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Abstract

At Eurocrypt 2010, Freeman presented a framework to convert cryptosystems based on composite-
order groups into ones that use prime-order groups. Such a transformation is interesting not only from
a conceptual point of view, but also since for relevant parameters, operations in prime-order groups are
faster than composite-order operations by an order of magnitude. Since Freeman’s work, several other
works have shown improvements, but also lower bounds on the e�ciency of such conversions.

In this work, we present a new framework for composite-to-prime-order conversions. Our framework is
in the spirit of Freeman’s work; however, we develop a di↵erent, “polynomial” view of his approach, and
revisit several of his design decisions. This eventually leads to significant e�ciency improvements, and
enables us to circumvent previous lower bounds. Specifically, we show how to verify Groth-Sahai proofs
in a prime-order environment (with a symmetric pairing) almost twice as e�ciently as the state of the
art.

We also show that our new conversions are optimal in a very broad sense. Besides, our conversions
also apply in settings with a multilinear map, and can be instantiated from a variety of computational
assumptions (including, e.g., the k-linear assumption).

Keywords: bilinear maps, composite-order groups, Groth-Sahai proofs.

1 Introduction

Motivation. Cyclic groups are a very popular platform for cryptographic constructions. Starting with
Di�e and Hellman’s seminal work [7], there are countless examples of cryptographic schemes that work in
any finite, cyclic group G, and whose security can be reduced to a well-defined computational problem in G.
In many cases, the order of the group G should be prime (or is even irrelevant). However, some constructions
(e.g., [12, 3, 4, 17, 25, 20]) explicitly require a group G of composite order.

In particular in combination with a pairing (i.e., a bilinear map) e, groups of composite order exhibit
several interesting properties. (For instance, e(g

1

, g
2

) = 1 for elements g
1

, g
2

of coprime order. Or, somewhat
more generally, the pairing operation operates on the di↵erent prime-order components of G independently.)
This enables interesting technical applications (e.g., [25, 20]), but also comes at a price. Namely, to ac-
commodate suitably hard computational problems, composite-order groups have to be chosen substantially
larger than prime-order groups. Specifically, it should be hard to factor the group order. This leads to
significantly slower operations in composite-order groups: [10] suggests that for realistic parameters, Tate
pairings in composite-order groups are by a factor of about 50 less e�cient than in prime-order groups.

Freeman’s composite-order-to-prime-order transformation. It is thus interesting to try to find
substitutes for the technical features o↵ered by composite-order groups in prime-order settings. In fact,

⇤An extended abstract of this work will appear in the proceedings of CRYPTO 2014. This is the full version.
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Freeman [10] has o↵ered a framework and tools to semi-generically convert cryptographic constructions
from a composite-order to a prime-order setting. Similar transformations have also been implicit in previous
works [13, 25]. The premise of Freeman’s approach is that composite-order group elements “behave as”
vectors over a prime field. In this interpretation, composite-order subgroups correspond to linear subspaces.

Moreover, we can think of the vector components as exponents of prime-order group elements; we can then
associate, e.g., a composite-order subgroup indistinguishability problem with the problem of distinguishing
vectors (chosen either from a subspace or the whole space) “in the exponent.” More specifically, Freeman
showed that the composite-order subgroup indistinguishability assumption can be implemented in a prime-
order group with the Decisional Di�e-Hellman (or with the k-linear) assumption. A pairing operation
over the composite-order group then translates into a suitable “multiplication of vectors,” which can mean
di↵erent things, depending on the desired properties. For instance, Freeman considers both an inner product
and a Kronecker product as “vector multiplication” operations (of course with di↵erent e↵ects).

Limitations of Freeman’s approach. Freeman’s work has spawned a number of follow-up results that
investigate more general or more e�cient conversions of this type [20, 22, 21, 18, 19]. We note that all
of these works follow Freeman’s interpretation of vectors, and even his possible interpretations of a vector
multiplication. Unfortunately, during these investigations, certain lower bounds for the e�ciency of these
transformations became apparent. For example, Seo [21] proves lower bounds both for the computational
cost and the dimension of the resulting vector space of arbitrary transformations in Freeman’s framework.
More specifically, Seo reports a concrete bound on the number of required prime-order pairing operations
necessary to simulate a composite-order pairing.

However, of course, these lower bounds crucially use the vector-space interpretation of Freeman’s frame-
work. Specifically, it is conceivable that a (perhaps completely di↵erent) more e�cient composite-order-
to-prime-order transformation exists outside of Freeman’s framework. Such a more e�cient transformation
could also provide a way to implement, e.g., the widely used Groth-Sahai proof system [13] more e�ciently.

Our contribution: a di↵erent view on composite-order-to-prime-order conversions. In this work,
we take a step back and question several assumptions that are implicitly made in Freeman’s framework.
We exhibit a di↵erent composite-order-to-prime-order conversion outside of his model, and show that it
circumvents previous lower bounds. In particular, our construction leads to more e�cient Groth-Sahai proofs
in the symmetric setting (i.e., with a symmetric pairing). Moreover, our construction can be implemented
from any matrix assumption [9] (including the k-linear assumption) and scales better to multilinear settings
than previous approaches. In the following, we give more details on our construction and its properties.

A technical perspective: a polynomial interpretation of linear subspaces. To explain our ap-
proach, recall that Freeman identifies a composite-order group with a vector space over a prime field. More-
over, in his work, subgroups of the composite-order group always correspond to uniformly chosen subspaces
of a certain dimension. Of course, such “unstructured” subspaces only allow for rather generic interpretations
of composite-order pairings (as generic “vector multiplications” as above).

Instead, we interpret the composite-order group as a very structured vector space. More concretely, we
interpret a composite-order group element as (the coe�cient vector of) a polynomial f(X) over a prime field.
In this view, a composite-order subgroup corresponds to the set of all polynomials with a common zero s
(for a fixed and hidden s). Composite-order group operation and pairing correspond to polynomial addition
and multiplication. Moreover, the hidden common zero s can be used as a trapdoor to decide subgroup
membership, and thus to implement a “projection” in the sense of Freeman.

Specifically, our “vector multiplication” is very structured and natural, and there are several ways to
implement it e�ciently. For instance, we can apply a convolution on the coe�cient vectors, or, more
e�ciently, we can represent f as a vector of evaluations f(i) at su�ciently many fixed values i, and multiply
these evaluation vectors component-wise. In particular, we circumvent the mentioned lower bound of Seo [21]
by our di↵erent interpretation of composite-order group elements as vectors.

Another interesting property of our construction is that it scales better to the multilinear setting than
previous approaches. For instance, while it seems possible to generalize at least Freeman’s approach to a
“projecting pairing” to a setting with a k-linear map (instead of a pairing), the corresponding generic vector
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multiplication would lead to exponentially (in k) large vectors in the target group. In our case, a k-linear
map corresponds to the multiplication of k polynomials, and only requires a quadratic number of group
elements in the target group.1

In the description above, f is always a univariate polynomial. With this interpretation, we can show that
the SCasc assumption from Escala et al. [9] implies subgroup indistinguishability. However, we also provide
a “multivariate” variant of our approach (with polynomials f in several variables) that can be implemented
with any matrix assumption (such as the k-linear and even weaker assumptions). Furthermore, in the
terminology of Freeman, we provide both a “projecting,” and a “projecting and canceling” pairing construc-
tion (although the security of the “projecting and canceling” construction requires additional complexity
assumptions).

Applications. The performance improvements of our approach are perhaps best demonstrated by the
case of Groth-Sahai proofs. Compared to the most e�cient previous implementations of Groth-Sahai proofs
in prime-order groups with symmetric pairing [22, 9], we almost halve the number of required prime-order
pairing operations (cf. Tab. 1). As a bonus, we also improve on the size of prime-order group elements in
the target group, while retaining the small common reference string from [9].

Additionally, we show how to implement a variant of the Boneh-Goh-Nissim encryption scheme [3] in
prime-order groups with a k-linear map. As already sketched, this is possible with Freeman’s approach only
for logarithmically small k.

Structural results. Of course, a natural question is whether our results are optimal, and if so, in what
sense exactly. We can settle this question, in the following sense: we show that the construction sketched
above is optimal in our generalized framework. We also prove a similar result for our construction from
general matrix assumptions.

Open problems. In this work, we focus on settings with a symmetric pairing (resp. multilinear map). It
is an interesting open problem to extend our approach to asymmetric settings. Furthermore, the conversion
that leads to a canceling and projecting map (in the terminology of Freeman) requires a nonstandard com-
plexity assumption (that however holds generically, as we prove). It would be interesting to find constructions
from more standard assumptions.

Outline. After recalling some preliminaries in Sec. 2, we describe our framework in Sec. 3. Our conversions
follow in Sec. 4. We discuss the optimality of our conversions in Sec. 5, and compare them to previous
conversions in Sec. 6. Finally, discuss in Sec. 7 how our results imply more e�cient Groth-Sahai proofs. In the
appendix, we provide more detailed explanations and proofs where none could be given in the main part due
to lack of space. Specifically, Appendix C discusses in detail the e�ciency of our constructions. Furthermore,
Sec. F.2 shows how to derive a prime-order instantiation of the Boneh-Goh-Nissim cryptosystem using our
conversion, and Appendix H discusses compatibility with the recent approximate multilinear maps.

2 Preliminaries

Notation. Throughout the paper we will use additive notation for all groups G. Nevertheless, we still talk
about an exponentiation with exponent a considering a scalar multiplication aP for P 2 G and a 2 |G|.
Let G be a cyclic group of order p generated by P. Then by [a] := aP we denote the implicit representation
of a 2

p

in G. To distinguish between implicit representations in the domain G and the target group G
T

of a multilinear map we use [·] and [·]
T

, respectively. More generally, we also define such representations for
vectors ~f 2 n

p

by [~f ] := ([f
i

])
i

2 Gn, for matrices A = (a
i,j

)
i,j

2 n⇥m

p

by [A] := ([a
i,j

])
i,j

2 Gn⇥m, and for

sets H ⇢ n

p

by [H] := {[a] | a 2 H} ⇢ Gn. Furthermore, we will often identify ~f 2 n

p

with the coe�cients

of a polynomial f in some space V with respect to a (fixed) basis q
0

, . . . , q
n�1

of V , i.e., f =
P

n�1

i=0

f
i

q
i

(e.g.,

V = {f | f 2
p

[X], deg(f) < n} and q
i

= Xi). In this case we may also write [f ] := [~f ].

1We multiply k polynomials, and each polynomial should be of degree at least k, in order to allow for suitable subgroup
indistinguishability problems that are plausible even in face of a k-linear map.
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Symmetric prime-order k-linear group generators. We use the following formal definition of a k-linear
prime-order group generator as the foundation for our constructions. In the scope of these constructions,
we will refer to the output of such a generator as a basic (or, prime-order) k-linear map.

Definition 1 (symmetric prime-order k-linear group generator). A symmetric prime-order k-linear group
generator is a PPT algorithm G

k

that on input of a security parameter 1� outputs a tuple of the form

MG
k

:= (k,G,G
T

, e, p,P,P
T

) G
k

(1�)

where G,G
T

are descriptions of cyclic groups of prime order p, log p = ⇥(�), P is a generator of G, and
e : G⇥ . . .⇥G! G

T

is a map which satisfies the following properties:
• k-linearity: For all Q

1

, . . . , Q
k

2 G, ↵ 2
p

, and i 2 {1, . . . , k} we have e(Q
1

, . . . ,↵Q
i

, . . . , Q
k

) =
↵e(Q

1

, . . . , Q
k

).
• Non-Degeneracy: P

T

= e(P, . . . ,P) generates G
T

.

In our paper, one should think of G
k

as either a generator of a bilinear group setting (for k = 2) defined
over some group of points of an elliptic curve and the multiplicative group of a finite field or, for k > 2, as
generator of an abstract ideal multilinear map, approximated by the recent candidate constructions [11, 6].

Matrix assumptions. Our constructions are based on matrix assumptions as introduced in [9].

Definition 2 (Matrix Distributions and Assumptions [9]). Let n, ` 2 , n > `. We call D
n,`

a matrix
distribution if it outputs (in probabilistic polynomial time, with overwhelming probability) matrices A 2 n⇥`

p

of full rank `. D
n,`

is called polynomially induced if it is defined by picking ~s 2 d

p

uniformly at random

and setting a
i,j

:= p
i,j

(~s) for some polynomials p
i,j

2
p

[ ~X] whose degrees do not depend on the security
parameter. We define D

`

:= D
`+1,`

. Furthermore, we say that the D
n,`

-Matrix Di�e-Hellman assumption
or just D

n,`

assumption for short holds relative to the k-linear group generator G
k

if for all PPT adversaries
D we have

AdvDn,`,Gk(D) = Pr[D(MG
k

, [A], [A~w]) = 1]�Pr[D(MG
k

, [A], [~u]) = 1] = negl(�) ,

where the probability is taken over the output MG
k

= (k,G,G
T

, e, p,P,P
T

) G
k

(1�), A D
n,`

, ~w  `

p

,
~u n

p

and the coin tosses of the adversary D.

We note that all of the standard examples of matrix assumptions are polynomially induced and further,
in all examples we consider in this paper, the degree of p

i,j

is 1. In particular, we will refer to the following
examples of matrix distributions, all for n = `+ 1:

SC
`

: A =

0

B

@

�s 0 ... 0 0

1 �s ... 0 0

0 1 0 0

.

.

.

.

.

.

.

.

.

0 0 ... 1 �s

0 0 ... 0 1

1

C

A

L
`

: A =

0

B

@

s

1

0 0 ... 0

0 s

2

0 ... 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 ... s`
1 1 1 ... 1

1

C

A

, U
`

: A =

 

s

1,1 ... s

1,`

.

.

.

.

.

.

s`+1,1 ... s`+1,`

!

,

where s, s
i

, s
i,j

 
p

. Up to sign, the SC
`

assumption, introduced in [9], is the `-symmetric cascade
assumption (`-SCasc). The L

`

assumption is actually the well-known `-linear assumption (`-Lin) [2, 15, 23]
in matrix language (DDH equals 1-Lin), and the U

`

assumption is the `-uniform assumption. More generally,
we can also define the U

n,`

assumption for arbitrary n > `. Note that the U
n,`

assumption is the weakest
matrix assumption (with the worst representation size) and implied by any other D

n,`

assumption [9]. In
particular `-Lin implies the `-uniform assumption as shown by Freeman. Moreover, `-SCasc, `-Lin, and the
`-uniform assumption hold in the generic group model [24] relative to a k-linear group generator provided
that k  ` [9].

Interpolating sets. Let ~X = (X
1

, . . . , X
d

) be a vector of variables. Let W ⇢
p

[ ~X] be a subspace of
polynomials of finite dimension m. Given a set of polynomials {r

0

, . . . , r
m�1

} which are a basis of W , we
say that ~x

1

, . . . , ~x
m

2 d

p

is an interpolating set for W if the matrix

 

r
0

(~x

1

) ... rm�1

(~x

1

)

...
...

r
0

(~xm) ... rm�1

(~xm)

!
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has full rank. It can be easily seen that the property of being an interpolating set is independent of the basis.
Further, when p is exponential (and m and the degrees of r

i

are polynomial) in the security parameter, any
m random vectors ~x

1

, . . . , ~x
m

form an interpolating set with overwhelming probability.

3 Our Framework

We now present our definitional framework for composite-to-prime-order transformations. Basically, the
definitions in this section will enable us to describe how groups of prime order p with a multilinear map
e can be converted into groups of order pn for some n 2 with a multilinear map ẽ. These converted
groups will then “mimic” certain features of composite-order groups. Since ẽ is just a composition of several
instances of e, we will refer to e as the basic multilinear map. We start with an overview of the framework
of Freeman ([10]), since this is the established model for such transformations. Afterwards, we describe our
framework in terms of di↵erences to the model of Freeman.

Freeman’s model. Freeman identifies some abstract properties of bilinear composite order groups which
are essential to construct some cryptographic protocols, namely subgroup indistinguishability, the projecting
property and the canceling property. For Freeman, a symmetric bilinear map generator takes a bilinear group
of prime order p with a pairing e and outputs some groups ⇢ ,

T

of order pn for some n 2 and
a symmetric bilinear map ẽ : ⇥ !

