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Abstract. We present the first template-based fault injection analysis
of FPGA-based block cipher implementations. While template attacks
have been a popular form of side-channel analysis in the cryptographic
literature, the use of templates in the context of fault attacks has not
yet been explored to the best of our knowledge. Our approach involves
two phases. The first phase is a profiling phase where we build templates
of the fault behavior of a cryptographic device for different secret key
segments under different fault injection intensities. This is followed by
a matching phase where we match the observed fault behavior of an
identical but black-box device with the pre-built templates to retrieve
the secret key. We present a generic treatment of our template-based
fault attack approach for SPN block ciphers, and illustrate the same
with case studies on a Xilinx Spartan-6 FPGA-based implementation of
AES-128.
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1 Introduction

The advent of implementation-level attacks has challenged the security of
a number of mathematically robust cryptosystems, including symmetric-
key cryptographic primitives such as block ciphers and stream ciphers,
as well as public-key encryption schemes. Implementation attacks come
in two major flavors - side-channel analysis (SCA) and fault injection
analysis (FIA). SCA techniques typically monitor the leakage of a crypto-
graphic implementation from various channels, such as timing/power/EM
radiations, and attempt to infer the secret-key from these leakages [14,
16]. FIA techniques, on the other hand, actively perturb the correct exe-
cution of a cryptographic implementation via voltage/clock glitches [23,
2,1], EM pulses [8] or precise laser beams [4, 5]. With the growing num-
ber of physically accessible embedded devices processing sensitive data
in today’s world, implementation level attacks assume significance. In
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particular, a thorough exploration of the best possible attacks on any
cryptographic implementation is the need of the hour.

1.1 Fault Models for Fault Injection Analysis

Nearly all FIA techniques in the existing literature assume a given fault
model (such as random faults [8] and/or stuck-at-faults [21]) in a given
location of the cipher state. Some of these techniques, such as differen-
tial fault analysis (DFA) [20, 24, 18] and differential fault intensity analy-
sis (DFIA) [10,11] are found to be more efficient in the presence of highly
localized faults, such as single bit flips, or faults restricted to a given byte
of the cipher state. While DFA attacks are possible using multiple byte
faults, e.g. diagonal faults [22], the fault pattern impacts the complexity of
key-recovery. In particular, with respect to AES-128, faults restricted to
a single diagonal allow more efficient key-recovery as compared to faults
spread across multiple diagonals. Similarly, DFIA typically exploits the
bias of fault distribution at various fault intensities, under the assumption
that the fault is restricted to a single byte/nibble of the cipher state [11].
Other techniques such as fault sensitivity analysis (FSA) [15,17] require
the knowledge of the critical fault intensity at which the onset of faulty
behavior is observed. This critical value is then correlated with the secret-
key dependent cipher state value. Finally, FIA techniques such as safe-
error analysis (SEA) [3] and differential behavioral analysis (DBA) [21]
require highly restrictive fault models such as stuck-at faults, where a
specific target bit of the cipher state is set to either 0 or 1. In recent liter-
ature, microcontroller-based implementation of cryptographic algorithms
have been subjected to instruction-skip attacks [7,12], where the adver-
sary uses precise injection techniques to transform the opcode for specific
instructions into that for NOP (no-operation).

Similarity between FIA and SCA. The above discussion clearly re-
veals that existing FIA techniques are inherently dependent on the ability
of an adversary to replicate a specific fault model on an actual target de-
vice. Fault precision and fault localization contribute to the efficiency of
the attack, while the occurrence of random faults outside the target model
generate noisy ciphertexts, thereby degrading the attack efficiency. Ob-
serve that this is conceptually similar to the effect of noise on the efficiency
of traditional SCA techniques such as simple power analysis (SPA) and
differential power analysis (DPA). In particular, the success rate for these
techniques is directly proportional to the signal-to-noise ratio (SNR) of
an implementation.
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Our Motivation. In this paper, we aim to devise a generalized FIA strat-
egy that overcomes the dependency of existing techniques on specific fault
models. Rather than analyzing the behavior of the target implementation
under a given set of faults, our approach would learn the behavior of the
device-under-test (DUT) under an unrestricted set of fault injection pa-
rameters, irrespective of the fault nature. Such an attack strategy would
allow a larger exploitable fault space, making it more powerful than all
reported FIA techniques. As discussed next, an equivalent of the same
approach in the context of SCA is well-studied in the literature.

