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Abstract. Over the past few years, the microprocessor industry has in-
troduced accelerated cryptographic capabilities through instruction set
extensions. Although powerful and resistant to side-channel analysis such
as cache and timing attacks, these instructions do not implicitly protect
against power-based side-channel attacks, such as DPA. This paper pro-
vides a specific example with Intel’s AES-NI cryptographic instruction
set extensions, detailing a DPA, along with results, showing two ways to
extract AES keys by simply placing a magnetic field probe beside two
capacitors on a motherboard hosting an Intel Core i7 Ivy Bridge micro-
processor. Based on the insights of the DPA, methods are then presented
on how to mitigate the leaks, in software, providing a dial for diverting
the optimal amount of resources required for a prescribed security re-
quirement.
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1 Introduction

Side-channel analysis was proposed as a method of extracting cryptographic keys
by Kocher [7], who noted that the time required to compute an RSA signature
could reveal a private key. Further work demonstrated that one could determine
cryptographic keys by observing the power consumption over time [8]. Two types
of attacks were proposed. The first was inspecting a single power consumption
trace, referred to as Simple Power Analysis (SPA), and a statistical treatment
of a set of traces, referred to as Differential Power Analysis (DPA). It was later
shown that one could use the same treatment on traces taken using electro-
magnetic probes [4, 10], where the equivalent attacks are typically referred to
as Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic
Analysis (DEMA), respectively. With adequate sampling rates, proximity, and
absence of countermeasures, side-channel attacks have been practically demon-
strated on a wide variety of devices ranging from small single purpose chips [2, 3,
6] to large general purpose SoCs and CPUs [5, 9, 14]. However, no analyses have
exploited such a high bandwidth side channel on a commercial high-performance



microprocessor such as the following results on AES-NI on an Intel Core i7. In ad-
dition, this paper also demonstrates proven and practical countermeasures that
address the complexities of instruction look-ahead and instruction reordering on
such devices.

In order to address the growing global demand for security in the informa-
tion age, the microprocessor industry has introduced accelerated cryptographic
capabilities through instruction set extensions. In addition, cryptographic in-
struction set extensions have been implemented on FPGAs to investigate their
side-channel vulnerabilities and corresponding countermeasures [13, 12]. In this
paper, we demonstrate a DPA on a commercial high-performance microproces-
sor; specifically Intel’s AES-NI cryptographic instruction set extensions on the
Intel Core i7 Ivy Bridge microprocessor. Two methods for extracting secret keys
are described, the first exploits the microprocessor’s cache access mechanism,
exposing any implementation loading sensitive data into registers or computa-
tional units. The second exploits a sensitive state within the AES-NI instructions.
We then provide methods at the Instruction Set Architecture (ISA) level that
mitigate both attacks.

The remainder of this paper is organized as follows. In Section 2 we describe
the Device Under Test (DUT), how power measures were performed, and how
they were processed. In Section 3, we describe the first DPA and how to interpret
the results to extract keys. In Section 4 we describe the second DPA and how
to interpret the results to extract keys. In Section 5 we describe the DPA attack
mitigations and provide code examples, revealing which leaks can be eliminated
in software, and those that can not. We conclude in Section 6.

2 Test Harness and Data Collection

The DUT, an Advantech MIO-5290U-S7A1E, is a Commercial Off the Shelf
(COTS) Single Board Computer (SBC) hosting an Intel Core i7 3517UE micro-
processor of the Ivy Bridge microarchitecture based on Intel’s 22 nm process. The
microprocessor has two physical cores and supports Intel’s SpeedStep Technol-
ogy, Hyper-Threading, Turbo Boost 2.0, and AES-NI. The base core frequency
operates at 1.7 GHz, stepping up to 2.6 GHz with both cores loaded, and 2.8
GHz with one core loaded. A full 64-bit Ubuntu 12 operating system was in-
stalled on a Solid State Drive (SSD) connected to the SBC. For the following
results, Turbo Boost and Hyper-Threading were enabled and core switching was
left under OS control.