T

, computed via the basic pairing e. Useful instances of such
generators satisfy the subgroup indistinguishability assumption, which means that it should be hard to
decide membership in ⇢ . Further, the pairing is projecting if the bilinear map generator also outputs
some maps ⇡,⇡

T

defined respectively on ,
T

which commute with the pairing and such that ker⇡ = .
The pairing is canceling if ẽ( , 0) = 0 for some decomposition = � 0.

Instantiations. Further, Freeman gives several concrete instantiations in which the subgroups output
by the generator are sampled uniformly. More specifically, in the language of [9], the instantiations sample
subgroups according to the U

n,`

distribution. Although his model is not specifically restricted to this case,
follow-up work seems to identify “Freeman’s model” with this specific matrix distribution. For instance, the
results of [20] on the impossibility of achieving the projecting and canceling property simultaneously or the
impossibility result of Seo [21], who proves a lower bound on the size of the image of a projecting pairing,
are also in this setting.

Our model. Essentially, we recover Freeman’s original definitions for the symmetric setting, however
with some subtle additional precisions. First, we extend his model to multilinear maps and, like Seo [21],
distinguish between basic multilinear map operations (e) and multilinear map operations (ẽ), since an
important e�ciency measure is how many e operations are required to compute ẽ. The second and main
block of di↵erences is introduced with the goal of making the model compatible with several families of
matrix assumptions, yielding a useful tool to prove optimality and impossibility results. For this, we extend
Freeman’s model to explicitly support di↵erent families of subgroup assumptions and state clearly what the
dependency relations between the di↵erent outputs of the multilinear group generator are. In Sec. 6 we
explicitly discuss the advantages of the refinement of the model.

Definition 3. Let k, `, n, r 2 with k > 1 and r � n > `. A (k, (r, n, `)) symmetric multilinear map
generator G

k,(r,n,`)

takes as input a security parameter 1� and a basic k-linear map generator G
k

and outputs
in probabilistic polynomial time a tuple (MG

k

, , ,
T

, ẽ), where
• MG

k

:= (k,G,G
T

, e, p,P,P
T

) G
k

(1�) is a description of a prime order symmetric k-linear group
• ⇢ Gr is a subgroup of Gr with a minimal generating set of size n
• ⇢ is a subgroup of with a minimal generating set of size `
• ẽ : k !

T

is a non-degenerate k-linear map.

We assume that elements in , are represented as vectors in Gr. With this representation, it is natural
to identify elements in these groups with vectors in r

p

in the usual way, via the canonical basis. Via this

identification, any subgroup ⇢ Gr spanned by [~b
1

], . . . , [~b
`

] corresponds to the subspace H of r

p

spanned
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by ~b
1

, . . . ,~b
`

, and we write = [H]. Further, we may assume that
T

= Gm

T

and elements of
T

are
represented by m-tuples of G

T

, for some fixed m 2 , although we do not include m as a parameter of the
multilinear generator.

In most constructions n = r, in which case we drop the index r from the definition, and we simply refer
to such a generator as a (k, (n, `)) generator G

k,(n,`)

. We always assume that membership in is easy to
decide.2 In the case where n = r and = Gr this is obviously the case, but otherwise we assume that
the description of includes some auxiliary information which allows to test it (like in [22], [19] and our
construction of Sec. B.2).

Definition 4 (Properties of multilinear map generators). Let G
k,(r,n,`)

be a (k, (r, n, `)) symmetric multilinear
map generator as in Def. 3 with output (MG

k

,H,G,
T

, ẽ). We define the following properties:
• Subgroup indistinguishability. We say that G

k,(r,n,`)

satisfies the subgroup indistinguishability
property if for all PPT adversaries D,

AdvGk,(r,n,`)
(D) = Pr[D(MG

k

, , ,
T

, ẽ, x) = 1]�Pr[D(MG
k

, , ,
T

, ẽ, u) = 1] = negl(�) ,

where the probability is taken over (MG
k

, , ,
T

, ẽ)  G
k,(r,n,`)

(1�), x  , u  and the coin
tosses of the adversary D.

• Projecting. We say that (MG
k

,H,G,
T

, ẽ) is projecting if there exist two non-zero homomorphisms
⇡ : ! , ⇡

T

:
T

!
T

such that ker⇡ = and ⇡
T

(ẽ(x
1

, . . . , x
k

)) = ẽ(⇡(x
1

), . . . ,⇡(x
k

)) for any
(x

1

, . . . , x
k

) 2 k. For the special case r = n = ` + 1, G := Gn we can equivalently define the
maps ⇡ : Gn ! G, ⇡

T

:
T

! G
T

such that ker⇡ = and ⇡
T

(ẽ(x
1

, . . . , x
k

)) = e(⇡(x
1

), . . . ,⇡(x
k

))
(matching the original definition of [13]). As usual, we say that G

k,(r,n,`)

is projecting if its output is
projecting with overwhelming probability.

• Canceling. We say that (MG
k

,
1

, ,
T

, ẽ) is canceling if there exists a decomposition =
1

�
2

such that for any x
1

2
j

1

, . . . , x
k

2
jk , ẽ(x1, . . . , xk) = 0 except for j

1

= . . . = j
k

. We call G
k,(r,n,`)

canceling if its output is canceling with overwhelming probability.

So far, the definitions given match those of Freeman (extended to the k-linear case) except that we
explicitly define the basic k-linear group MG

k

which is used in the construction. We will now introduce
two aspects of our framework that are new compared to Freeman’s model. First, we will define multilinear
generators that sample subgroups according to a specific matrix assumptions. Then, we will define a property
of the multilinear map ẽ that will be very useful to establish impossibility results and lower bounds.

Definition 5. Let k, `, n, r 2 with k > 1, r � n > ` and D
n,`

be a matrix distribution. A (k, (r, n, `),D
n,`

)
multilinear map generator G

k,(r,n,`),Dn,`
is a (k, (r, n, `)) multilinear map generator which outputs a tuple

(MG
k

, , ,
T

, ẽ) such that the distribution of the subspaces H such that = [H] equals D
n,`

for any
fixed choice of MG

k

.

As usual, in the case where r = n, we just drop r and refer to a (k,D
n,`

) multilinear map generator
G
k,Dn,`

. We conclude our framework with a definition that enables us to distinguish generators where the
multilinear map ẽ may or may not depend on the choice of the subgroups.

Definition 6. We say that a (k, (r, n, `),D
n,`

) multilinear map generator with output (MG
k

, , ,
T

, ẽ)
as in Def. 5 defines a fixed multilinear map if the random variable H (s.t. = [H]) conditioned on MG

k

and the random variable ( ,
T

, ẽ) conditioned on MG
k

are independent.

4 Our Constructions

All of our constructions arise from the following polynomial point of view : The key idea is to treat = Gn

as an implicit representation of some space of polynomials. Polynomial multiplication will then give us a

2We note that with the recent approximate multilinear maps from [11, 6], not even group membership is e�ciently recogniz-
able. This will not a↵ect our results, but of course hinders certain applications (such as Groth-Sahai proofs).
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Table 1: E�ciency of di↵erent symmetric projecting k-linear maps. The size of the domain (n) and codomain (m)
of ẽ is given as number of group elements of G and GT , respectively. Costs are stated in terms of application of
the basic map e, group operations (gop) including inversion in G/GT , and `-fold multi-exponentiations of the form
e1[a1]+ · · ·+ e`[a`] (`-mexp) in G/GT . Note that in this paper, for the computation of ẽ, we use an evaluate-multiply-
approach.

Construction Ass. Co-/Domain Cost ẽ Cost ⇡ Cost ⇡T
Freeman, k = 2 [10] U2 9/3 9 e 3 3-mexp 9 9-mexp

Seo, k = 2 [21] U2 6/3 9 e + 3 gop 3 3-mexp 6 6-mexp

This paper, k = 2 SC2 5/3 5 e + 22 gop 1 2-mexp 1 5-mexp

This paper, k = 2 U2 6/3 6 e + 12 3-mexp

1
1 3-mexp 1 6-mexp

Freeman, k > 2 Uk (k+1)

k
/k+1 (k+1)

k+1 e k+1 (k+1)-mexp (k+1)

k
(k+1)

k
-mexp

This paper, k > 2 Uk

⇣
2k
k

⌘
/k+1

⇣
2k
k

⌘
e +

⇣
2k
k

⌘
k (k+1)-mexp

1
1 (k+1)-mexp 1

⇣
2k
k

⌘
-mexp

This paper, k > 2 SCk k2
+1/k+1 (k2

+1) e + (k3
+k) k-mexp

1
1 k-mexp 1 k2

+1-mexp

1For the construction based on SCk, the involved exponents are relatively small, namely the biggest one is (d k2
+1

2

e)k. Also
for Uk, the involved exponents can usually be made small.

natural multilinear map. For subspaces (~s) that correspond to polynomials sharing a common root ~s, this
multilinear map will turn out to be projecting. We will first illustrate this idea by means of a simple concrete
example where subgroup decision for (~s) is equivalent to 2-SCasc (Sec. 4.1). Then we show that actually
any polynomially induced matrix assumption gives rise to such a polynomial space and thus allows for the
construction of a k-linear projecting map (Sec. 4.2). Finally, by considering along with the multilinear
map as an implicit representation of a polynomial ring modulo some reducible polynomial, we are able to
construct a multilinear map which is both projecting and canceling (see Sec. 4.3 for a summary). See Tab. 1
for an overview of the characteristics of our projecting map constructions in comparison with previous work.

4.1 A Projecting Pairing based on the 2-SCasc Assumption

Let (k = 2, G,G
T

, e, p,P,P
T

) G
2

(1�) be the output of a symmetric prime-order bilinear group generator.
We set := G3 and

T

:= G5

T

. For any [~f ] = ([f
0

], [f
1

], [f
2

]) 2 = G3, we identify ~f with the polynomial

f = f
0

+ f
1

X + f
2

X2 2
p

[X] of degree at most 2. Similarly, any [~f ]
T

2
T

corresponds to a polynomial
of degree at most 4. Then the canonical group operation for and

T

corresponds to polynomial addition
(in the exponent), i.e., [~f ] + [~g] = [~f + ~g] = [f + g] and [~f ]

T

+ [~g]
T

= [f + g]
T

. Furthermore, polynomial
multiplication (in the exponent) gives a map ẽ : ⇥ !

T

,

ẽ([~f ], [~g]) :=
⇣h

X

i+j=0

f
i

g
j

i

T

, . . . ,
h

X

i+j=4

f
i

g
j

i

T

⌘

= [f · g]
T

It is easy to see that ( ,
T

, ẽ) is again a bilinear group setting, where the group operations and the pairing
ẽ can be e�ciently computed.

A subgroup decision problem. For some fixed s 2
p

let us consider the subgroup (s) ⇢ formed

by all elements [~f ] 2 such that ~f viewed as polynomial f has root s, i.e., (s) = {[f ] 2 | f(s) = 0}. In
other words, (s) consists of all [f ] with f of the form

(X � s)(f 0
1

X + f 0
0

) , (1)

where f 0
1

, f 0
0

2
p

. Thus, given [f ] and [s], the subgroup decision problem for (s) ⇢ means to decide
whether f is of this form or not. Viewing Eq. (1) as matrix-vector multiplication, we see that this is
equivalent to deciding whether ~f belongs to the image of the 3⇥ 2 matrix

A(s) :=
⇣�s 0

1 �s

0 1

⌘

(2)

Hence, our subgroup decision problem corresponds to the 2-SCasc problem (cf. Def. 2) which is hard in a
generic bilinear group [9].
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Projections. Given s, we can simply define projection maps ⇡ : ! G and ⇡
T

:
T

! G
T

by polynomial
evaluation at s (in the exponent), i.e., [~f ] is mapped to [f(s)] and [~f ]

T

to [f(s)]
T

. Computing ⇡, ⇡
T

requires
group operations only. Obviously, it holds that ker(⇡) = (s) and e(⇡([~f

1

]),⇡([~f
2

])) = ⇡
T

(ẽ([~f
1

], [~f
2

])).

Sampling from (s). Given [(�s, 1, 0)], [(0,�s, 1)] 2 , a uniform element from (s) can be sampled by
picking (f 0

0

, f 0
1

) 2

p

and, as with any matrix assumption, computing the matrix-vector product

h⇣�s 0

1 �s

0 1

⌘

·
⇣

f

0
0

f

0
1

⌘i

=
h

�

�sf 0
0

, f 0
0

� sf 0
1

, f 0
1

�

T

i

(3)

Again, this can be done using the group operation only.

E�ciency. Computing ẽ in our construction corresponds to polynomial multiplication. Although this
multiplication happens in the exponent (and we are “only” given implicit representations of the polynomials),
we are not forced to stick to schoolbook multiplication. We propose to follow an evaluation-multiplication-
interpolation approach (using small interpolation points) where the actual interpolation step is postponed
to the computation of ⇡

T

.
More precisely, so far we used coe�cient representation for polynomials over and

T

with respect
to the standard basis. However, other (s-independent) bases are also possible without a↵ecting security.
For e�ciency, we propose to stick to this representation for but to use point-value representation for
polynomials over

T

with respect to the fixed interpolating set M := {�2,�1, 0, 1, 2} (cf. Def. 2). This
means we now identify a polynomial g in the target space with the vector (g(�2), g(�1), g(0), g(1), g(2)).

More concretely, to compute ẽ([f
1

], [f
2

]) = ([(f
1

f
2

)(x)]
T

)
x2M , we first evaluate f

1

and f
2

(in the exponent)
with all x 2 M , followed by a point-wise multiplication ([f

1

(x)f
2

(x)]
T

)
x2M = (e([f

1

(x)], [f
2

(x)]))
x2M . This

way, ẽ can be computed more e�ciently with only five pairings. Computing ⇡ is unchanged. To apply ⇡
T

,
one first needs to obtain the coe�cient representation by interpolation and then evaluate the polynomial
at s. However, this can be done simultaneously and as the 1 ⇥ 5 matrix describing this operation can be
precomputed (given s) it does not increase the computational cost much.

4.2 Projecting Multilinear Maps from any Matrix Assumption

In the following, we will first demonstrate that for any vector space of polynomials, the natural pairing given
by polynomial multiplication is projecting for subspaces consisting of polynomials sharing a common root.
We will then show that any (polynomially induced) matrix assumption can equivalently be considered as a
subspace assumption in a vector space of polynomials of this type. This way, we obtain a natural projecting
multilinear map for any polynomially induced matrix assumption.

A projecting multilinear map on spaces of polynomials. Let MG
k

:= (k,G,G
T

, e, p,P,P
T

)  
G
k

(1�) be the output of a prime-order k-linear group generator. Let V ⇢
p

[ ~X] be a vector space of

polynomials of dimension n for which we fix basis q
0

, . . . , q
n�1

. Then for any [~f ] 2 := Gn we can
identify the vector ~f = (f

0

, . . . , f
n�1

) with a polynomial f =
P

f
i

q
i

2 V . In the 2-SCasc example above, V
corresponds to univariate polynomials of degree at most 2 and the basis is given by 1, X,X2. On V , we have a
natural k-linear map given by polynomial multiplication: mult

k

: V k !
p

[ ~X],mult
k

(f
1

, . . . , f
k

) = f
1

· · · f
k

.

Let W ⇢
p

[ ~X] be the span of the image of mult
k

and m its dimension. Then we can again fix a basis
r
0

, . . . , r
m�1

of W to identify polynomials with vectors. In the 2-SCasc example above, W consists of
polynomials of degree at most 4 and we chose the basis 1, X,X2, X3, X4 of W for our initial presentation.
From polynomial multiplication, we then obtain a non-degenerate k-linear map

ẽ : k ! Gm

T

, ẽ([~f
1

], . . . , [ ~f
k

]) = [f
1

· · · f
k

]
T

.