1.2 Template Attacks: Maximizing the Power of SCA

Template attacks (TA) were proposed in [6] as the strongest form of SCA
in an information-theoretic setting. Unlike other popular SCA techniques
such as DPA, TA does not view the noise inherent to any cryptographic
implementation as a hindrance to the success rate of the attack. Rather,
it models precisely the noise pattern of the target device, and extracts
the maximum possible information from any available leakage sample.
This makes TA a threat to implementations otherwise secure based on
the assumption that an adversary has access to only a limited number
of side-channel samples. On the flip side, TA assumes that the adversary
has full programming capability on a cryptographic device identical to
the target black-box device.

1.3 Our Contribution: Templates for Fault Injection Analysis

The existing literature on TA is limited principally to SCA, exploiting
passive leakages from a target cryptographic device for key recovery. In
this paper, we aim to extend the scope of TA to active FIA attacks.
Figure 1 summarizes our template-based FIA technique. Our approach is
broadly divided into two main phases:

— The first phase of the attack is a profiling phase, where the adver-
sary is assumed to have programming access to a device identical to
the black-box target device. The adversary uses this phase to char-
acterize the fault behavior of the device under varying fault injection
intensities. We refer to such characterizations as the fault template for
the device. We choose the statistical distribution of faulty ciphertext
values under different fault injection intensities as the basis of our
characterization. The templates are typically built on small-segments
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Fig. 1: Template-based Fault Injection Analysis: An Overview

of the overall secret-key, which makes a divide-and-conquer key re-
covery strategy practically achievable. Note that the matching phase
does not require the correct ciphertext value corresponding to a given
encryption operation.

— The second phase of the attack is the matching phase, where the adver-
sary obtains the fault behavior of the target black-box device (with
an embedded non-programmable secret-key K') under a set of fault
injection intensities, and matches them with the templates obtained
in the profiling phase to try and recover K. The idea is to use a
maximum likelihood estimator-like distinguisher to identify the key
hypothesis for which the template exhibits the maximum similarity
with the experimentally obtained fault behavior of the target device.

1.4 Comparison with Existing FIA Techniques

In this section, we briefly recall existing FIA techniques, and explain their
differences with our proposed template-based FIA approach. As already
mentioned, our technique has two phases, and assumes that the adversary
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has programmable access to a device identical to the device under test.
At the same time, it allows modeling the behavior of the device inde-
pendent of specific fault models, as is done in most state-of-the-art FIA
techniques. We explicitly enumerate these differences below.

Differential Fault Analysis (DFA): In DFA [9, 20, 13, 24], the adver-
sary injects a fault under a specific fault model in target location of the
cipher state, and analyzes the fault propagation characteristics using the
knowledge of the fault-free and faulty ciphertexts. Our template-based
FTIA does not trace the propagation of the fault; rather it simply creates
a template of the faulty ciphertext distribution under different fault in-
jection intensities. This makes our approach independent of any specific
fault model.

Differential Fault Intensity Analysis (DFIA): DFIA [11, 19] exploits
the underlying bias of any practically achieved fault distribution on the
target device, once again under a chosen fault model. It is similar in
principle to DPA in the sense that it chooses the most likely secret-key
value based upon a statistical analysis of the faulty intermediate state
of the block cipher, derived from the faulty ciphertext values only. Our
template-based FIA can be viewed as a generalization of DFIA with less
stringent fault model requirements. Similar to DFIA, our approach also
does not require the correct ciphertext values. However, our approach
does not statistically analyze the faulty intermediate state based upon
several key hypotheses. Rather, it pre-constructs separate templates of
the faulty ciphertext distribution for each possible key value, and matches
them with the experimentally obtained faulty ciphertext distribution from
the black-box target device. Rather than focusing on specific fault mod-
els, the templates are built for varying fault injection intensities.