An application was written in C, making calls to Intel’s AES-NI Sample Li-
brary v1.2 [1]. The application was written to loop over a group of AES-256
encrypts in CBC mode by making calls to the assembly routine iEnc256 CBC.
Initially, the application was configured to run continuously, alternating between
encrypting a large block of random data and sleeping for a specified block of time.
Concurrently, various probes and locations were used to find emanating electro-
magnetic radiation that correlated to when the microprocessor was encrypting.
The Langer magnetic field probe RF-U 2,5-2 and the location as shown in Fig. 1
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Fig. 1. Probe position between two small capacitors on the back of the SBC.

provided a good power signature that correlated to various microprocessor ac-
tivities. The resulting signal also exhibited a low frequency drift that did not
correlate to microprocessor activity and so Mini-Circuits ZX60-33LN-SS+ am-
plifiers with a low frequency cutoff of 50 MHz were used. Due to the signal’s low
power, two amplifiers were connected in series to amplify the signal by approxi-
mately 40 dB before being sampled by an oscilloscope.

AES-NI consists of the seven instructions summarized in Table 1. AESDEC,
AESDECLAST, AESENC, and AESENCLAST take two parameters: a 128-bit round in-
put state and a 128-bit round key. With AVX support, a third parameter can
be provided to receive the round output state; otherwise, the round input state
is overwritten by the round output state. Different architectures provide differ-
ent throughputs and latencies with the Ivy Bridge microarchitecture producing
single cycle throughput and eight cycle latency. Based on the DUT’s core clock
rate, AES-NI instruction throughput, and number of encryptions per loop, an
estimated time for encrypting one block of data was calculated. Patterns of sim-
ilar duration were then searched for in the power signal. Fig. 2 presents two
power measurement traces, each taken under different operating parameters.
Each trace exhibits a periodic section of higher energy. Inspecting the library
routine iEnc256 CBC, one can attribute the higher energy to initialization and
alignment of round keys in memory. As we could not find any features in the
trace caused by the encryption directly, we used these high energy features to
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Table 1. AES-NI Instructions

Instruction Operation

AESDEC one round of AES decryption

AESDECLAST last round of AES decryption

AESENC one round of AES encryption

AESENCLAST last round of AES encryption

AESIMC inverse mix columns

AESKEYGENASSIST part of round key generation

PCLMULQDQ 64-bit carry-less multiply

Fig. 2. Two power measurement traces sampled under different operating parameters.
Each trace displays delimiters of higher power with periods that correlate to the pre-
dicted time to process the specified amount of data.
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synchronously trigger the scope with each block of encryption. We also reduced
some noise from each collected trace by looping the same values in every data
block and averaging on the scope.

3 Input Analysis and Interpretation

Fig. 3. Input analysis revealing Hamming distance leaks between alternating loads
from cache.

After collecting 1,500,000 power measurement traces over a period of 17 days,
each an average of 256 blocks of eight encrypts, and performing some alignment
and Wavelet based denoising [11], the variance normalized difference of means
based on the value of each of the 128 bits of input yielded the statistically signifi-
cant results shown in Fig. 3. Moreover, the polarity of the difference of means for
each bit provided a direct relationship with two other values; specifically the sec-
ond and second to last round keys. Inspecting the library routine iEnc256 CBC,
one can explain this relationship as a power dependency between alternating
loads from cache.

Table 2. Input Analysis Results on a Hamming Distance Leak

Fixed Secret Changing Inputs Polarity from

1s — 0s measured HD

Transitions between Fixed and Changing data

1 1 & 1s — 1 & 0s 0− 1→ ↓
0 0 & 1s — 0 & 0s 1− 0→ ↑

Generally, when considering three 128-bit values loaded from cache, if a tran-
sition occurs at a bit position between the first and third value, the micropro-
cessor will emanate more energy than if a transition does not occur. This is true
regardless of the number of instructions between any of the loads and the value
of the second load. If sorting power measurements based on bit values of either
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the first or third load, and subtracting the mean of power measurements asso-
ciated with a zero value from the mean of power measurements associated with
a one value, the polarity of the resulting difference of means will be negative
if the associated bit from the third or first load respectively is always one, and
positive if always zero, as shown in Table 2. As the changing input in addition
to the fixed round keys are loaded from cache, this power dependency manifests
itself between the input and two loads later (the second round key), and two
loads earlier from the previous block of encrypts (the second to last round key).
This polarity leak on the input analysis breaks AES-128 and provides half of the
secret key for AES-256.