Now consider a subspace (~s) 2 of the form (~s) = {[f ] 2 | f(~s) = 0}. It is easy to see that ẽ is
projecting for this subspace: A projection map ⇡ : ! G with ker(⇡) = (~s) is given by evaluation at ~s,
i.e., ⇡([~f ]) = [f(~s)]. Similarly, ⇡

T

: Gm

T

! G
T

is defined by ⇡
T

([~g]
T

) = [g(~s)]
T

and by construction we have

e(⇡([~f
1

]), . . . ,⇡([ ~f
k

])) = [f
1

(~s) · · · f
k

(~s)]
T

= [(f
1

· · · f
k

)(~s)]
T

= ⇡
T

(ẽ([~f
1

], . . . , [ ~f
k

])).
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From a polynomially induced matrix distribution to a space of polynomials. Now, let D
n�1

be
any polynomially induced matrix distribution as defined in Def. 2 and let A( ~X) 2 (

p

[ ~X])n⇥(n�1) be the
polynomial matrix describing this distribution. Then we set := Gn and consider the subspace [ImA(~s)] for
some ~s. We now show that we can identify with a vector space V of polynomials, such that the subspace
ImA(~s) corresponds exactly to polynomials having a root at ~s. To this end, consider the determinant of
(A( ~X)||~F ) as a polynomial d in indeterminates ~X and ~F . Since we assume that A(~s) has generically3

full rank a given vector ~f 2 n

p

belongs to the image of A(~s) i↵ the determinant of the extended matrix

(A(~s)||~f) is zero, i.e., d(~s, ~f) = 0. To obtain the desired vector space V with basis q
0

, . . . , q
n�1

, we consider
the Laplace expansion of this determinant to write d as

d( ~X, ~F ) =
n�1

X

i=0

F
i

q
i

( ~X) . (4)

for some polynomials q
i

( ~X) depending only on A. For SC
2

, we have q
i

= Xi. We note that in all cases of
interest the q

i

are linearly independent (see [14]).
Thus, we may now identify [~f ] 2 with the implicit representation of the polynomial f = d( ~X, ~f) =

P

i

f
i

q
i

and as f(~s) =
P

i

f
i

q
i

(~s) = 0 i↵ ~f 2 ImA(~s) we have (~s) = [ImA(~s)] = {[f ] 2 | f(s) = 0}.
Hence, we may construct a projecting k-linear map from polynomial multiplication as described in the
previous paragraph.

Working through the construction, one can obtain explicit coordinates as follows: let W be the span

of {q
i

1

· · · q
ik | 0  i

j

< n} and fix a basis r
0

, . . . , r
m�1

of W . This determines coe�cients �
(i

1

,...,ik)

t

in

q
i

1

· · · q
ik =

P

m�1

t=0

�
(i

1

,...,ik)

t

r
t

.

Recall that ẽ : (Gn)k ! Gm

T

is defined as ẽ([~f
1

], . . . , [ ~f
k

]) = [f
1

· · · f
k

]
T

, expressed as an element of Gm

T

via the basis ~r. In coordinates this reads

ẽ([~f
1

], . . . , [ ~f
k

]) = (
X

j

1

...jk

�
(j

1

,...,jk)

0

·
X

(i

1

,...,ik)2
⌧(j

1

,...,jk)

e([f
1,i

1

], . . . , [f
k,ik

]), . . . , (5)

X

j

1

...jk

�
(j

1

,...,jk)

m�1

·
X

(i

1

,...,ik)2
⌧(j

1

,...,jk)

e([f
1,i

1

], . . . , [f
k,ik

]))

where [f
1,i

1

· · · f
k,ik

]
T

simply denotes (f
1,i

1

· · · f
k,ik

)P
T

and ⌧(j
1

, . . . , j
k

) denotes the set of permutations of
(j

1

, . . . , j
k

). The last optimization can be done as q
i

1

· · · q
ik = q

j

1

· · · q
jk for (i

1

, . . . , i
k

) 2 ⌧(j
1

, . . . , j
k

). For

the same reason, we have m =
�

n+k�1

k

�

in the worst case. In this way, the target group in our constructions
is always smaller than the target group in Freeman’s construction (generalized to k � 2), which is of size nk.

The following theorem summarizes our construction and its properties:

Theorem 1. Let k > 1, n 2 , and D
n�1

be a polynomially induced matrix distribution. Let G
k,Dn�1

be an
algorithm that on input of a security parameter 1� and a symmetric prime-order k-multilinear map generator
G
k

outputs (MG
k

, (~s), ,
T

, ẽ), where

• MG
k

:= (k,G,G
T

, e, p,P,P
T

) G
k

(1�),

• := Gn, (~s) := [ImA(~s)], A(~s) D
n�1

,

•
T

:= Gm

T

, where m equals the dimension of

W := {
X

0i

1

,...,ikn�1

↵
i

1

,...,ikqi1 · · · qik |↵
i

1

,...,ik 2 p

}

3This means that A(~s) will be full rank with overwhelming probability and this is indeed equivalent to d 6= 0. To simplify
the exposition, we may assume that the sampling algorithm is changed to exclude ~s where A(~s) does not have full rank.
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(as vector space), and q
0

( ~X), . . . , q
n�1

( ~X) 2
p

[ ~X] are polynomials such that

det(A( ~X)||~F ) =
n�1

X

i=0

F
i

q
i

( ~X)

for the matrix A( ~X) describing D
n�1

, and

• ẽ : k !
T

is the map defined by Eq. (5) for a basis r
0

, . . . , r
m�1

of W .

Then G
k,Dn�1

is a (k,D
n�1

) multilinear map generator. It is projecting, where the projection maps ⇡ : !
G and ⇡

T

:
T

! G
T

defined by ⇡(~f) :=
P

n�1

i=0

q
i

(~s)[f
i

] and ⇡
T

(~g) :=
P

m�1

i=0

r
i

(~s)[g
i

]
T

are e�ciently
computable given the trapdoor ~s. Furthermore, if the D

n�1

assumption holds with respect to G
k

, then subgroup
indistinguishability holds with respect to G

k,Dn�1

.

Example 1. We can construct a projecting k-linear map generator satisfying subgroup indistinguishability
under k-SCasc (which is hard in a k-linear generic group model). For G

k,SCk
, we would get n = k + 1 and

q
i

(X) = Xi if k is even and q
i

(X) = �Xi when k is odd, where 0  i  k. Using the basis r
t

(X) = Xt for

W if k is even and r
t

(X) = �Xt if k is odd for 0  t  k2, we obtain �
(i

1

,...,ik)

t

= 1 for t = i
1

+ · · ·+ i
k

and

�
(i

1

,...,ik)

t

= 0 else. Note that we have m = k2 + 1.

Example 2. We can also construct a k-linear map generator from k-Lin. For G
k,Lk

, we would have n = k+1,
and polynomials q

k

(X
0

, . . . , X
k�1

) = X
0

· · ·X
k�1

and q
i

(X
0

, . . . , X
k�1

) = �
Q

j 6=i

X
j

for 0  i  k � 1. As

a basis for W we can simply take {q
j

1

· · · q
jk | 0  j

1

 . . .  j
k

 k} yielding m =
�

n+k�1

k

�

.

Example 3. Like Freeman, we could also construct a k-linear map generator from the U
k

assumption.
Although the polynomials q

i

(X
1,1

, . . . , X
k,k+1

), 0  i  k, associated to G
k,Uk

have a much more complex

description than in the k-Lin case, the image size of the resulting map is the same, namely m =
�

n+k�1

k

�

,
because a basis of the image is also {q

j

1

· · · q
jk | 0  j

1

 . . .  j
k

 k}.

E�ciency. As in our setting any change of basis is e�ciently computable, the security of our construction
only depends on the vector space V (which in turn determinesW ), but not on the bases chosen. So we are free
to choose bases that improve e�ciency. We propose to follow the same approach as in Sec. 4.1: Select points
~x
0

, . . . , ~x
m�1

that form an interpolating set for W and represent f 2 W via the vector f(~x
0

), . . . , f(~x
m�1

).
This corresponds to choosing the basis of W consisting of polynomials r

0

, . . . , r
m�1

2W such that r
i

(~x
j

) = 1
for i = j and 0 otherwise. For the domain V , the choice is less significant and we might simply choose the
q
i

’s that the determinant polynomial gives us. Then we can compute ẽ([~f
1

], . . . , [ ~f
k

]) by an evaluate-multiply
approach using only m applications of e. Note that the evaluation step can also be done pretty e�ciently if
the q

i

’s have small coe�cients (which usually is the case). For details see [14].

4.3 Canceling and Projecting k-Linear Maps From Polynomial Spaces

By considering polynomial multiplication modulo a polynomial h, which has a root at the secret s, we are
able to construct a (k, (n = ` + 1, `)) symmetric multilinear map generator with a non-fixed pairing that
is both canceling and projecting. Our first construction relies on a k0 := k + 1-linear prime-order map e.
The one additional multiplication in the exponent is used to perform the reduction modulo h. Based on
this construction, we propose another (k, (r = 2`, n = ` + 1, `)) symmetric multilinear map generator that
requires only a k0 = k-linear prime-order map. The security of our constructions is based on variants of the
`-SCasc assumption. We need to extend `-SCasc by additional given group elements to allow for reduction
in the exponent, e.g., in the simplest case hints of the form [Xi mod h] are given. We refer to Sec. B.1 and
Sec. B.2 for details on the constructions and to Sec. C.2 for some e�ciency considerations. In Sec. B.3 we
show that our constructions are secure for ` � k0 in generic k0-linear groups. We note that, to the best of our
knowledge, this is the first construction of a projecting&canceling map that naturally generalizes to k > 2.
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5 Optimality and Impossibility Results

5.1 Optimality of Polynomial Multiplication

In this section we show that for any polynomially induced matrix assumption D
`+1,`

, the projecting multi-
linear map resulting from the polynomial viewpoint is optimal in terms of image size.

Theorem 2. Let k > 0, and let D
`+1,`

be a polynomially induced matrix assumption and let q
0

, . . . , q
`

be

the polynomials associated to D
`+1,`

as defined in Eq. (4) in Sec. 4.2 and let W ⇢
p

[ ~X] be the space of
polynomials spanned by {q

i

1

. . . q
ik | 0  i

j

 `}. Let (MG
k

, , G`+1, Gm

T

, ẽ) be the output of any other fixed
(k,D

`+1,`

) projecting multilinear map generator. Then, m := dimW  m.

k Gm
T

Gk GT

ẽ

�
⇡

(~s)
�k

⇡

(~s)
T

e

k ⇥ . . .⇥ k Gm
T ⇥ . . .⇥Gm

T

Gk ⇥ . . .⇥Gk GT ⇥ . . .⇥GT

(ẽ, . . . , ẽ)

✓�
⇡

(~s1)
�k

, . . . ,

�
⇡

(~sm)

�k
◆ ✓

⇡

(~s1)
T , . . . ,⇡

(~sm)

T

◆

(e, . . . , e)

Figure 1: Left: Projecting property. Right: The diagram repeated m times for an interpolating set ~s1, . . .~sm for W .

Proof Intuition. The first part of the proof shows that w.l.o.g. we can assume that ⇡(~s)

T

� ẽ is polynomial

multiplication for all ~s, that is, for any [~f
1

], . . . , [~f
k

] 2 G`+1, ⇡
T

(ẽ([~f
1

], . . . , [~f
k

])) = [(f
1

. . . f
k

)(~s)]
T

. This
follows from the commutative diagram on the left, i.e. the projecting property, together with the fact that,
because has codimension 1, the map ⇡(~s) must (up to scalar multiples) correspond to polynomial evaluation
at ~s. The intuition for the second part of the proof is given by Fig. 1. Here we show that if ~s

1

, . . .~s
m

is

an interpolating set for W , then the span of
n

�

⇡
(~s

1

)

T

(~x), . . . ,⇡(~sm)

T

(~x)
�

|~x 2 ẽ( k)
o

⇢ Gm

T

is of dimension m.

This dimension can be at most the dimension of the span of ẽ( k), showing m  m. A full proof is given
in [14].

5.2 Optimality of our Projecting Multilinear Map from the SCasc-Assumption

As a result of our general viewpoint, we can actually show that the projecting multilinear map based on
the SCasc-assumption is optimal among all polynomially induced matrix assumptions D

n,`

that are not
redundant. Non-redundancy rules out the case where some components of ~z are no help (even information-
theoretically) in distinguishing ~z 2 from ~z 2 (s). See [14] for a formal definition.

Theorem 3. Let n = `+ 1 and D
n,`

be a polynomially induced matrix distribution which is not redundant.
Let (MG

k

, , Gn, Gm

T

, ẽ) be the output of some projecting (k,D
n,`

) multilinear map generator with a fixed
multilinear map. Then, m � `k + 1.

Note that the projecting pairing based on the polynomial viewpoint of the `-SCasc-assumption reaches
this bound and is hence optimal.

Proof. We may identify Gn with some subspace V ⇢
p

[ ~X] of dimension n (see [14] for details). By Thm. 2
above, we may assume w.l.o.g. that ẽ is polynomial multiplication, as this only makes m smaller. Hence we
can also identify Gm

T

with some subspace W ⇢
p

[ ~X] of dimension m. Let > be any monomial ordering

on
p

[ ~X]. Let q
0

, . . . , q
`

be a basis of V in echelon form with respect to >. This implies that the leading
monomials satisfy LM(q

0

) > . . . > LM(q
`

). Now consider the elements
(the definition of r

i+1

di↵ers from that of r
i

in one single index being greater by one). All r
i

2 W by
construction and LM(r

0

) > LM(r
1

) > . . . > LM(r
`k

) by the properties of a monomial order. It follows that
the r

i

are linearly independent, showing m = dimW � `k + 1.
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qk
0

= r
0

=q
0

· · · q
0

q
0

r
1

=q
0

· · · q
1

q
0

...

r` =q
0

· · · q
0

q`

r`+1

=q
0

· · · q
0

q
1

q`

...

r
2` =q

0

· · · q
0

q`q`

. . .

. . .

r
(k�1)`+1

=q
0

q` · · · q`
...

r`k =q`q` · · · q`

6 Review of Previous Results in our Framework

Let us consider some previous results using the language introduced in Sec. 3.

Projecting Pairings. Implicitly, in [13], Groth and Sahai were using the fact that the bilinear symmetric
tensor product is a projecting map. Subsequently, Seo [21] constructed an improved symmetric projecting
pairing which he claimed to be optimal in terms of image size and operations.

Theorem 4. ([21]) Let G
2,U` be any (symmetric) projecting (2,U

`

) bilinear map generator with output
(MG

2

, , , Gm

T

, ẽ). Then (a) we have m � (` + 1)(` + 2)/2, and (b) the map ẽ cannot be evaluated with
less than (`+ 1)2 prime-order pairing operations.

Using the polynomial point of view, we prove in [14] that polynomial multiplication is optimal for any D
`

assumption, and thus cover Thm. 4 (a) as a special case when D
`

= U
`

. On the other hand, the polynomial
viewpoint immediately suggests a method to evaluate Seo’s pairing with m (less than (` + 1)2) prime-
order pairing operations, refuting Thm. 4 (b).4 Further, our results also answer in the a�rmative an open
question raised by Seo about the existence of more e�cient pairings outside of the model. Our construction
of a k-linear map based on k-SCasc beats this lower bound and is much more e�cient asymptotically in k.

Canceling and Projecting Pairings. In his original paper [10], Freeman gives several constructions of
bilinear pairings which are either projecting or canceling — but not both. Subsequently, Meiklejohn et al.
[20] give evidence that it might be hard to obtain both features simultaneously:

Theorem 5. ([20]) Any symmetric (2,U
`

) bilinear generator with a fixed pairing cannot be simultaneously
projecting and canceling, except with negligible probability (over the output of the generator).5

In [14] we show that this result can be extended to any (2,L
`

) and any (2,SC
2

) bilinear generator. It remains
an open question if the impossibility results extend to (2,SC

`

), for ` > 2.
With these impossibility results, it is not surprising that all canceling and projecting constructions are

for non-fixed pairings in the sense of Def. 6. Indeed, in [22] Cheon and Seo construct a pairing which is
both canceling and projecting but not fixed since, implicitly, the group depends on the hidden subgroup
. In our language, the pairing of Seo and Cheon is a (2, (r = `2, n = ` + 1, `)) pairing, i.e., ⇢ G`

2

of dimension n = ` + 1. Recently, Lewko and Meiklejohn [19] simplified this construction, obtaining a
(2, (r = 2`, n = `+1, `)) bilinear map generator. In [14] we also construct a (2, (r = 2`, n = `+1, `)) pairing
achieving both properties (and which generalizes to any (k, (r = 2`, n = ` + 1, `)) with ` � k) , but using
completely di↵erent techniques. A direct comparison of [22], [19] with our pairing is not straightforward,
since in fact they use dual vector spaces techniques and their pairing is not really symmetric.