Fault Sensitivity Analysis (FSA): FSA [15,17] exploits the knowl-
edge of the critical fault intensity under which a device under test starts
exhibiting faulty output behavior. The critical intensity is typically data-
dependent, which allows secret-key recovery. FSA does not use the values
of either the correct or the faulty ciphertexts. However, it requires a pre-
cise modeling of the onset of faults on the target device. Our methodology,
on the other hand, uses the faulty ciphertext values, and is free of such
precise critical fault intensity modeling requirements.
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Safe Error Analysis (SEA): In SEA [3, 21], the adversary injects a fault
into a precise location of the cipher state, and observes the corresponding
effect on the cipher behavior. A popular fault model used in such attacks
is the stuck-at fault model. The adversary injects a fault to set/reset a
bit of the cipher state, and infers from the nature of the output if the
corresponding bit was flipped as a result of the fault injection. Quite
clearly, this fault model is highly restrictive. Our approach, on the other
hand, allows random fault injections under varying fault intensities, which
makes easier to reproduce in practice on real-world target devices.

2 Template-Based FIA: Detailed Approach

In this section, we present the details of our proposed template-based
FIA. Given a target device containing a block cipher implementation, let
F be the space of all possible fault intensities under which an adversary
can inject a fault on this device. Now, assume that a random fault is
injected in a given-segment Sy of the cipher state under a fault intensity
F; € F. Also assume that this state segment has value Py € P, and
subsequently combines with a key segment K; € K, where P and K
are the space of all possible intermediate state values and key segment
values respectively, resulting in a faulty ciphertext segment C; i ;. The
granularity of fault intensity values depends on the injection equipment
used - precise injection techniques such as laser pulses are expected to
offer higher granularity levels than simpler injection techniques such as
clock/voltage glitches. Note that we do not restrict the nature of the
faults resulting from such injections to any specific model, such as single
bit/single byte/stuck-at faults. With these assumptions in place, we now
describe the two phases - the template building phase and the template
matching phase - of our approach.

2.1 Template Building Phase

In this phase, the adversary has programmable access to a device identical
to the device under test. By programmable access, we mean the following;:

— The adversary can feed a plaintext P and master secret-key K of his
choice to the device.

— Upon fault injection under a fault intensity F; € F, the adversary
can detect the target location Sy in the cipher state where the fault
is induced
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— The adversary has the knowledge of the corresponding key segment
K; € K and the intermediate state segment Py € P. The key seg-
ment combines with the faulty state segment to produce the faulty
ciphertext segment C; ; ;1.

Algorithm 1 Template Building Phase

Require: Programmable target device
Require: Target block cipher description
Ensure: Fault template T for the target device
1: Fix the set S of fault locations to be covered for successful key recovery depending
on the block cipher description
Fix the space F of fault injection intensities depending on the device characteristics
Fix the number of fault injections N for each fault intensity
T+ ¢
for each fault location S, € S do
for each corresponding intermediate state segment and key segment (P, K;) €
P x K do
for each fault injection intensity F; € F do
for each | € [1, N] do
9: Run an encryption with plaintext segment P;; and the target key
segment K; simultaneously

10: Inject a fault under intensity Fj in the target location Sk
11: Let C’f}ifyj,k be the faulty ciphertext segment
12: end for
13: Tiir g 4= (Cil,i’,j,k7 T vCi,Ni’,j,k)
14: T+ TUT,
15: end for
16: end for
17: end for
18: return T’

Let C}, Gk ,CN, ;1 be the faulty ciphertext outputs upon N inde-
pendent fault injections in the target location Sy under fault injection

intensity F}, corresponding to the intermediate state segment Py and key
segment K;. We refer to the tuple T; ;s ;, = (Cii,yj’k, e 7Ci],\z[",j,k) as a
fault template instance. This template instance is prepared and stored
for possible tuples (K, Py, Fj,Si) € K x P x F x S, where S is the set
of all fault locations in the cipher state that need to be covered for full
key-recovery. The set of all such template instances constitutes the fault
template for the target device. Algorithm 1 summarizes the main steps of
the template building phase as described above.

