CNN Hyperparameters and Architectures