7 A Direct Application: More E�cient Groth-Sahai Proofs

In this section, we will exemplarily illustrate how applications benefit from our more e�cient and general
constructions. Using our projecting pairing from Sec. 4.1, we can improve the performance of Groth-Sahai
proofs by almost halving the number of required prime-order pairing operations (cf. Tab. 1). Additionally, in

4In [14] we discuss in more detail Seo’s construction and the reason why Thm. 4 (b) is false.
5Their claim is that it is impossible to achieve both properties under what they call a “natural use” of the `-Lin assumption

although they are really using the uniform assumption.
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Sec. F.2 in the Appendix, we show how to implement a k-linear variant of the Boneh-Goh-Nissim encryption
scheme [3] using the projecting multilinear map generator G

k,SCk
.

Groth-Sahai proofs [13] are the most natural application of projecting bilinear maps. They admit various
instantiations in the prime-order setting. It follows easily from the original formulation of Groth and Sahai
that their proofs can be instantiated based on any D

n,`

assumption and any fixed projecting map. Details
are given in [9] but only for the projecting pairing corresponding to the symmetric bilinear tensor product.
The generalization to any projecting pairing is straightforward, additional details are given in Sec. F.1.

The important parameters for e�ciency of NIZK proofs are the size of the common reference string, the
proof size and the verification cost. The proof size (for a given equation) depends only on the size of the
matrix assumption, that is of n, `, so it is omitted in our comparison. The size of the common reference
string depends essentially on the size of the commitment key, which is n + Re (D

n,`

), where Re (D
n,`

) is
the representation size of the matrix assumption D

n,`

, which is 1 for `-SCasc, ` for `-Lin and (` + 1)` for
U
`

. Therefore, the `-SCasc instantiation is the most advantageous from the point of view of the size of the
common reference string (regardless of the pairing used), as pointed out in [9].

On the other hand, the choice of the pairing a↵ects only the cost of verification. Except for some
restricted type of linear equations, typically, verification involves several evaluations of ẽ. In our most
e�cient construction, for each pairing evaluation ẽ, we save, according to Tab. 1, at least 4 prime-order
pairing evaluations. For instance, this leads to a saving of 12 pairing evaluations for proving that a committed
value is a bit b 2 {0, 1}.
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A The Polynomial Viewpoint

In the construction of our projecting multilinear in Sec. 4.2, we claimed that the q
i

’s we obtained there were
linearly independent for all interesting matrix assumptions. We will make this more precise now, saying what
the uninteresting matrix assumptions are here: For this, let A 2 (

p

[ ~X])n⇥(n�1) be a matrix describing a
generically full rank, polynomially induced matrix assumption. This gives us subspaces (~s) ⇢ Gn with

(s) = [ImA(~s)]. Consider the case where for any fixed value of ~s, for ~w 2 n

p

uniform, the distribution of
one of the components, say the last one, of A(~s)~w is uniform and independent from the other components.
This last component then has no bearing whatsoever on the hardness of distinguishing ([A(~s)], [A(~s)~w])
from ([A(~s)], [~u]) for [~u] uniform and we might just as well drop it. Slightly more generally, consider the
following definition:

Definition 7. Let A 2 (
p

[ ~X])n⇥(n�1) be a matrix describing a (generically) full rank, polynomially induced
matrix distribution as above. We call A or its associated matrix distribution redundant, if there exists a
matrix B 2 n⇥n

p

, independent from ~s, such that for all fixed ~s the last component of B ·A(~s)~w is uniform
and independent from the other components over a uniformly random choice of ~w.

Even if the q
i

’s are not linearly independent, we can still view elements as polynomials as follows: as in
Sec. 4.2, consider the determinant polynomial d = det(A( ~X)||~F ) as a polynomial in ~X, ~F and let

d =
X

q
i

( ~X) · F
i

be its Laplace expansion. So the q
i

’s are (up to sign) the determinants of the (n � 1) ⇥ (n � 1)-minors of
A. Let V ⇢

p

[ ~X] be their span. Even if the q
i

’s may be linearly dependent, we can still map vectors to

polynomials as we did before. For any [~f ] 2 Gn, we can consider the polynomial
P

f
i

q
i

. This means we
have a surjective map

� : Gn ⇠= ! V,�([~f ]) =
X

i

f
i

q
i

( ~X) (6)

realizing the polynomial viewpoint.
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Theorem 6. Let A 2 (
p

[ ~X])n⇥(n�1) be a matrix describing a generically full rank, polynomially induced
matrix distribution, which is not redundant. Then � is bijective.

Proof. Consider the case where � is not injective. Then there exist a non-zero vector [~v] 2 ker�. By
definition, �([~v])(~s) =

P

i

q
i

(~s)v
i

= 0 = d(~s,~v) for all ~s. So actually, [~v] 2 (~s) = [ImA(~s)] for all ~s. Let B
be some invertible matrix such that B~v is the last unit vector. Then (0, . . . , 0, 1) 2 ImBA(~s), hence the last
component from a random element from this image is uniform and independent from the other components,
contradicting that A is not redundant.

We remark that, by setting ẽ([~f
1

], . . . , [ ~f
k

]) := [�(~f
1

) · · ·�( ~f
k

)]
T

, we can define a projecting multilinear
map either way. If � is not injective, the e↵ect of � is exactly to drop any redundant components. The
only place where we need that � is injective is for the lower bounds in our optimality proof in Sec. 5.2. Of
course, with redundant matrix assumptions, one can beat this lower bound as follows: Take a projecting
multilinear map for a D

n,n�1

matrix assumption with image size m and artificially increase n by redundant
components (this corresponds to adding an identity matrix block with A becoming block diagonal) and have
the multilinear map ignore them (which is what our map does).

B Projecting & Canceling Multilinear Maps from an Extended SCasc
Assumption

B.1 First Construction Based on a (k + 1)-linear Prime-Order Map

In order to obtain a multilinear map that is both projecting and canceling we modify our construction
based on SCasc from Sec. 4.1. On a high level, our construction works as follows. We will again identify
vectors from = Gn with polynomials

p

[X] (in the exponent) with polynomial addition as the group
operation. But now, our k-linear map will correspond to polynomial multiplication modulo some polynomial
h(X) (where h(X) will depend on s). To retain the projecting property, we ensure that h(X) has a root at s,
so X � s divides h(X). The orthogonal complement to (s) for the canceling property will then correspond

to the span of h(X)

X�s

, using the fact that (X � s) · h(X)

X�s

mod h = 0
We want to point out that, since in this construction modular reduction consumes one multiplication in

the exponent, to emulate a canceling k-linear map ẽ, our first construction will require a k0 = k + 1-linear
basic prime-order map e. This will be improved in the following in Sec. B.2.

Let 2  k < k0 < n.6 We start with a basic symmetric k0-linear group generator (k0, G,G
T

, e, p,P,P
T

) 
G
k

0 for groups of prime order p. The polynomial by which we reduce is chosen as follows: Fix any degree n
polynomial h0(X), which for e�ciency we select as h0(X) := Xn and set h(X) = h0(X)�h0(s) = Xn�sn for

s
R 

p

. This choice ensures that X � s divides h. We set := Gn and
T

:= Gn

T

and note that, with the
notation from Sec. 4.1, we can identify (using coe�cient representation for polynomials everywhere) these
two sets with the ring

p

[X]/(h), whose elements are represented by polynomials f 2
p

[X] of degree at
most n � 1. We again use polynomial addition as group operation and define our composite-order k-linear
map ẽ : ⇥ · · ·⇥ !

T

by polynomial multiplication modulo the polynomial h:

ẽ([~f
1

], . . . , [~f
k

]) := [f
1

· · · f
k

mod h]
T

This requires reducing a polynomial of degree k(n�1) modulo h. To perform this, the crucial observation
is that the map g 7! g mod h sending a polynomial g =

P

g
i

Xi of degree at most k(n�1) to a polynomial of
degree at most n� 1 is a linear map for h fixed. Viewed as a matrix, its coe�cients are given by h

i,j

where

h
i

(X) := Xi mod h =
P

n�1

j=0

h
i,j

Xj for 0  i  k(n � 1). In other words, g mod h =
P

j

P

k(n�1)

i=0

g
i

h
i,j

Xj .

6Our construction works for arbitrary n > k0. A larger n leads to a less e�cient construction, but also permits a security
proof based on a weaker assumption.
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Combining this with the definition of polynomial multiplication, we thus may compute ẽ([f
1

], . . . , [f
k

]) as

✓

k(n�1)

X

i=0

X

j

1

+...+jk=i

[h
i,0

· f
1,j

1

· · · f
k,jk

]
T

, . . . ,

k(n�1)

X

i=0

X

j

1

+...+jk=i

[h
i,n�1

· f
1,j

1

· · · f
k,jk

]
T

◆

(7)

where for our choice of h0(X) = Xn, h
i,j

= 0 if j 6= i mod n and h
j+`n,j

= s`. The k-linear pairing ẽ is
e�ciently7 computable with the basic k0 � k+1-linear map e, provided we know the [h

i,j

] that appear here.
For this reason, we need to publish the [h

i,j

] as additional “hints”. For our choice of h0(X), this means
publishing the  = k � 1 hints [sn], [s2n], . . . [sn(k�1)]. It is easy to see that, for other choices of (publicly
known) h0(X), all [h

i,j

] can be e�ciently computed from [h0(s)], . . . , [h0(s)k�1] as linear functions and vice
versa. Of course, publishing these hints changes the security assumption we have to make. We will show in
Thm. 7 that our construction is secure in the generic k0-linear group model.

For the smallest meaningful choice n = 4, k = 2, k0 = 3, our construction translates to

ẽ([~f ], [~f 0]) =
⇣

[f
0

f 0
0

+ s4f
1

f 0
3

+ s4f
2

f 0
2

+ s4f
3

f 0
1

]
T

, [f
0

f 0
1

+ f
1

f 0
0

+ s4f
2

f 0
3

+ s4f
3

f 0
2

]
T

, (8)

[f
0

f 0
2

+ f
1

f 0
1

+ f
2

f 0
0

+ s4f
3

f 0
3

]
T

, [f
0

f 0
3

+ f
1

f 0
2

+ f
2

f 0
1

+ f
3

f 0
0

]
T

⌘

(9)

which can be computed with a basic 3-linear map e from [~f ], [~f 0], [s4] using 16 evaluations of e.

Subgroups. Again, consider the subgroup (s) ⇢ formed by all elements [~f ] 2 such that f(s) = 0.
Note that, since X � s divides h, reducing modulo h does not change whether a polynomial has a root at s.
As seen before, deciding membership in (s) is equivalent to deciding whether an element lies in the image
of an n⇥ (n� 1)-matrix A(s) from Eq. (2). Since the polynomials [h

i

] provide additional information about
s, subgroup indistinguishability does not correspond to the (n � 1)-SCasc assumption anymore, but to the
new extended ( = k � 1, n� 1)-SCasc assumption relative to G

k

0 defined below. We will discuss its generic
security in Sec. B.3, together with our next construction.

Definition 8 (Extended SCasc assumption). Let k0, n,,2 , k0 < n and consider (k0, G,G
T

, e, p,P,P
T

) 
G
k

0 for a k0-linear map generator G
k

0. Set h(X) := Xn� sn for s
R 

p

. Let A 2 n⇥n�1

p

be of the form (2)
with �s in the main diagonal and ~w 2 n�1

p

, ~u 2 n

p

. We say that the extended (, n�1)-SCasc assumption
holds relative to G

k

0 if for all PPT algorithms A we have that
�

�Pr
⇥

A([sn], [s2n], . . . , [sn], [A], [A~w]) = 1
⇤

�Pr
⇥

A([sn], [s2n] . . . , [sn], [A], [~u])) = 1
⇤

�

�

is negligible, where the probability is taken over the random choices of s, h0, ~w, ~u.

Projecting the elements of (s) to 0 and sampling from the subgroups works as in Sec. 4.1. This uses
that (f mod h)(s) = f(s) if X�s divides h. Additionally, we have = (s)� (s,?), where (s,?) := {[f ] 2

|9↵ 2
p

[X] : f(X) = ↵ h

X�s

}. Note that h(X) has no double root at s with overwhelming probability, so

this sum is a direct sum. It holds that ẽ([g
1

], . . . , [g
n

]) = 0 T if [g
i

] 2 (s) and [g
j

] 2 (s,?) for any i 6= j.
Altogether, we have that ẽ : ⇥ · · · ⇥ !

T

is a symmetric projecting and canceling k-linear map,
where the group operations and ẽ can be e�ciently computed. Note that the pairing now depends on s,
hence our construction is not a fixed pairing as defined in Def. 6.We discuss the e�ciency of our construction
in Appendix C.

Choosing the polynomial h0(X) In our construction, we made the choice of h0(X) = Xn for reasons
of e�ciency. But our construction works for any fixed choice of h0(X). In fact, we may even sample a
random h0(X) according to any distribution. If we do the latter, we may also keep h0(X) secret along with s
(which leads to a weaker security assumption). In any case, we may w.l.o.g. always assume that the constant
coe�cient of h0(X) is 0, as this does not a↵ect h.

7Note that doing it this way means computing exactly nk basic pairings and is thus only e�cient if n and k are constant.
However, we stress that our construction becomes more e�cient if we assume a “graded” k-linear map where we can compute
intermediate results, i.e. products of less than k polynomials.
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For our construction, if h0(X) is secret, we still need to ensure that all [h
i,j

] are known, so we need to
publish more hints (namely a subset of the [h

i,j

] from which all others can be computed) rather than only
[h0(s)], . . . , [h0(s)k�1], hurting e�ciency even more. Our security proof in the generic group model supports
any choice of h0(X) (random or not, public or not), provided h0(X) is sampled independently from s.

One issue that may appear is that for applications one might want h(X) to split completely as h(X) =
(X�s

1

) · · · (X�s
n

), as this a↵ects the behaviour of orthogonality: In this case, one can have n non-zero vec-
tors [f

1

], . . . , [f
n

] that are pairwise ẽ-orthogonal by setting f
i

= h

X�si
. This means ẽ([f

i

], [f
j

], [g
3

], . . . , [g
k�1

]) =
[0]

T

for all i 6= j and arbitrary g
3

, . . . , g
k�1

. For our choice of h0(X) = Xn, we have that h(X) =
(X � s)(X � ⇣s) · · · (X � ⇣n�1s) splits completely i↵ there exists a primitive nth root of unity ⇣ 2

p

,
i.e. p mod n = 1.

One might also directly sample h(X) = (X�s
1

) · · · (X�s
n

) for uniform choices of s
i

. While not covered
by our restriction that h be sampled as h(X) = h0(X)�h0(s) with (h0(X), s) independent, our security proof
extends to that case, as discussed in Thm. 8 in Sec. B.4.

B.2 Implementation Using a k-linear Prime-Order Map

For our previous construction of a projecting and canceling k-linear map with a non-fixed pairing, a basic
k0 = k+ 1-linear prime-order map is required. We will now give a modification that only requires a k-linear
prime order map. The tradeo↵ will be that our construction gives a (k = k0, (r, n, ` = n � 1)) multilinear
map generator as in Def. 5 with r > n, meaning that our group rather than ẽ will depend on s and is
embedded in some larger space ⇢ Gr, where ẽ is defined on Gr in a way independent from s.