Note: The number of fault injections N required per fault intensity dur-
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ing the template building phase may be determined empirically, based
upon the desired success rate of key recovery in the subsequent template
matching phase. Quite evidently, increasing N improves the success rate
of key recovery.

2.2 Template Matching Phase

Algorithm 2 Template Matching Phase

Require: Fault template T" corresponding to plaintext P
Ensure: The secret-key

1: for each fault location S € S do

2 for each fault injection intensity F; € F do

3 for each | € [1, N] do

4 Inject a fault under intensity Fj in location Sy
5: Let C’;k be the faulty ciphertext segment
6

7
8

end for
Ej’k $— (Cl}ﬁk, - 70”;.\’/]6)
end for
9: end for
10: for each fault location S, € S do
11: for each fault injection intensity F; € F do

12: for each possible key hypothesis K; € K and intermediate state segment
Pi/ € P do

13: piit g <= M(Ejk, Tiir k)

14: end for

15: end for

16: Store the pair (K;, P;/) pair such that ZFJ_ cF Pii’j,k 18 maximum for the given
fault location Sy.

17: end for

18: return the stored key hypothesis corresponding to each unique key segment loca-
tion.

In this phase, the adversary has black-box access to the target device.
Under the purview of black-box access, we assume the following:

— The adversary can feed a plaintext P of his choice to the device and
run the encryption algorithm multiple times on this plaintext.

— Upon fault injection under a fault intensity F; € F, the adversary can
deduce the target location Sy in the cipher state where the fault is
induced, by observing the corresponding faulty ciphertext C’]’k

— The adversary has no idea about the intermediate state segment P;
where the fault is injected, or the key segment K; that subsequently
combines with the faulty state segment to produce the ciphertext.
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The adversary again performs N independent fault injections under each
fault injection intensity F; in a target location S, and obtains the corre-
sponding faulty ciphertexts C”;k, e ,C”fk. All fault injections are per-
formed during encryption operations using the same plaintext P as in
the template building phase. These faulty ciphertexts are then given as
input to a distinguisher D. The distinguisher ranks the key-hypotheses
Ki,---, K, € K, where the rank of K, is estimated based upon the close-
ness of the experimentally obtained ciphertext distribution with the tem-
plate instance T; ; ; i, for all possible intermediate state segments Py . The
closeness is estimated using a statistical measure M. The distinguisher
finally outputs the key hypothesis K; that is ranked consistently highly
across all rank-lists corresponding to different fault injection intensities.
Algorithm 2 summarizes our proposed template matching phase.

2.3 The Statistical measure M

An important aspect of the template matching phase is choosing the
statistical measure M to measure the closeness of the experimentally ob-
served faulty ciphertext segment distribution, with that corresponding to
each template instance. We propose using a correlation-based matching
approach for this purpose. The first step in this approach is to build a
frequency-distribution table of each possible ciphertext segment value in
each of the two distributions. Let the possible ciphertext segment values
be in the range [0,2%"!] where z is the number of bits in the ciphertext
segment(for example, [0, 255] for a byte, or [0, 15] in case of a nibble). Also,
let f(y) and f’(y) denote the frequency with which a given ciphertext seg-
ment value y € [0,2%!] occurs in the template and the experimentally ob-
tained distribution, respectively. Since there are exactly N sample points
in each distribution, we have 3_ g 5o—17 f(y) = 2,000 f/(¥) = N.

The next step is to compute the Pearson’s correlation coefficient be-
tween the two distributions as:

> (fly)—55) - (F(w) - 3%)

b= y€[0,2771]
2 2
> (fly) - &) > (Fy)—£)
y€[0,27~1] y€[0,27~1]

The Pearson’s correlation coefficient is used as the measure M. The choice
of statistic is based on the rationale that, for the correct key segment
hypothesis, the template would have a similar frequency distribution of
ciphertext segment values as the experimentally obtained set of faulty
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ciphertexts, while for a wrong key segment hypothesis, the distribution
of ciphertext segment values in the template and the experimentally ob-
tained ciphertexts would be uncorrelated.