Fig. 4. Top plot shows input analysis difference of means over a longer time window.
Bottom plot shows the number of correctly guessed bits for each round key. At each
point in time, all 128 bits are guessed to be 1 if their difference of means is less
than the mean of all 128 difference of means. The number of guessed bits that are
correct for each round key are then plotted. Only round keys 2 and 14, green and black
lines respectively, show any correlation, that in turn manifest as a sinusoidal decay in
polarity.

Note however the reverse of the expected polarity for round key 14 in Fig. 3.
Clearly other events are occurring within the microprocessor that depend on
the same relationship. Other phenomena also at play include how the power is
measured. The power signal that originates within the microprocessor can be
approximated as an impulse response, and is filtered by the packaging, bypass
capacitors, probe, amplifier and oscilloscope front end before being sampled. As
such, a single event will manifest in a measured power trace as this implicit
filter’s transfer function. Fig. 4 shows a zoomed out region of the difference of
means from Fig. 3. As can be seen, the polarity alternates for both round keys,
exhibiting the pattern of an impulse response passing through a filter.

4 Round Hamming Distance Analysis and Interpretation

Although the input analysis is serious, it can be mostly prevented without much
processing overhead. It is also worth noting that the input leak is not directly
related to the AES-NI. However, there is another leak that is directly related to
the AES-NI and is not as easy to mitigate.
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Fig. 5. Hamming distance between round input state and round output state analysis
revealing Hamming distance leaks between state in previous round before the XOR of
the round key and current round before the XOR of the round key.
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After collecting 1,341,165 power measurement traces over a period of 22 days,
each an average of 256 blocks of 32 encrypts, the variance normalized difference
of means based on the Hamming distance between the start and end of a round
for each of the 128 bits of state yielded the statistically significant results as
shown in Fig. 5. Moreover, the polarity of the difference of means for each bit
provided a direct relationship with another value; specifically the round key
associated with the previous round.

Table 3. Hamming Distance (HD) Between Round States (S) Results on a HD Leak
Before Mixing of Round Keys (RKs)

RKN RKN+1 SN+1 SN+2 SN+1 SN+2 Polarity from

HD = 1 — HD = 0 measured HD

1 1 1⊕ 1 1⊕ 0 — 1⊕ 1 1⊕ 1 0⊕ 1− 0⊕ 0→ ↑
1 1 1⊕ 0 1⊕ 1 — 1⊕ 0 1⊕ 0 1⊕ 0− 1⊕ 1→ ↑
1 0 1⊕ 1 0⊕ 0 — 1⊕ 1 0⊕ 1 0⊕ 0− 0⊕ 1→ ↓
1 0 1⊕ 0 0⊕ 1 — 1⊕ 0 0⊕ 0 1⊕ 1− 1⊕ 0→ ↓
0 1 0⊕ 1 1⊕ 0 — 0⊕ 1 1⊕ 1 1⊕ 1− 1⊕ 0→ ↓
0 1 0⊕ 0 1⊕ 1 — 0⊕ 0 1⊕ 0 0⊕ 0− 0⊕ 1→ ↓
0 0 0⊕ 1 0⊕ 0 — 0⊕ 1 0⊕ 1 1⊕ 0− 1⊕ 1→ ↑
0 0 0⊕ 0 0⊕ 1 — 0⊕ 0 0⊕ 0 0⊕ 1− 0⊕ 0→ ↑

Indeed, just as with the input analysis, a bit transition emanates more power
than no bit transition. However, the Hamming distance between the states that
leak and the states measured have a linear relationship with their neighbor-
ing round keys. The actual Hamming distance leak resides before the mixing of
the round key between successive rounds. Therefore, the function between the
measured states and the leaking states is an XOR with the round keys of their
previous rounds respectively. If sorting power measurements based on the Ham-
ming distances between a bit in the states at the start and end of a round as
follows,

SetA = AVG(measurements associated with HD = 1)

SetB = AVG(measurements associated with HD = 0)

DAB = SetA − SetB

then, DAB < 0 if the associated bits between the round keys are different, and
DAB > 0 if the associated bits between the round keys are the same, as shown
in Table 3.

Note that to break AES-128, one does not need to account for this relation-
ship in order to extract one round key. However, one can use this relationship
to break AES-256, extracting two successive round keys by analyzing just one
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round. In addition, if attacking the last round of AES, the search space for
breaking AES-256 is only 16 × 28. Following is the specific attack procedure for
breaking AES-256 from the last round.