Intuitively, one additional multiplication in the exponent is needed in order to perform the reduction, i.e.,
multiply products f

1,j

1

. . . f
k,jk

of coe�cients of f
1

, . . . , f
k

with coe�cients h
i,j

for the reduction. If for one
factor, say a

1,j

1

, we were given [a
1,j

1

h
i,j

] rather than [a
1,j

1

], this problem would not occur. To put us in this
situation, we may consider first a simple extended version of : Let

ext

⇢ Gr, where r = (+ 1) · n = kn
and  = k � 1 is the number of hints we needed in the preceding construction, be defined as 8

ext

= {([f ], [snf ], [s2nf ], . . . , [snf ]) | [f ] 2 }

Similarly consider
ext

(s) ⇢
ext

, defined as
ext

(s)

= {[f ], [fsn], . . . 2
ext

| f(s) = 0}. This just
means that whoever initially computed [f ] in an application, computes and sends all [f · sn·i] alongside
with it. We publish [A(s)], [snA(s)], . . . , snA(s)] to allow e�cient sampling from (s). This contains
[sn], [s2n], . . . , [sn], allowing e�cient sampling from . Testing membership in is possible knowing [sn]
using only a bilinear pairing. We still have dim

ext

= dim = n, but we redundantly use r = (+1)n base
group elements to represent elements from

ext

, i.e. this yields a (k, (r = (+1)n, n, ` = n� 1)) multilinear
map generator as in Def. 5 with r > n. Our e�ciently computable symmetric projecting and canceling
k-linear map is

ẽ
ext

:
ext

k !
T

⇠= Gn, ẽ
ext

(([f
1

], . . . , [snf
1

]), . . . , ([f
k

], . . . , [snf
k

])) = [f
1

· · · f
k

mod h]
T

or, more e�ciently, a k-linear map
ext

⇥ k�1 !
T

.
In this construction, for every [~f ] 2 , we are provided with [sinf

j

] for any 0  i  , 0  j < n.
But in fact, subsets of those are already su�cient to perform the multiplication and modular reduction.
Restricting to such a subset can only improve security and reduces r, so we consider as our final proposal
another extended version of , where we reduce r to r = 2n � 2. Consider

ext

⇢ G2n�2 and similarly
(s)

ext

⇢
ext

, defined as

ext

=
n

([f ], [snf
2

], [snf
3

], . . . , [snf
n�1

])
�

�

�

[f ] 2 , f =
n�1

X

i=0

f
i

Xi

o

8for general public h0(X), this is to be changed to [f ], [h0(s)f ], . . . [h0(s)f ] and for secret h0(X) to a (subset of)
[f ], [h

0,0f ], . . . , [hn(k�1),n�1

f ], increasing .
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To see that this works out, write the product g = f
1

· · · f
k

of polynomials f
i

=
P

f
i,j

Xj as g =
P

j

g
j

Xj .

To compute g mod (Xn � sn), we need to multiply each g
j

by sin, where i = d j
n

e. Each g
j

is a sum of
terms f

1,j

1

· · · f
k,jk

with
P

`

j
`

= j, where one can easily verify that for k < n, in each such summand, we
must have at least d j

n

e factors with j
`

� 2. Consequently, we can compute [g mod h] by picking up enough
sn-factors for each summand if we are given only [snf

i,j

] for j � 2. This yields an e�ciently computable
k-linear map

ẽ
ext

:
ext

k !
T

⇠= Gn, ẽ
ext

(([f
1

], . . . , [snf
1,n�1

]), . . . , ([f
k

], . . . , [snf
k,n�1

])) = [f
1

· · · f
k

mod h]
T

which is still both projecting and canceling. To allow sampling and membership testing we publish [A(s)]
and [snA(s)]. Given the concrete form of A(s), this means publishing [s], [sn], [sn+1]. Needing only a k0 = k-
linear basic map allows us to perform our construction based on (a modified version of) k-SCasc (rather
than k + 1-SCasc). The minimal interesting example with k = 2, n = 3 then reads as follows:

ẽ
ext

(([f
0

], [f
1

], [f
2

], [s3f
2

]), ([f 0
0

], [f 0
1

], [f 0
2

], [s3f 0
2

])) = (10)
⇣

[f
0

f 0
0

+ f
1

(s3f 0
2

) + (s3f
2

)f 0
1

]
T

, [f
0

f 0
1

+ f
1

f 0
0

+ (s3f
2

)f 0
2

]
T

, [f
2

f 0
0

+ f
1

f 0
1

+ f
0

f 0
2

]
T

⌘

(11)

This can be computed with only a 2-linear map using 9 basic pairing operations. In general, this construction
requires nk applications of e, both for

ext

and
ext

.
For

ext

our security assumption changes into asking that

(MG
k

, [A(s)], [snA(s)], . . . , [snA(s)], [A(s)~w], . . . , [snA(s)~w]) and

(MG
k

, [A(s)], [snA(s)], . . . , [snA(s)], [~u], . . . , [sn~u])

be computationally indistinguishable for MG
k

 G
k

, s, ~w, ~u uniform. Note that the [sinA(s)] given here are
required to sample from

ext

and [sn] is contained in [snA(s)], which allows to test membership in
ext

.
The security assumption for

ext

is analogous and reads that

(MG
k

, [s], [sn], [sn+1], [A(s)~w], [(snA(s)~w)
2

], . . . , [(snA(s)~w)
n

]) and

(MG
k

, [s], [sn], [sn+1], [~u], [snu
2

], . . . , [snu
n

])

be computationally indistinguishable.

B.3 Proof of Generic Security of our Constructions

In this section, we show that our constructions from Sec. B.1 and Sec. B.2 are secure in a generic multilinear
group model. Note that the following theorem also covers all our constructions where the distribution
of h0(X) might contain no randomness at all and the distinguisher A may only get a subset of the data
{h0(X), [h0(s)], . . .} or something e�ciently computable from that (like [h

i,j

]), making it only harder for A.
In particular, setting h0(X) := Xn, it covers the Extended SCasc assumption from Def. 8.

Theorem 7. Let n > k and  � 0 arbitrary but fixed. Let A(X) be the matrix associated to the n� 1-SCasc
assumption. Then for any algorithm A in the generic k-linear group model, making at most poly(log p)
many oracle queries, its distinguishing advantage

⌘ =
�

�Pr[A(p, h0(X), [h0(s)], . . . , [h0(s)], [A(s)], [A(s)~w], [h0(s)A(s)~w], . . . , [h0(s)A(s)~w]) = 1]�
Pr[A(p, h0(X), [h0(s)], . . . , [h0(s)], [A(s)], [~u], . . . , [h0(s)~u], . . . , [h0(s)~u) = 1]

�

�

is negligible, where h0(X)  
$

p

[X] of degree n is sampled according to any distribution (but independent
from s, ~w, ~u), s 

p

, ~w  n�1

p

, ~u n

p

uniform.
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Proof. W.l.o.g. we may assume k = n� 1. We may further assume that h0(X) is a fixed, public polynomial,
containing no randomness: Clearly, the distinguishing advantage ⌘ of A is the expected value (over the
choice of h0(X)) of the conditional advantage E[⌘|h0]. Our argument will show that A’s advantage for h0(X)
fixed is bounded by some negligible function, where the bound does not depend on h0(X). This e↵ectively
means that we consider adversaries that may even depend non-uniformly on h0(X).

Let us first consider the case where the distributions, which we want to show to be indistinguishable, are
given by

(p, [h0(s)], [s], [A(s)~w]) respectively

(p, [h0(s)], [s], [~u])

The general case will follow as a by-product of our proof, as we will (almost) pretend that multiplying by
[h0(s)] is for free and does not consume a pairing, so A can compute the missing data itself. h0(X) is a public
constant and the entries of [A(s)] are either [0], [1] (which we assume to be given as part of the group’s
description / oracle) or [s].

Following [9], this implies that the assumption we are about to prove is polynomial-induced (i.e. the inputs
to the adversary are obtained by evaluating bounded-degree polynomials in uniformly chosen unknowns).
Consider the ideals

I
subgroup

=
⇣

H � h0(S), S �X, ~Z �A(S) ~W
⌘

2
p

[H,X, S, ~W, ~Z]

I
uniform

=
⇣

H � h0(S), S �X
⌘

2
p

[H,X, S, ~W, ~Z]

Here, ~Z�A(S) ~W is shorthand for the n polynomial relations of a matrix-vector product, where A(S) is the
n⇥n� 1 matrix of the SCasc assumption with polynomials as entries, so A

i,i

= �S,A
i,i+1

= 1 and A
i,j

= 0
for j /2 {i, i+ 1}.

TheH-variable corresponds to the hint that make this di↵erent from the non-extended SCasc assumption,
the X-variable corresponds to the known entries of the matrix A, the Z-variables to either [A~w] or [~u] and
~W,S are the uniformly chosen unknowns. ~W,S are only accessible to the adversary via the relations from
the ideals. Note that these two ideals encode all relationships between these data.

Consider the ideals J
subgroup

= I
subgroup

\
p

[H,X, ~Z], J
uniform

= I
uniform

\
p

[H,X, ~Z], which encode the

relations in those variables (H,X, ~Z) that the adversary sees. By [9, Theorem 3] (which was only proven
for matrix assumptions, but the statement and proof extend directly to our setup), it su�ces to show that
J
subgroup,n�1

= J
uniform,n�1

, the subscripts denoting restriction to total degree  n� 1.
As mentioned briefly above we will strengthen the adversary and allow it to compute polynomials

p(H, ~Z,X) of degree totaling at most k = n � 1 in (~Z,X), i.e. we lift any degree restrictions on H. This
means showing J

subgroup,(

~

Z,X)-degree n�1

= J
uniform,(

~

Z,X)-degree n�1

.

Translated back from the language of ideals to generic algorithms, this corresponds to allowing the
adversary to multiply by h0(S) for free (provided the degrees of all polynomials appearing remain bounded),
thereby allowing it to compute the missing data. As a side remark, the bound  (which gives a restriction
on how A is allowed to multiply by h0(S)) is required, because otherwise equality of those ideals, restricted
by degrees, no longer is equivalent to generic security (and hence the translation back from the language
of ideals to generic algorithms fails). Working through [9, Theorem 3] gives a bound on the distinguishing
advantage via the Schwarz-Zippel lemma, which depends on the maximal degree of any polynomial that can
appear. To ensure this bound is negligible, we need  to be constant (and the bound is uniform in h0(X)).
Still, we can forget about  in our proof here from now on.

To compute J
subgroup

and J
uniform

from I
subgroup

and I
uniform

, we need to eliminate the S and ~W -variables.

Elimination of S means just using X � S to plug in X for S. Elimination of the ~W -variables can be done
as in the security proof of the non-extended SCasc (the additional hint H does not a↵ect that part of the
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proof), so we have

J
subgroup

=
⇣

H � h0(X), d(Z,X)
⌘

J
uniform

=
⇣

H � h0(X)
⌘

where d(Z,X) = ±Z
0

± Z
1

X ± . . . ± Z
n�1

Xn�1 is the determinant polynomial of SCasc for some specific
choice of signs. It was shown in [9] to be absolutely irreducible.

Of course, J
uniform

⇢ J
subgroup

. So, assume towards a contradiction that there exists some adversarially

computable polynomial p(H, ~Z,X) 2 J
subgroup

\ J
uniform

of total degree in ~Z,X at most k = n � 1. By

definition this implies that there exist polynomials a, b 2
p

[H, ~Z,X] such that

p(H, ~Z,X) = a(H, ~Z,X) · d(~Z,X) + b(H, ~Z,X) · (H � h0(X)) (12)

The existence of b in the above equation (for p, a fixed) is equivalent to just plugging in h0(X) for any
occurrence of H, so we have

p0(~Z,X) := p(h0(X), ~Z,X) = a(h0(X), ~Z,X) · d(~Z,X) = a0(~Z,X) · d(~Z,X) (13)

where a0(~Z,X) := a(h0(X), ~Z,X) 6= 0 2
p

[~Z,X], as otherwise p 2 J
uniform

.

Let us give some intuition what we need to show here. The theorem from [9] essentially says that the
only thing the adversary can do if the determinant d is irreducible is to compute this determinant or a
multiple thereof. This remains true in our case. For the usual SCasc assumption this was easily shown to
be impossible, because the determinant had a higher degree than anything the adversary could compute. In
our case, the situation changes, because the adversary has the polynomial H, which corresponds to Sn, at
its disposal and Sn has the same degree as d. It is actually still easy to show that the adversary can not
compute d itself. The real problem is to show that this also holds for multiples a(h0(X), ~Z,X) · d(~Z,X).

To prove our theorem, we will show that indeed a0 = 0 is the only solution of Eq. (13), even when
extending the base field to an algebraic closure

p

.
Let us make another assumption simplifying the proof: Changing h0(X) into h0(X) + c for any constant
c 2

p

does not a↵ect the statement of the theorem. By using such a change, we may assume that h0(X)
is square-free. Note here that the condition that h0(X) + c be square-free is equivalent to requiring the
discriminant of h0(X)+ c 6= 0. The discriminant of h0(X)+ c is a polynomial in c, which equals the resultant
Res

X

(dh
0

dX

, h0(X)+c) up to some normalization constant. Computing the determinant of the Sylvester matrix
for this resultant results in a leading term of nncn�1, so the discriminant does not vanish identically and we
can find a value c (in the base field, even, if n � p) such that h0(X) + c is square-free.

Let a
0

, . . . , a
n�1

be the n distinct roots of h0(X) in
p

.
After performing a linear, invertible change of variables (which does not a↵ect anything at hand here),

we may consider the variables ~Z 0 instead of ~Z, defined by Z 0
i

= d(~Z, a
i

) =
P

j

±Z
j

·aj
i

and express everything

in terms of ~Z 0, redefining p, p0, a, a0, d accordingly as if we had made h0 square-free and expressed everything
in terms of ~Z 0 from the beginning. This will simplify things later, as now d(~Z 0, a

i

) = Z 0
i

. Note here that the

matrix of the linear map relating ~Z 0 and ~Z is a Vandermonde matrix and hence invertible.

Our proof will proceed in two steps. In the first step, we will show that if h0 divides p0 (which corresponds
to p(H, ~Z,X) being a multiple of H), then we can divide everything by H to obtain another non-trivial
solution of 13 with smaller degrees. In the second step, we will show that it is always the case the h0 divides
p0. This leads to a contradiction.

For the first step, let us consider the case where h0 divides p0 and consequently h0 divides a0 · d. Since

p

[H, ~Z 0, X] is factorial, d(~Z 0, X) is absolutely irreducible and h0 can’t divide d for degree reasons, this
means that h0 must divide a0. In this case, we may divide both p0 and a0 by h0 to obtain another solution
(ep0,ea0) of (13) with a0 = ea0 · h0, p0 = ep0 · h0. Note that we can uniquely recover p from p0 due to the degree
restriction: For any polynomial f 2

p

[~Z 0, X], let C(f) 2
p

[H, ~Z 0, X] be the unique polynomial of degree
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at most n� 1 in X, such that C(f)(h0(X), ~Z 0, X) = f(~Z 0, X). By uniqueness, we have H ·C(ep0) = C(h0 · ep0).
Consequently, p = C(p0) = C(h0 · ep0) = H · C(ep0). This means that H divides p and we may divide p by H
to obtain ep, such that (ep, C(ea0)) is another solution of (12). Note that by construction ep still satisfies the
degree restrictions and ea0 6= 0. After performing this transformation from p to ep finitely many times, we are
in the case where h0 does not divide p0, so we may w.l.o.g. assume from now on that h0 does not divide p0.

We now show in the second step that h0 divides p0, leading to a contradiction. For this, we take
Equation (13) modulo h0

p00(~Z 0, X) := p0(~Z 0, X) mod h0 = p(0, ~Z 0, X) = (a0(~Z 0, X) · d(~Z 0, X)) mod h0

The degree restrictions on p imply that p00 is now a polynomial of total degree at most n� 1.
Let us plug in a

i

for X in both sides of this equation. Since a
i

was defined as a root of h0 we have
(f mod h0)(a

i

) = f(a
i

) and by definition of the Z 0
i

’s in terms of Z
i

, we obtain:

p00(~Z 0, a
i

) = a0(~Z 0, a
i

) · d(~Z 0, a
i

) = a0(~Z 0, a
i

) · Z 0
i

, for all 0  i  n� 1 (14)

Now consider the coe�cient c
~↵

2
p

[X] of ~Z 0~↵ in p00(~Z 0, X). Since p00(~Z 0, a
i

) is divisible by Z 0
i

, we
must have c

~↵

(a
i

) = 0 whenever ↵
i

= 0. If |↵|
1

= �, there are at least n � � indices i, such that ↵
i

= 0.
Consequently, c

~↵

has at least n� � distinct roots. But our degree restriction on p00 means that c
~↵

can have
degree at most n � 1 � �. Hence all c

~↵

are 0 and p00 = 0. This in turn means that h0 divides p0, which we
ruled out above, giving us a contradiction. This shows that such a p can’t exist, finally finishing the proof.