An advantage of the aforementioned statistical approach is that it
can be extended to relaxed fault models such as multi-byte faults, that
are typically not exploited in traditional FIA techniques. In general, if a
given fault injection affects multiple locations in the block cipher state, the
correlation analysis is simply repeated separately for each fault location.
This is similar to the divide-and-conquer approach used in SCA-based
key-recovery techniques.

3 Case Study: Template-Based FIA on AES-128

In this section, we present a concrete case study of the proposed template-
based FIA strategy on AES-128. As is well-known, AES has a plaintext
and key size of 128 bits each, and a total of 10 rounds. Each round except
the last one comprises of a non-linear S-Box layer (16 S-Boxes in parallel),
a linear byte-wise ShiftRow operation, and a linear MixColumn operation,
followed by XOR-ing with the round key. The last round does not have
a MixColumn operation. This in turn implies that if a fault was injected
in one or more bytes of the cipher state after the 9" round MixColumn
operation, the faulty state byte (or bytes) combines with only a specific
byte (or bytes) of the 10*" round key. For example, if a fault was injected
in the first byte of the cipher state, the faulty byte would pass through
the S-Box and ShiftRow operation, and combine with the first byte of
the 10*" round key to produce the first byte of the faulty ciphertext. The
exact relation between the fault injection location and the corresponding
key segment depends solely on the ShiftRow operation, and is hence de-
terministic. This matches precisely the assumptions made in our attack
description in the previous section. Consequently, this case study assumes
that all faults are injected in the cipher state between the 9*" round Mix-
Column operation and the 10" round S-Box operations. The aim of the
fault attack is to recover byte-wise the whole 10" round key of AES-128,
which in turn deterministically reveals the entire secret-key. We note that
fault injection in an earlier round will lead to extremely large templates,
making the attack impractical.

3.1 The Fault Injection Setup

The fault injection setup (described in Figure 2) uses a Spartan 6 FPGA
mounted on a Sakura-G evaluation board, a PC and an external arbi-
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Table 1: Glitch Frequencies for Different Fault Models

Glitch Frequency (MHz)|Faulty Bytes|Bit Flips per Byte
125.3-125.5 1 1
125.6-125.7 1 2
125.8-126.0 1 3
126.1-126.2 2-3 1-3

> 126.2 >3 > 5

trary function generator (Tektronix AFG3252). The FPGA has a Device
Under Test (DUT) block, which is an implementation of the block cipher
AES-128. Faults are injected using clock glitches. The device operates
normally under the external clock signal clkeyt. The glitch signal, referred
to as clkgag, is derived from the clkeyt via a Xilinx Digital Clock Man-
ager (DCM) module. The fault injection intensity in our experiments is
essentially the glitch frequency, and is varied using a combination of the
DCM configuration, and the external function generator settings. In the
template building phase, the intermediate cipher state P, and the inter-
mediate round key K; are monitored using a ChipScope Pro analyzer,
while in the template matching phase, the DUT is a black box with no
input handles or internal monitoring capabilities. Table 1 summarizes the
glitch frequency ranges at which these fault models were observed on the
target device.

3.2 Templates for Single Byte Faults

In this section, we present examples of fault templates obtained from
the device under test, for glitch frequencies that result in single byte
fault injections in the AES-128 module. Since only a single byte is af-
fected between the 9*" round MixColumn operation and the 10" round
S-Box operations, we are interested in the distribution of the correspond-
ing faulty byte in the ciphertext. Figure 3 presents fault templates con-
taining ciphertext byte distributions for three categories of faults - single
bit faults, two-bit faults, and three-bit faults. The templates correspond
to the same pair of intermediate state byte and last round key byte for
an AES-128 encryption. Quite evidently, the ciphertext distribution for
each template reflects the granularity of the corresponding fault model.
In particular, for a single bit fault, most of the faulty ciphertext bytes
assume one of 8 possible values, while for three-bit faults, the ciphertext
bytes assume more than 50 different values across all fault injections. In
all cases, however, the distribution of ciphertext values is non-uniform,
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which provides good scope for characterizing the fault behavior of the
device in the template building phase.