– For each 16, 8-bit sub keys
– Compute HD of 8 state bits from all sub key guesses
– For each guess
– – Compute AVG[ABS(difference of means traces)]
– Set guess with MAX result as correct sub key value

– Record polarity of each correct difference of means trace
– XOR resulting 128-bit value with RK15 to get RK14

Fig. 6. Average of absolute of difference of means traces for all possible values of a
single sub key. The highest trace in black corresponds to the correct sub key guess.

Fig. 6 shows a set of AVG[ABS(difference of means traces)] for all guesses of a
single sub key.

5 Leak Mitigation

The reason for the input analysis leak is unknown, but hypothesized to be se-
quential 128-bit loads from cache alternating between the lower and upper halves
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of a 256-bit internal state register. As the DUT’s microprocessor supports AVX
instructions, it is reasonable to assume such 256-bit registers exist, and such
a construct would explain why only alternating loads from cache interact with
one another. As mentioned at the beginning of the previous section, the input
analysis leak can be mostly prevented without too much processing overhead.
For instance, one could insert two dummy loads before and after each load of
sensitive data. Better yet, to minimize performance overhead one could insert
two dummy loads before and after a collection of sensitive data loads and around
any loads of known changing data, such as input data. Care must be taken to
ensure dependencies between dummy loads so as to prevent the microprocessor’s
scoreboarding logic from reordering the loads. This technique for the most part
eliminates the input analysis leak. The only caveat would be if another program
were to interrupt the process with known changing loads either before or after
fixed secret loads.

The following macro can be used to insert two dummy loads before loading a
changing known value or a fixed secret value as the second argument (%2) and
computing its XOR with the first argument (%1).

%macro dload pxor 2

pxor %1, [pad + 0]

pxor %1, [pad + 16]

pxor %1, %2

%endmacro

Understanding and addressing the round Hamming distance analysis leak is
not as straight forward and can incur noticeable performance overhead. Note
that using the AVX variant of the AESENC and AESENCLAST instructions by
assigning the round output state into a different register than the round input
state does not work as the leak resides within the instructions themselves and
not when overwriting the result to a register specified at the ISA level. The first
test to determine the origin of this leak involved using the PXOR instruction.
As the location of the state that leaks resides before mixing the round key, the
thought was that if the AESENC and AESENCLAST instructions shared the
XOR logic with the PXOR instruction, then the Hamming distance relationship
between successive AESENC and AESENCLAST instructions could be broken
by inserting a dummy PXOR instruction in between. However, DPA showed
this not to be the case. The final solution came by inserting dummy AESENC
and AESENCLAST instructions in between. Note that due to the pipelining
capabilities of the AESENC and AESENCLAST instructions, this solution does
not slow down the throughput of AES encrypts until the number of encrypts
performed in parallel fill the pipe. Again, care must be taken to ensure that the
microprocessor’s scoreboarding logic does not reorder the strategically placed
dummy operations intended to break relationships between states over adjacent
rounds. The final solution involved a separate independent stream of dummy
AESENC and AESENCLAST instructions, with a random input seed and 15
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random round key seeds. Each dummy round assigned its output round state to
the round key used for the next dummy round.

The following macros and code snippet show how the execution order was
fixed with required dependencies.

%macro aesencx 4
aesenc %1, %2
aesenc %3, %4
movdqa %4, %3

%endmacro

%macro aesencxlast 4
aesenclast %1, %2
aesenclast %3, %4
movdqa %4, %3

%endmacro

; [rk] points to secret round keys

; [mix] points to dummy round keys

aesencx xmm0, [rk+1*16], xmm1, [mix+0*16]

Using this approach, the Hamming distance leak was successfully removed.
However, further analysis showed that after 75 times more traces, the leak reap-
peared, presumably based on the Hamming weight of the state before the mixing
of the round key. Unfortunately, this leak cannot be directly addressed at the
ISA level due the state register not being directly accessible.

6 Conclusions

Assuming power based side-channel analysis is only relevant with low-power de-
vices is a common misconception. As has been shown, power based side-channel
analysis is just as relevant with large devices [5, 9, 14]. As has been shown in
this paper, very large and complicated microprocessors in a complex environ-
ment running full and complex operating systems are also susceptible. The good
news is, in this case, practical countermeasures can be introduced in software
to increase resistance and meet many security requirements. However, as secu-
rity becomes more important in the emerging IoT age, such vulnerabilities are
growing in relevancy and need to be acknowledged and addressed.
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