B.4 Generic Security For h Composed of Random Linear Factors

In Sec. B.1, we discussed that it might be desirable to choose h as h(X) = (X � s
1

) · · · (X � s
n

), where
s
1

corresponds to s. This is not of the form h(X) = h0(X) � h0(s
1

) where h0(X) is sampled independently
from s = s

1

and hence our proof above does not directly apply to this case. However, the case h(X) =
(X � s

1

) · · · (X � s
n

) is essentially equivalent to setting h0(X) uniform, conditioned on the event that
h0(X) � h0(s

1

) splits completely over the base field. Intuitively, we expect that conditioning on the event
that h0(X)�h0(s

1

) splits completely can not change generic security. The reason is that generic security can
be expressed as an equality of ideals up to some degree as in [9] or by the Uber-Assumption Theorem from
[1, 5]. In any case, it boils down to a problem of linear algebra, which does not depend on whether we are
in

p

or in the algebraic closure
p

and in the latter case, every polynomial splits completely. Rather than
making this precise, we will show the stronger statement that security of choosing h = (X � s

1

) · · · (X � s
n

)
is implied by security of choosing h = h0(X)� h0(s

1

), h0 uniform in the standard model.

Theorem 8. Let n > k and let G
k

be a symmetric prime-order k-linear group generator. Consider a PPT
adversary A with advantage

⌘ =
�

�Pr
⇥

A(MG
k

, [h
0,0

], . . . , [h
k(n�1),n�1

], [A], [A~w]) = 1
⇤

� (15)

Pr
⇥

A(MG
k

, [h
0,0

], . . . , [h
k(n�1),n�1

], [A], [~u]) = 1
⇤

�

� (16)

where MG
k

:= (k,G,G
T

, e, p,P,P
T

)  G
k

(1�), s
1

, . . . , s
n

2
p

, ~u 2 n

p

, ~w 2 n�1

p

uniform, h(X) =

(X � s
1

) · · · (X � s
n

) and h
i,j

is the jth coe�cient of Xi mod h. Assume ⌘ > 1

poly(�)

.

Then there exists another PPT adversary A0 with

⌘0 =
�

�Pr
⇥

A0(MG
k

, [h
0,0

], . . . , [h
k(n�1),n�1

], [A], [A~w]) = 1
⇤

�
Pr
⇥

A0(MG
k

, [h
0,0

], . . . , [h
k(n�1),n�1

], [A], [~u]) = 1
⇤

�

� > negl(�)

where MG
k

:= (k,G,G
T

, e, p,P,P
T

)  G
k

(1�), s
1

2
p

, ~u 2 n

p

, ~w 2 n�1

p

uniform, h0(X)  
p

[X] is
a uniformly chosen polynomial of degree n with leading coe�cient 1 and constant coe�cient 0, h(X) =
h0(X)� h0(s

1

) and h
i,j

is the jth coe�cient of Xi mod h.
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Proof. With overwhelming probability, the s
i

in the first variant are pairwise di↵erent and in the second
variant h = h0(X) � h0(s

1

) is square-free. So it is su�cient to consider the (statistically close) variants,
where we sample (s

1

, . . . , s
n

) uniform, conditioned on being pairwise di↵erent, respectively (h0, s
1

) uniform,
conditioned on h0(X)� h0(s

1

) square-free. For s
1

, . . . , s
n

pairwise di↵erent, the map

(s
1

, . . . , s
n

) 7! (s
1

, h0 = (X � s
1

) · · · (X � s
n

)� s
1

· · · s
n

) (17)

is exactly (n � 1)! to 1. As a consequence, if we sample (h0(X), s
1

), conditioned on the event Split that
h0(X)� h0(s

1

) completely splits over
p

, we obtain exactly the same distribution on h as if we had sampled
h as h(X) = (X � s

1

) · · · (X � s
n

). Further, we have Pr[Split] = 1

(n�1)!

. By a standard argument, there

exists at least an ⌘

2

-fraction of “good” choices of h in the first variant, where the advantage of A, conditioned
on this h, is at least ⌘

2

.
As a consequence, simply running A on the second variant will give us a conditional advantage of at

least ⌘

2

for at least a ⌘

2·(n�1)!

- fraction of “good” choices of h. For other values of h, we can simply guess
to obtain an advantage of 0. Unfortunately, we cannot easily detect whether we have a good h. However,
we can define A0 as follows: First run a statistical test, which outputs 1 with overwhelming probability if
the conditional advantage of A for the given h is at least ⌘

4

and outputs 0 with overwhelming probability, if
the conditional advantage of A is at most ⌘

8

. If this test outputs 1, A0 can simply use A to output its final
answer, otherwise A0 just guesses. Note that since ⌘ > 1

poly(�)

, such a statistical test can be performed in

probabilistic polynomial time, using the fact that A0 can create instances for given MG
k

, [h
i,j

], [A] itself by
sampling its own ~w’s respectively ~u’s. Also, note that this reduction is not black-box, because the code of
A0 depends on the advantage ⌘.

C E�ciency Considerations for our Constructions

In some instantiations of multilinear settings, computing the (basic) mapping e is significantly more expen-
sive than computing the group operation or even an exponentiation. For instance, this is the case for all
instantiations of bilinear maps over elliptic curves we currently know. In such settings it might be worthwhile
to strive for tradeo↵s between applications of e and less expensive operations. In Sec. C.1 we consider such
tradeo↵s for our projecting map constructions while Sec. C.2 deals with the canceling & projecting maps.

C.1 E�ciency of the Projecting Constructions

For our constructions of projecting maps in Sec. 4.1 and Sec. 4.2, computing ẽ corresponds to usual mul-
tiplication of polynomials. Hence, we may apply methods for fast polynomial multiplication to reduce the
number of applications of e. Concretely, we may follow an evaluate-multiply-interpolate approach. Consider
the case that we are given the polynomials f

1

, . . . , f
k

all from a subspace V of dimension n (e.g., univariate
polynomials of degree at most n � 1), and we know that their product lies in a subspace W of dimension
m (e.g., k = 2 and W contains all univariate polynomials of degree at most 2n � 2, so m = 2n � 1). Then
we can first evaluate all f

j

at m publicly known points x
0

, . . . , x
m�1

that form an interpolating set for
W , then multiply f

1

(x
i

) · · · f
k

(x
i

) for any i to obtain (f
1

· · · f
k

)(x
i

), from which our desired result f
1

· · · f
k

can be interpolated. One thing to note here is that the map sending a polynomial f 2 W to the vector
f(x

0

), . . . , f(x
m�1

) is a bijective linear map, whose coe�cients depend only on the publicly known x
i

, so
both evaluation and interpolation can be computed without any pairings. As a consequence, using this
approach for computing ẽ, we can reduce the number applications of e to m at the cost of having to apply
some linear maps, which correspond to multi-exponentiations in G.

Intermediate tradeo↵s are possible here. For instance, it is easy to see that the Karatsuba algorithm [16]
can immediately be applied to our bilinear map based on 2-SCasc. This would reduce the number of basic
pairing applications from a naive 9 to 6 (rather than all the way to 5) at the cost of only 9 additional group
operations (e.g., see [26]). Note that there are also generalizations of Karatsuba to the multivariate case,
e.g., [27].
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Since interpolation is a publicly known linear map, this just corresponds to choosing a basis for W and
has no e↵ect on the hardness of subgroup indistinguishability. In particular, this means we do not need to
interpolate in the end, but can simply use [(f

1

· · · f
k

)(x
0

)]
T

, . . . , [(f
1

· · · f
k

)(x
m�1

)]
T

2 Gm

T

as the final result,
representing polynomials in the target space by their evaluations at the interpolating set.

This observation means that we should choose the interpolation points in such a way that computations
of the map ! Gm, [f ] 7! ([f(x

0

)], . . . , [f(x
m�1

]) should be cheap. If vectors from correspond to
polynomials via coe�cient representation, we can simply choose small x

i

(usually, this has the downside of
making the coe�cients for interpolation large, which does not matter here). Concretely, for our 2-SCasc
based construction, we chose interpolation points as M = {�2,�1, 0, 1, 2}. Given coe�cients [f

0

], [f
1

], [f
2

] of
a polynomial f = f

0

+f
1

X+f
2

X2 of degree at most 2, one can compute [f(�2)], [f(�1)], [f(0)], [f(1)], [f(2)]
with only 11 additions/inversions. Furthermore, it is possible to amortize the cost of evaluation, if the same
[f ] is used in several applications of ẽ.

Computing ⇡ : ! G for known ~s is a linear map and hence corresponds to one n-multi-exponentiation.
For our SCasc-based constructions, this means computing [f

0

+ sf
1

+ s2f
2

+ . . .] from [f ] and s. Since f
0

is not multiplied by anything, we really only have a n � 1-multi-exponentiation and one group operation.
For the computation of ⇡

T

:
T

! G
T

, this latter saving is no longer possible if we represent elements from
W by their evaluations. Instead, [f(s)]

T

= ⇡
T

([g
0

]
T

, . . . , [g
m�1

]
T

) is computed as ⇡
T

([g
0

]
T

, . . . , [g
m�1

]
T

) =
P

i

r
i

(~s) · [g
i

]
T

, where the coordinate [g
i

]
T

corresponds to the value g
i

= f(x
i

) of some polynomial f at x
i

.
This corresponds to the basis r

0

, . . . , r
m�1

of W , determined by r
i

(x
j

) = 0 if i 6= j and 1 otherwise. Note
that the r

i

are known and computing r
i

(~s) is just a computation in
p

(which is fast).

C.2 E�ciency of the Projecting and Canceling Constructions

Let us briefly consider our projecting and canceling constructions from Sec. B.1 and Sec. B.2 based on
variants of SCasc. Computation of ⇡ and ⇡

T

can be done as in the projecting construction. So let us turn
our attention to the e�ciency of ẽ respectively ẽ

ext

with respect to the application of fast multiplication
algorithms. Here the the situation is more intricate as we also need to perform modular reduction in the
exponent. Furthermore, we chose h0(X) = Xn, which gives us an advantage if we stay in the coe�cient
representation, as the reduction modulo Xn � sn has an easier form then.

The naive way of computing either ẽ or ẽ
ext

requires exactly nk applications of the k0-linear e and
nk�nk�1 additions in G

T

. For ẽ
ext

from Sec. B.2, this is the best method we are aware of, both in the
ext

and in the
ext

variant.
For ẽ from Sec. B.1, we can use some ideas from e�cient polynomial multiplication to improve this.

Perhaps, the most simple idea which, however, only works in certain settings is the following: Let us first
assume that we are given a k0-linear basic map e to implement our k-linear map ẽ as in Sec. B.1. Moreover,
assume that e is not given as a “monolithic block” but as a series of pairings e

i,j

: G(i) ⇥G(j) ! G(i+j) like
it is the case for the currently known multilinear map candidates. In such a setting, it is possible to first
compute products consisting of only k factors and then multiply (linear combinations of) these subproducts
with another factor. This enables us to first compute the coe�cients of [(f

1

· · · f
k

)] in G(k) using the fast
polynomial multiplication algorithms as described before and subsequently, perform the modular reduction
by multiplying these coe�cients with the appropriate reduction term [sin] for appropriate i by means of
e
k,1

. Note that we can perform polynomial interpolation onto intermediate results, which means we can use
a multiplication tree, reducing the number of interpolation points required for intermediate products. Also,
we interpolate in the end, so the final modular reduction can be performed in the coe�cient representation.
This way, (only counting applications of e), for the multiplication, we need at most (or exactly if k is a
power of 2) k(n � 1)dlog

2

ke + k � 1 applications of some e
i,j

, and for the reduction we need k(n � 1) � n
applications of e

k,1

. This makes a total of (at most) k(n � 1)d1 + log
2

ke + k � n � 1 (bilinear) pairings.
Note that this counts bilinear pairings, i.e. only “partial” k0-linear pairings and hence can not be directly
compared to applications of a k0-linear map.

Now, assume we are given a k+1-linear basic map as a black-box, i.e., not as a series of pairings. We use
the evaluate-multiply approach as before, so consider the interpolating set x

0

, . . . , x
k(n�1)

with interpolation
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polynomials r
i

such that r
i

(x
j

) = 0 for i 6= j and 1 otherwise. Let

r
i

mod h =
n�1

X

j=0

h
i,j

Xj ,

Note that the [h
i,j

]’s are computable from the [h
i,j

]’s and x
i

’s. Then we can compute ẽ([f
1

], . . . , [f
k

]) as

ẽ([f
1

], . . . , [f
k

]) = [f
1

· · · f
k

mod h]
T

=

2

4

n�1

X

j=0

k(n�1)

X

i=0

h
i,j

f
1

(x
i

) · · · f
k

(x
i

)Xj

3

5

T

.

This requires kn(n � 1) + n applications of e. Note that we can not make use of the special form of
h(X) = Xn � sn this way and this is worse than the naive approach for small values of n, k (but much
better asymptotically). Also for small values of n and k and h of a general form, there are dedicated tricks
to reduce the number of basic map applications. For instance, in the case k = 2, n = 3, and general h, we
may compute ẽ

ext

(which is defined in a similar way as our construction in Sec. B.2 for special h = Xn� sn)
using 12 applications of e compared to 15 using the naive approach.

D Extended Impossibility Results for Canceling and Projecting

Freeman et al. [20] proved that there is no fixed projecting and canceling pairing for the U
`

assumption. It
could be the case that, as it happened for the lower bounds for the image size, a change of assumption could
su�ce to construct a projecting and canceling pairing. However, the proof of [20] seems hard to generalize
to other D

n=`+1,`

assumptions. In this section, we give a very simple but limited extension of Freeman’s
result. We start by proving the following lemma:

Lemma 9. Let (k = 2,H
1

, Gn,
T

, ẽ) be the output of a symmetric canceling (k = 2, (n = `+ 1, `)) bilinear
map generator. Then ẽ( k) ⇢

T

is a vector space of dimension at most `(`+ 1)/2.

Proof. The map ẽ can be alternatively defined as a linear map from ⌦ !
T

. First we note that,
since ẽ is symmetric, the maximum dimension of the image of ẽ (which w.l.o.g. is Gm

T

, for some m 2 ) is
(`+ 1)(`+ 2)/2. This follows because the kernel of ẽ must contain all the symmetry relations , i.e. the span
of all ~e

i

⌦~e
j

� ~e
j

⌦ ~e
i

. Additionally, since the map is canceling, and =
1

�
2

, it follows that
1

⌦
2

must also be in the kernel (note that if this is the case, by symmetry so is
2

⌦
1

). Since
1

\
2

= {0},
we have that

1

⌦
2

intersects the span of the symmetry relations only trivially. Since the dimension of

1

⌦
2

is `, it follows that the size of the image is at most m := (`+1)(`+2)

2

� ` = `(`+1)

2

+ 1.

The lemma also means that there is no (2,L
`

) bilinear generator with a fixed pairing which is both

canceling and projecting, because according to Sec. 5.1 the image size would be at least (`+1)(`+2)

2

, while

Thm. 9 says the image is at most `(`+1)

2

+ 1.9 Further, we can prove that there is no (2,SC
2

) bilinear
generator with a fixed pairing which is both canceling and projecting (more generally, this extends to any
D

3,2

matrix distribution), since the optimality results of Sec. 5.1 and 5.2 imply that the image size would be
at least 5 while Thm. 9 says the image size would be at most 4. It remains an open question to see if other
impossibility results for `-SCasc can be proven for ` > 2.