3.3 Templates for Multi-Byte Faults

In this section, we present examples of fault templates constructed for
glitch frequencies that result in multi-byte fault injections. Figure 4 shows
the distribution of different bytes injected with different faults. It is inter-
esting to observe that at the onset of multi-byte faults, the distribution of
faulty ciphertext bytes is not uniformly random; indeed, it is possible to
characterize the fault behavior of the device in terms of templates under
such fault models. Given the absence of MixColumn operation in the last
round of AES, each faulty intermediate state byte combines independently
with a random last round key byte. This allows a divide-and-conquer tem-
plate matching approach, where the statistical analysis may be applied
to each faulty ciphertext byte independently. This is a particularly use-
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ful mode of attack, since it can be launched even without precise fault
injection techniques that allow targeting a single byte of the cipher state.

3.4 Variation with Key Byte Values

The success of our template matching procedure with respect to AES-128
relies on the hypothesis that for different key byte values, the ciphertext
distribution corresponding to the same fault location is different. Other-
wise, the key recovery would be ambiguous. We validated this hypothesis
by examining the ciphertext distribution upon injecting a single bit fault
in the first byte of the cipher state, corresponding to different key byte
values. We illustrate this with a small example in Figure 5. Figures 5a,
5b, 5c and 5d represent the frequency distributions for faulty ciphertext
byte corresponding to the same intermediate byte value of 0x00, and key
byte values 0x00, 0x01, 0x02 and 0x03, respectively. Quite evidently, the
three frequency distributions are unique and mutually non-overlapping.
The same trend is observed across all 256 possible key byte values; exhaus-
tive results for the same could not be provided due to space constraints.

3.5 Template matching for Key-Recovery

In this section, we present results for recovering a single key-byte for
AES-128 under various fault granularities. As demonstrated in Figure 6,
the correlation for the correct key hypothesis exceeds the average cor-
relation over all wrong key hypotheses, across the three fault models -
single bit faults, two-bit faults and three-bit faults. As is expected, pre-
cise single-bits faults within a given byte enable distinguishing the correct
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key hypothesis using very few number of fault injections (50-100); for less
granular faults such as three-bit faults, more number of fault injections
(200-500) are necessary. Finally, the same results also hold for multi-byte
fault models, where each affected byte encounters a certain number of bit-
flips. Since the key-recovery is performed byte-wise, the adversary can use
the same fault instances to recover multiple key bytes in parallel.

4 Conclusion

We presented the first template based fault injection analysis of block ci-
phers. We presented a generic algorithm comprising of a template building
and a template matching phase, that can be easily instantiated for any
target block cipher. The templates are built on pairs of internal state
segment and key segment values at different fault intensities, while the
number of fault instances per template depends on the statistical method-
ology used in the matching phase. In this paper, we advocated the use
of the Pearson correlation coefficient in the matching phase; exploring al-
ternative techniques in this regard is an interesting future work. In order
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Fig. 6: Correlation between template and Observed Ciphertext Distribu-
tion: Correct Key Hypothesis v/s Wrong Key Hypothesis

to substantiate the effectiveness of our methodology, we presented a case-
study targeting a hardware implementation of AES-128 on a Spartan-6
FPGA. Interestingly, our attack allowed exploiting even low-granularity
faults such as multi-byte faults, that do not require high precision fault in-
jection equipment. It may be emphasized that the attack is devoid of the
exact knowledge of the underlying fault model. Such fault models also
allowed parallel recovery of multiple key-bytes, thus providing a trade-
off between the number of fault injections, and the number of recovered
key-bytes. An interesting extension of this work would be apply template-
based analysis against implementations with fault attack countermeasures
such as spatial /temporal /information redundancy.
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