E Proofs of Optimality

E.1 Optimality of Polynomial Multiplication

We give the complete proof of Thm. 2, which states:
Let k > 0, D

`+1,`

a polynomially induced matrix assumption and let q
0

, . . . , q
`

be the polynomials associated

9We note that this last result about (2,L`) bilinear generators is not proven in [20]. Although the authors talk about a
natural use of the `-Lin assumption, their results are for the uniform assumption.
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k Gm

T

Gk G
T

ẽ

�
⇡

(~s)
�k

([

~

f

1

], . . . , [

~

fk]) 7! (⇡

(~s)
([

~

f

1

]), . . . ,⇡

(~s)
([

~

fk])) ⇡

(~s)
T

e

Figure 2: Projecting Property

to D
`+1,`

as defined in Eq. (4) in Sec. 4.2 and let W ⇢
p

[ ~X] be the space of polynomials spanned by
{q

i

1

. . . q
ik | 0  i

j

 `}. Let (MG
k

, , G`+1, Gm

T

, ẽ) be the output of any other fixed (k,D
`+1,`

) projecting
multilinear map generator. Then, m := dimW  m.

By assumption, = (~s) is the subspace of = G`+1 spanned by the rows of the matrix [A(~s)], for some
~s 2 d

p

, and by definition of q
0

, . . . , q
`

, if [A(~s)] has full rank, (~s) = {~f = (f
0

, . . . , f
`

) |
P

`

i=0

f
i

q
i

(~s) = 0}.
The fact that the map is projecting (cf. Def. 4 or Fig. 2) guarantees that for every (~s) there exist

⇡(~s) : ! G, and ⇡
(~s)

T

:
T

! G
T

, such that ker⇡(~s) = (~s) and e(⇡(~s)(~x
1

), . . . ,⇡(~s)(~x
k

)) = ⇡
(~s)

T

(ẽ(~x
1

, . . . , ~x
k

))

for any ~x
1

, . . . , ~x
k

, where e is the basic pairing operation in MG
k

. We stress that ⇡(~s) and ⇡
(~s)

T

may depend
on , while by assumption, the multilinear map ẽ is fixed and thus independent of .

We structure the proof into two steps: The first step is a lemma, which says that ⇡(~s) can be viewed as
polynomial evaluation at ~s.

Lemma 10. For any ~s 2 d

p

, there exists some µ(~s) 2 ⇤
p

such that ⇡(~s)(~f) = µ(~s)

P

`

i=0

f
i

q
i

(~s).

Proof. Since (~s) has co-dimension 1 in G`+1, any two maps G`+1 ! G, both with kernels (~s), di↵er by a
non-zero scalar multiple. By definition, ker⇡(~s) = (~s). Since the map ⇡̃ : G`+1 ! G which sends ~f 2 G`+1

to f(~s) =
P

`

i=0

f
i

q
i

(~s) is another linear map with kernel (~s) = {~f 2 G`+1 | f(~s) = 0}, the claim follows.

Without loss of generality we assume in the following that µ(~s) = 1 for all ~s. This follows from the

fact that if ẽ satisfies the projecting property with respect to the maps ⇡(~s),⇡
(~s)

T

then the same property is

satisfied by the maps ((µ(~s))�1⇡(~s)), ((µ(~s))�k⇡
(~s)

T

).
For the second step, we consider the commutative diagram Fig. 3 for an interpolating set ~s

1

, . . . ,~s
m

for W :

k Gm

T

k ⇥ . . .⇥ k Gm

T

⇥ . . .⇥Gm

T

Gk ⇥ . . .⇥Gk G
T

⇥ . . .⇥G
T

˜

E = (ẽ, . . . , ẽ)

⇧ =

✓�
⇡

(~s1)
�k

, . . . ,

�
⇡

(~sm)

�k
◆

⇧T =

✓
⇡

(~s1)
T , . . . ,⇡

(~sm)

T

◆

E = (e, . . . , e)

ẽ

� k x 7! (x, . . . ,x)

�Gm
T

x 7! (x, . . . ,x)

Figure 3: Fig. 2 repeated m times for an interpolating set ~s1, . . .~sm for W .

From the above Lemma 10, we have e
⇣

�

⇡(~si)
�

k

([~f
1

], . . . , [~f
k

])
⌘

= e
⇣

[f
1

(~s
i

)], . . . , [f
k

(~s
i

)]
⌘

= [(f
1

· · · f
k

)(~s
i

)]
T

,

where f
j

( ~X) is the polynomial defined by f
j

( ~X) =
P

t

q
t

( ~X)f
j,t

. It follows that, going first down, then right

in the diagram, E(⇧(� k([~f
1

], . . . , [~f
k

]))) =
�

[(f
1

· · · f
k

)(~s
1

)]
T

, . . . , [(f
1

· · · f
k

)(~s
m

)]
T

�

, from which f
1

· · · f
k

2
W can be interpolated via a linear map. It follows that the span of the image of E �⇧ �� k has dimension
at least m = dimW . But traversing the diagram first right, then down, we see that the image of E �⇧�� k

is contained in (⇧
T

� �
G

m
T
)(Gm

T

), where ⇧
T

� �
G

m
T

is a linear map. So the dimension of the span of the
image of E �⇧ �� k can be at most dimGm

T

= m. This implies m  m, finishing the proof.
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F Applications

F.1 Instantiating Groth-Sahai Proofs

Groth-Sahai proofs are NIZK proofs of satisfiability of a set of equations in a bilinear group MG
2

:=
(2, G,G

T

, e, p,P,P
T

). The proofs follow a basic commit-and-prove approach (for a formalisation of this
see [8]) in which the witness for satisfiability (some elements in G or in

p

, depending on the equation
type) is first committed to and then the proof shows that the committed value satisfies the equation. The
common reference string includes some commitment keys which can be generated in two computationally
indistinguishable ways: In the soundness setting, the keys are perfectly binding and in the witness indis-
tinguishability setting, they are perfectly hiding. More specifically, The commitment key [U] is defined as
[U] = [A||A~w] in the soundness setting or as [U] = [A||A~w � ~z] in the witness indistinguishability setting,
for A D

`

, random ~w and public ~z /2 Im(A).
In [9] it was already discussed how to instantiate Groth-Sahai proofs based on any matrix assumption,

although only for the symmetric bilinear tensor product. The only point where our construction di↵ers
from the one given in ([9], Sec. 4.4) is in the definition of the symmetric bilinear map F , which we define
to be ẽ, the projecting bilinear map corresponding to polynomial multiplication associated to some matrix
distribution D

`

, defined in Sec. 4.2. The pairing ẽ is described by a tuple (MG
2

, [A], = G`+1, Gm

T

, ẽ),
A D

`

and some choice of basis for W .
The only information related to F which has to be included in the common reference string are some

matrices H
1

, . . . ,H
⌘

whose purpose is to ensure that, when the common reference string is defined as in the
witness indistinguishability setting, the proof is correctly distributed, namely:

a) it is statistically independent of the witness (composable witness indistinguishability, [13], Def. 4),

b) a simulated proof has the same distribution of a real proof (composable zero-knowledge, [13], Def. 5).

Condition b) implies a) but for some equation types it is only possible to achieve a).
For any two vectors of elements of of equal length r, [ ~X] = ([~x

1

], . . . , [~x
r

]), [~Y ] = ([~y
1

], . . . , [~y
r

]) and

a bilinear map ẽ, define the map
ẽ• associated with ẽ as [ ~X]

ẽ• [~Y ] =
P

r

i=1

ẽ([~x
i

], [~y
i

]). More specifically,
depending on the equation type, the original GS proof system requires to include in the common reference
string the following information which is related to ẽ (where [U] = [A||A� ~w~z]):

1) Pairing product equations. In this case, H
1

, . . . ,H
⌘

should be a basis of the space of all matrices

which are a solution of the equation [UH]
ẽ• [U] = [0]

T

.

2) Multi-scalar multiplication equations. In this case, H
1

, . . . ,H
⌘

should be a basis of the space of

all matrices which are a solution of the equation [AH]
ẽ• [U] = [0]

T

.

3) Quadratic equations. In this case, H
1

, . . . ,H
⌘

should be a basis of the space of all matrices which

are a solution of the equation [AH]
ẽ• [A] = [0]

T

.

Roughly speaking, the prover and the simulator use these matrices to randomize the proof, that is,
they compute some proof [⇡̃] using the homomorphic porperties of the commitment scheme and then they
randomize the proof as [⇡] = [⇡̃ +

P

r
i

XH
i

] (for some X 2 {A,U} which depends on the equation type,
and r

i

 
p

). These matrices ensure that the proof satisfies a stronger condition than a) and b) defined
above, namely, that the proof is uniform conditioned on satisfying the verification equation with respect to
ẽ (see Thm. 8, [13]).

We note that the matrices can defined independently of the choice of basis for the image space W , since
a change of basis corresponds to multiplication by an invertible matrix. Therefore, these matrices can be
chosen depending only on D

`

, without having to specify W . When D
`

= L
`

= U
`

, polynomial multiplication
defines a map which we denote in the following by ẽU` . In this case, these matrices are the same as the ones
given in [9] (for the symmetric tensor product), namely matrices of the appropriate size which encode the
symmetric relations which are in the kernel of ẽU` . For instance, when ` = 2 these matrices are:
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• Pairing product equations. A choice of basis is:

H
1

:=

0

@

0 1 0
�1 0 0
0 0 0

1

A ,H
2

:=

0

@

0 0 1
0 0 0
�1 0 0

1

A ,H
3

:=

0

@

0 0 0
0 0 1
0 �1 0

1

A .

• Multi-scalar multiplication equations. A choice of basis is:

H
4

:=

0

@

0 1
�1 0
0 0

1

A .

• Quadratic equations. A choice of basis is:

H
5

:=

✓

0 1
�1 0

◆

.

On the other hand, for `-SCasc and the associated projecting pairing ẽ, there are other additional relations
apart from the ones derived from symmetry. For instance, for 2-SCasc and ~z = (0, 0, 1)>, a possible basis
of these matrices for Pairing Product Equations consists of H

1

,H
2

,H
3

as defined above plus one matrix
H0 which depends on s (such that A = A(s)) and ~w. This dependency makes it problematic to publish
[H0]. Indeed, obviously this matrix cannot be published “in the exponent”, i.e. H0 cannot be included in the
common reference string. A closer look at the proofs reveals that the prover only needs [UH0], so the obvious
fix would be to publish instead [UH0]. However, this reveals s2, which is su�cient to decide membership in
ImA, i.e. to break the 2-SCasc Assumption.

For this reason, we change the specification of GS proofs. Given any symmetric projecting bilinear
pairing (MG

2

, [A], = G`+1, Gm

T

, ẽ), the matrices H
1

, . . . ,H
⌘

are defined to satisfy 1), 2) or 3) according
to the equation type but with respect to ẽU` . For instance, in the example of 2-SCasc for Pairing Product
Equations discussed above, only H

1

,H
2

,H
3

are published. Except for this change of specification of the
matrices H

1

, . . . ,H
⌘

, the prover, the verifier and the simulator are defined in the usual way. We briefly
argue why the proof system still satisfies the required properties after this change:

• Completeness. If H is such that [XH]
ẽU`• [Y] = [0]

T

, for some X,Y 2 {A,U} then it follows from

the symmetry of ẽ that it also holds that [XH]
ẽ• [Y] = [0]

T

. Roughly speaking, this means that the
randomization of the proof cancels out not only with ẽU` but also with ẽ. More formally, this implies
that the proof of completeness from [13], Thm. 6 can be used unchanged to prove completeness in this
case.

• Soundness. It follows from [13], Thm. 7 that soundness depends only on the projecting property of
the map ẽ.

• Witness Indistinguishability/ Zero-Knowledge. Both a real proof and a simulated proof have
the same distribution, namely the uniform one conditioned on the verification equation being satisfied
with respect to ẽU` .

E�ciency discussion. As mentioned, the important e�ciency measures for GS proofs are common
reference string size, proof size, prover’s and verification’s e�ciency. Proof size depends only on the size of
the matrix assumption and the equation type, so it’s omitted here. Essentially, so does the e�ciency of the
prover, with some minor di↵erences which are discussed below. For the rest, the discussion goes as follows:

• Size of the common reference string. `-SCasc assumption is the most advantageous from this
point of view (as noted in [9]) since the commitment keys can be described more compactly in this
case.
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• Prover’s computation. The cost of computing a commitment depends roughly on the sparseness
of the matrix A. For instance, for the uniform assumption with ` = 2, a commitment costs at least 6
exponentiations, so Lin2 and 2-SCasc are more advantageous. Following [8], the prover’s computation
can be reduced significantly by allowing a prover to choose its own common reference string and then
proving its correctness. This allows to minimize the number of exponentiations, since the prover knows
s 2

p

and can compute most operations in
p

. Obviously the same trick applies here.

• Verification cost. Verification cost is the e�ciency measure which depends more on the choice of
pairing, as it typically involves several evaluations of the map F . Since the map ẽ can be computed
more e�ciently than F , the verification cost is significantly reduced for many equation types. For
instance, using our map derived from 2-SCasc we can save 4 basic pairing evaluations per evaluation
of ẽ.

We emphasize that this discussion is for general equation types. For some specific types — like linear
equations with constants in G, the new map does not imply more e�cient verification.

We conclude that the 2-SCasc instantiation with polynomial multiplication is definitely the most e�cient
implementation for GS NIZK proofs in symmetric bilinear groups, not only because of the size of the common
reference string as pointed out in [9] but also from point of view of e�ciency of verification.

F.2 E�cient Implementation of the k-times Homomorphic BGN Cryptosystem

In this section we show how to implement a multilinear variant of the Boneh-Goh-Nissim cryptosystem
from [3] with prime-order multilinear groups. We proceed as follows: first we transform a given prime-order
multilinear group into a projecting composite-order multilinear group using the results from Sec. 4.2. As seen
in Sec. 5.2, the most e�cient way to do this is using the k-SCasc assumption. We write the generator, already
given in Ex. 1, again in more detail. In the next step, we show how to implement the BGN cryptosystem in
those groups and compare the implementation costs to implementations of k-BGN derived from the work of
Freeman ([10]) and Seo ([21]).

Example 4 (A generator for the BGN cryptosystem). Let k 2 and SC
k

denote the matrix distribution
belonging to the symmetric cascade assumption from Def. 2. Let G

k�BGN

be an algorithm that, on input a
security parameter � 2 , does the following:

• Obtain MG
k

:= (k,G,G
T

, e, p,P,P
T

) from a symmetric k-linear group generator G
k

(�).

• Let := Gk+1,
T

:= Gk

2

+1

T

• Choose s
R 

p

and let (s) ⇢ ,
(s)

T

⇢
T

as in Sec. 4.1.

• Let ẽ([~f
1

], . . . , [ ~f
k

]) := [f
1

· · · f
k

]
T

• Output the tuple (MG
k

, (s), ,
T

, ẽ).
Observe that G

k�BGN

is a (k,SC
k

) multilinear map generator. Additionally, G
k�BGN

is projecting for (s)

w.r.t. the maps ⇡ : ! G, [~f ] 7! [f(s)] and ⇡0 :
T

! G
T

, [~f ]
T

7! [f(s)]
T

. Both maps can be computed
e�ciently given s. From the discussion in Sec. 4.1 it follows that if G

k

satisfies the k-SCasc assumption,
then G

k�BGN

satisfies the subgroup indistinguishability property. As seen in Sec. 4.2, the computation of the
map ẽ can be optimized using techniques for fast polynomial multiplication.

The additively and one time multiplicatively homomorphic BGN encryption scheme from [3] uses a
pairing and can be extended in a straightforward way to work with a k-linear map for arbitrary k 2 .
The resulting encryption scheme is then k � 1 times multiplicatively homomorphic. We now describe how
to implement the scheme using G

k�BGN

.
Setup(1�): Run G

k�BGN

to obtain (MG
k

, (s), ,
T

, ẽ). Output PK := (p, ,
T

, ẽ,P, [s]) and SK := s

Enc(PK,m): To encrypt a message in , draw h
0

, . . . , h
k

R 
p

\ {0} and compute h := [(�sh
0

, h
0

�
sh

1

, . . . , h
k�1

� sh
k

, h
k

)] 2 (s) using [s] from PK. Set P0 := [(1, 0, . . . , 0)]. Compute and output the
ciphertext as

c := m · P0 + h = [(�sh
0

+m,h
0

� sh
1

, . . . , h
k�1

� sh
k

, h
k

)]

Encryption in
T

works similarly.
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Generator ciphertexts (in / T ) Enc /Dec (in / T ) Mult

(el. from G) (el. from GT ) (exp. in G) (exp. in GT ) (exp. in GT ) (eval. of e)

Freeman, symm. k + 1 (k + 1)k (k + 1)2 (k + 1)2k - (k + 1)k+1

Freeman, asymm. 2k 2k · k 22 22k - 2k

Seo, symmetric k + 1
�
2k
k

�
(k + 1)2

�
2k
k

�
2

- (k + 1)k

This paper, Gk�BGN k + 1 k2 + 1 k + 1 k2 + 1 - (k + 1)k

This paper, Gk�BGN , opt. k + 1 k2 + 1 k + 1 k2 + 1 (k3 + k)k k2 + 1

Table 2: Implementation costs and ciphertext sizes of k-BGN with the generators obtained by extending the con-
struction of Freeman ([10]), the generator Gk,Uk used by Seo ([21]) and our most e�cient generator Gk�BGN . The
latter is listed twice, di↵ering in the method to compute the mapping ẽ (naively or optimized using techniques for
fast polynomial multiplication.) Costs are stated in terms of application of the basic map e and exponentiations in G,
respectively GT . To keep the exposition simple, we measure ciphertext sizes of the coe�cient representation (not the
optimized point-value representation introduced in Sec. 4). Observe that our construction is the only one for which
tradeo↵s between basic multilinear map evaluations and exponentiations are known.

Dec(SK, c): Decryption in and
T

works by applying ⇡, i.e. evaluating c, interpreted as polynomial
c(X), in SK = s. For this, parse c := (c

1

, . . . , c
`

) and compute ⇡(c) = [c(s)] = [c
1

+ s · c
2

+ · · ·+ s` · c
`

].
Output m = logP(c(s)).

Add(PK, c, c0): We assume c, c0 2 . Draw ĥ
R (s). Compute and output

c+ c0 + ĥ = (m+m0) · P0 + h+ h0 + ĥ

Adding encrypted messages in
T

works just as in .

Mult(PK, c
1

, . . . , c
k

): We require c
1

, . . . , c
k

2 . Draw ĥ
R (s)

T

. Compute and output

ẽ(c
1

, . . . , c
k

) + ĥ = (m
1

· . . . ·m
k

)P0

T

+ h̃+ ĥ

where P0

T

:= [(1, 0, . . . , 0)]
T

and h̃ 2 (s).

Observe that correctness of decryption follows from c(s) = [�sh
0

+ m + s(h
0

� sh
1

) + · · · + sk�1(h
k�1

�
sh

k

)+sk(h
k

)] = [m+h(s)] = [m]. The number of G-exponentiations required for encryption and decryption
is equal to the number of copies of G used for and

T

, i.e. k + 1 for and k2 + 1 for
T

.

Corollary 1. The above scheme is semantically secure if the group generator G
k

satisfies the k-SCasc
assumption.

Proof. Semantic security follows from a straightforward adaption of Theorem 3.1 from [3] and the fact that
G
k�BGN

satisfies the subgroup indistinguishability property if G
k

satisfies the k-SCasc assumption.

Comparison to an extension of Freeman’s construction ([10]). The projecting pairing from [10]
has a natural extension to the multilinear case. For k 2 , the k-linear extension of the symmetric bilinear
generator of [10], Theorem 2.5, is a (k,U

k

) multilinear map generator (note that Freeman uses the uniform
distribution to generate subgroups). We can define the k-linear map such that it is projecting, following
[10], Section 3.1 (using the notation from the original paper). Thus, we let the generator compute ẽ as

ẽ([~f
1

], . . . , [ ~f
k

]) := e(P, . . . ,P)
~

f

1

⌦···⌦~

fk . This setting can be further optimized for multilinear maps if we
use an asymmetric prime-order map as a starting point for an asymmetric generator. We will not go into
the details, since the construction is essentially the same as in [10], Example 3.3, naturally extended to the
multilinear setting. On a high level, the main advantage is that we can keep the dimension of the subgroups
and thus the composite-order groups small (i.e.,

i

:= G2

i

), leading to a smaller (though still exponentially
large) number of basic multilinear map evaluations to compute ẽ (cf. Tab. 2). Note that even the asymmetric
generator, using

i

= G2

i

, requires 2k group elements to describe ciphertexts in the base groups. This is
because the BGN cryptosystem has to be adjusted to work with an asymmetric map (see [10], Section 5, for
details).
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Comparison to an extension of Seo’s construction ([21]). As we explained in Sec. 3, in the construc-
tions of Freeman, subgroups are always sampled according to the uniform assumption. Under this condition,
Seo ([21]) proved that Freeman’s construction of a projecting pairing is not optimal in the symmetric case.
For this case, Seo gives a projecting pairing that is optimal in Freeman’s model and, as seen in Appendix G,
matches our construction for the uniform assumption, and can therefore be generalized to the multilinear
case (see Ex. 3). The implementation costs of k-BGN using Seo’s construction can be seen in Tab. 2.

G A Unified View on Di↵erent Projecting Pairings From the Literature

In this section, we compare our constructions for the special case of a 2-linear map with previous constructions
of Groth and Sahai10 ([13]) and Seo ([21]). We use the language of Seo to represent all constructions
consistently. Let us first briefly introduce the required tools for this.

Given two vectors ~x = (x
0

, . . . , x
n�1

) 2 n

p

and ~y = (y
0

, . . . , y
n�1

) 2 n

p

, the tensor product ~x ⌦ ~y is
defined as (x

0

y
0

, x
0

y
1

, x
0

y
2

, . . . , x
n�1

y
n�1

). Any bilinear map ẽ : Gn ⇥Gn ! Gm

T

can be uniquely described

by a matrix B 2 n

2⇥m

p

such that ẽ([~x], [~y]) = e([1], [1])(~x⌦~y) B = [(~x⌦ ~y) B]
T

.
We can now present the pairing ẽ of each construction in terms of the matrix B.

1. Symmetric tensor product (original Groth-Sahai construction)

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0
0 0 1/2 0 0 0 0 1/2 0
0 1/2 0 1/2 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1/2 0 0 1/2
0 0 1/2 0 0 0 0 1/2 0
0 0 0 0 0 1/2 0 0 1/2
0 0 0 0 0 0 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

2. Seo’s construction

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

2 9⇥6

p

.

Seo’s construction can be also written as: ẽ([~x], [~y]) := [(x
0

y
0

, x
0

y
1

+ x
1

y
0

, x
0

y
2

+ x
2

y
0

, x
1

y
1

, x
1

y
2

+
x
2

y
1

, x
2

y
2

)]
T

. Seo proves that his construction is projecting for the U
2

Assumption. We note that our
construction for 2-Lin and U

2

is exactly the same if we choose as a basis for W the set {q
i

q
j

: 0  i 
j  2}, for the polynomials q defined in example 2 and 3, respectively.

10The most e�cient symmetric construction of Freeman ([10]), based on 2-Lin, matches the one of Groth and Sahai and is
thus not listed here.
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3. Our construction for the SC
2

assumption, choosing {1, X,X2, X3, X4} as a basis for W .

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

2 9⇥5

p

Our construction can be also be written as
ẽ([~x], [~y]) := [(x

0

y
0

, x
0

y
1

+ x
1

y
0

, x
0

y
2

+ x
2

y
0

+ x
1

y
1

, x
1

y
2

+ x
2

y
1

, x
2

y
2

)]
T

.

4. Our construction for the SC
2

assumption with an alternative choice for the basis of W :

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

T 2 9⇥5

p

, where T :=

0

B

B

B

B

@

1 1 1 1 1
�2 �1 0 1 2
4 1 0 1 4
�8 �1 0 1 8
16 1 0 1 16

1

C

C

C

C

A

.

This construction can be also be written as

ẽ([~x], [~y]) :=
h⇣

4

X

t=0

X

i+j=t

x
i

y
j

(�2)t,
4

X

t=0

X

i+j=t

x
i

y
j

(�1)t, x
0

y
0

,

4

X

t=0

X

i+j=t

x
i

y
j

,

4

X

t=1

X

i+j=t

x
i

y
j

2t
⌘i

T

G.1 E�ciency Improvement for Seo’s Construction

Seo claims that his pairing (item (2) above) is optimal among all based on the uniform subgroup decision
assumption in terms of a) image size and b) number of basic pairing operations. Regarding a), our results
do not contradict Seo’s claim. Regarding b), Seo claims that the number of basic pairing operations is at
least the weight of the matrix B, which is 9 for the U

2

Assumption.
Seo’s implicit assumption behind this seems to be that if the pairing has the form (~x ⌦ ~y)B for some

matrix B, then the best way to compute it is also via such a vector-matrix product: for each non-zero entry
B

i,j

of B, compute B
i,j

x
i

y
j

and then perform some additions in the exponent. This then corresponds to one
pairing operation (computing products of x

i

and y
j

in the exponent, B
i,j

is a scalar) per non-zero entry of
B. We reduce this to the rank of B by applying linear transformations to ~x, ~y prior to multiplication (more
precisely, treating ~x and ~y as polynomials and interpolating).

More formally, for any pairing ẽ with associated matrix B, to reduce the number of basic pairing opera-

tions to m, it su�ces to find matrices C 2 (`+1)⇥m

p

,D 2 m⇥m

p

such that

ẽ([~x], [~y]) := [(~x⌦ ~y) B]
T

= [((~xC)⌦ (~yC))

✓

I
m

0
(m

2�m)⇥m

◆

D]
T

.

Given these matrices, the pairing ẽ can be computed with only m evaluations of e, regardless of the weight
of B, as follows:
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1. Compute [~u] = [~xC] 2 Gm and [~y] := [~yC] 2 Gm.

2. Compute [~w]
T

= (e([u
1

], [v
1

]), . . . , e([u
m

], [v
m

])) = ([u
1

v
1

]
T

, . . . , [u
m

v
m

]
T

) = [(~u⌦ ~v)

✓

I
m

0
m

2�m

◆

]
T

.

3. Compute the final [~z]
T

as [~z]
T

= [~wD]
T

.

Note that steps 1,3 require only group operations in G,G
T

.
In the specific case of Seo’s construction (item (2) in the list) — which matches our construction for U

2

for the basis {q
i

q
j

| 0  i  j  2} of W —, m = 6 and the matrices C 2 3⇥6

p

,D 2 6⇥6

p

are defined as:

C :=

0

@

q
0

(~x
1

) . . . q
0

(~x
6

)
q
1

(~x
1

) . . . q
1

(~x
6

)
q
2

(~x
1

) . . . q
2

(~x
6

)

1

A , D :=

0

B

B

B

B

B

B

@

(q
0

· q
0

)(~x
1

) . . . (q
0

· q
0

)(~x
6

)
(q

0

· q
1

)(~x
1

) . . . (q
0

· q
1

)(~x
6

)
(q

0

· q
2

)(~x
1

) . . . (q
0

· q
2

)(~x
6

)
(q

1

· q
1

)(~x
1

) . . . (q
1

· q
1

)(~x
6

)
(q

1

· q
2

)(~x
1

) . . . (q
1

· q
2

)(~x
6

)
(q

2

· q
2

)(~x
1

) . . . (q
2

· q
2

)(~x
6

)

1

C

C

C

C

C

C

A

�1

,

where q
0

( ~X) = X
21

X
32

�X
22

X
32

, q
1

( ~X) = X
11

X
32

�X
12

X
31

, q
2

( ~X) = X
11

X
22

�X
12

X
21

and ~x
i

2 6

p

are
any interpolating set for the space spanned by {q

i

q
j

| 0  i  j  2}, which guarantees that D is properly
defined. This allows us to bring down the number of basic pairing operations to only 6 instead of 9, which
was the number of operations which Seo claims to be necessary for compute ẽ.

Note that by changing the choice of basis for W we can also get an even more e�cient projecting pairing
for the uniform assumption. In the language we just introduced, this amounts to choose C as above but
define D as the identity matrix. This allows us to save all the exponentiations in

T

.

H Implementation with Multilinear Map Candidates

H.1 The Candidate Multilinear Maps from [11, 6]

In this section, we investigate to what extent our constructions can be implemented with the recent candi-
dates [11, 6] of approximate multilinear maps. These works only provide approximations of multilinear maps
in the following sense. Namely, instead of group elements, [11, 6] define “noisy encodings.” Essentially, a
noisy encoding is a group element with an additional noise term. This means that there is a whole set of
encodings Enc (g) of a group element g. Each operation on encodings increases the size of their noise terms.
(More specifically, the noise term of the result of an operation is larger than the noise terms of the inputs.)
In particular, each encoding can be used only for an a-priori limited number of operations. After that, its
noise term becomes too large, and errors in computations may occur.

This noisy encoding of group elements has a number of e↵ects which are relevant for our constructions:

Group membership hard to decide. It is not e�ciently decidable whether a given encoding actually
encodes any group element (with a certain noise bound).

Non-trivial comparisons. To determine whether two given encodings encode the same group element
(i.e., lie in the same set Enc (g)), we require a special comparison algorithm (which however can be
made publicly available).

Non-unique computations. Even if two computations yield encodings of the same group element, the
actual encodings may di↵er. Specifically, an encoding may leak (through its noise term) the sequence
of operations used to construct it. To hide the sequence of performed operations, there exists a re-
randomization algorithm that re-randomizes the noise term (essentially by adding a substantially larger
noise term).
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Black-box exponents. It is possible to choose (almost) uniformly distributed exponents, but these can
only be used in a black-box way (using addition, subtraction, and multiplication), and without using
their explicit integer representation.

Subgroup membership problems. The construction in [11] allows for a very generic attack on subgroup
membership assumptions in the (encoded) “source group” of the multilinear map. In particular, matrix
assumptions like SCasc or the `-linear assumption do not appear to hold in the source group. On the
other hand, the construction in [6] does support subgroup membership assumptions (and in particular
matrix assumptions) in the source group.

H.2 Our Constructions with the Multilinear Map Candidates

We now inspect our constructions for compatibility with approximate multilinear maps as sketched above.
Syntactically, our constructions (from Sec. 4.2 and Appendix B) start from a given group G and a k-
linear map e : Gk ! G

T

, and construct another group = Gn, along with
T

= Gm

T

and a k-linear map
ẽ : k !

T

. In both cases, computations in ,
T

, and the evaluation of ẽ can be reduced to computations
in G,G

T

, and evaluating e. Hence, at least syntactically, our constructions can be implemented also with
approximate multilinear maps as above. But of course, this does not mean that our constructions also
retain the security properties we have proved when implemented in an approximate setting. Hence, we now
investigate the e↵ect of the imperfections sketched above.

Group membership hard to decide. We have assumed that group membership in our constructed group
is easy to decide. This of course no longer holds if the underlying prime-order group cannot be

e�ciently decided in the first place. We stress that this has no implications on our results, but of
course makes the constructed group also less useful in applications.

Non-trivial comparisons. Since, in our constructions, we never explicitly use comparisons, we also never
need to use a comparison algorithm. On the other hand, a comparison in the groups and

T

we
construct can be reduced to comparing elements of G and G

T

.

Non-unique computations. In the (encoded) groups we construct, the noise of the underlying G- or
G

T

-elements also leaks information about the performed computations. However, this noise can be
re-randomized by re-randomizing the noise of the underlying G- and G

T

-elements.

Black-box exponents. Both of our constructions use exponents only in a black-box way. Specifically,
exponents are only uniformly chosen, added, and multiplied both during setup and operation of the
scheme. (One subtlety here is the computation of the “reduced polynomials” [h

i

] = [Xi mod h] in the
projecting and canceling construction from Appendix B. Note that the coe�cients of these h

i

can be
computed from the coe�cients of h through linear operations alone. Hence, the involved exponents do
not have to be explicitly divided.) However, since we assume (special types of) matrix assumptions in
the source group, we can only use the candidate of [6] for our constructions.

Summarizing, both of our constructions can be implemented with the approximate multilinear map candidate
from [6] (but not with the one from [11]).
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