
Efficient identity-based threshold decryption scheme from bilinear
pairings I

Wei Gaoa,b, Guilin Wangc, Kefei Chena, Xueli Wangd, Guoyan Zhange

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b School of Mathematics and Information, Ludong University, Yantai 264025, China

cSchool of Computer Science & Software Engineering, University of Wollongong, NSW 2522, Australia
dSchool of Mathematics, South China Normal University, Guangzhou 510631, China

eSchool of Computer Science and Technology, Shandong University, Jinan 250100, China

Abstract

Taking advantage of a technique that allows to safely distribute a private key among decryption
servers we introduce a new identity-based threshold scheme, proven secure in the random oracle
model. This new paring-based scheme features a lot of improvements compared to other schemes
that can be found in the literature. Among them the two most noticeable ones are, the efficiency,
by drasticaly reducing the number of pairing computations, and the ability for a user to generate
and share a private key without requiring any access to a PKG.

Keywords:
Identity-based cryptography, Threshold cryptography, Provable security, Random oracle model,
Bilinear pairing, Identity-based threshold decryption

1. Introduction

Identity based (ID-based) cryptography was proposed by Shamir in 1984 [1] to simplify key
management and remove the public key certificates. In ID-based cryptography, the identity of a
user, such as his/her e-mail address, is taken as the public key and so the certificate for certifying
the public key is not needed. The secret key, calculated from the public key (identity of a user),
is issued by a trusted authority called private key generator (PKG). The first practical ID-based
encryption (IBE) scheme was proposed in 2001 by Boneh and Franklin [2], which was proved to
be secure against adaptive chosen ciphertext attack in random oracle model. Since then, in the
so-called identity-based cryptography field, many ID-based cryptographic schemes have been
proposed [3]. Bilinear pairing [2] is the most popular tool to construct identity-based crypto-
graphic primitives. Due to the various applications of bilinear pairings, the so-called pairing-
based cryptography is becoming one of hot topics in cryptography.

Threshold cryptography [4, 6, 7], mainly including signature and encryption, increases the
availability of the cryptographic operations which need involvement of secret keys, and at the

IThis work is partially supported by National Natural Science Foundation of China (No. 60970111, No. 60973135).
Email addresses: sdgaowei@gmail.com (Wei Gao), guilin@uow.edu.au (Guilin Wang),

kfchen@sjtu.edu.cn (Kefei Chen), wangxuyuyan@gmail.com (Xueli Wang), guoyanzhang@sdu.edu.cn
(Guoyan Zhang)
Preprint submitted to **** February 20, 2012

same time enhances the protection against the attacker which wants to compromise secret keys.
In a threshold public-key decryption system [4, 7], the decryption key corresponding to an iden-
tity is shared among a set of n users (or servers). In such a system, a ciphertext can be decrypted
only if at least t users cooperate, where t is the threshold value. However, the cooperation of less
than t users cannot leak any information about the plaintext or signature. This is crucial in all the
applications where one cannot fully trust a unique person, but possibly a pool of individuals.

A combination of these two concepts will result the concept of ID-based threshold decryp-
tion (IBTD) schemes. It is a very useful cryptographic primitive in practice [8]. One possible
application of such a IBTD scheme can be considered in a situation where an identity denotes
the name of the group whose decryption key is shared by its members. Another application of
the ID-based threshold decryption scheme is to use it as a building block to construct a mediat-
ed ID-based encryption scheme[9, 8]. The underlying idea is to split the private key associated
with the receiver’s ID into two parts. One is given to him and the other to a Security Mediator
(SEM). Then as the receiver requiers the help of the SEM in order to decrypher a given encrypt-
ed message, instantaneous revocation of his privilege to perform decryption is possible only by
instructing the SEM not to help him any more.

In tradtional IBC the PKG is the holder of all the private keys, implying some risk if its
security is compromised. In order to prevent such a scenario to occur, Boneh and Franklin [2]
suggested to introduce the threshold method, where the master key is distributed among n PKGs.
Then a user can get its private key by obtaining more than t shares from different distributed
PKGs. Following this idea, Boneh et al. [10] extended the IBE scheme [11] by adding the key
sharing algorithm and the key recovering algorithm. As further extensions, in [12, 13, 14], the
threshold decryption function was considered. However, in these schemes, the user can not share
his private key by himself, but has to ask the PKG to complete this task, since the algorithm
to share the private key depends on the master key. In 2004, Baek and Zheng [8] considered
the threshold decryption scheme where the shares of the identity-based private key DID can be
generated by the user himself. However, the Baek-Zheng method heavily relies on a suit of secret
sharing tools which involve much more pairing computation than other IBTD schemes.

In the field of pairing-based cryptography, it is known that the computation of bilinear pairing
is the bottleneck of the pairing application in practice [15]. To solve this problem, we should try
to use as less as possible pairings in designing pairing-based cryptographic primitives. However,
all previous threshold identity-based decryption schemes involve many bilinear pairings. On
the other hand, although the user can ask the PKG to share the identity-based private key for
him, it is preferable for him to share it by himself. In fact, only the Baek-Zheng method enjoys
this functionality. So it is an interesting issue to design an IBTD scheme which enjoys this
functionality and involves only a little computation for pairings. Ideally, it is the best if the
number of pairing computations in all component algorithms are constants, i.e., not variables of
either n or t.

With this motivation, by introducing a new technique that indirectly shares a private key in
the bilinear group through simply sharing an element in the finite field using the famous secret
sharing scheme due to Shamir [16], this paper proposes a new identity-based threshold decryp-
tion scheme from bilinear pairings that enjoys the following advantages. In terms of efficiency,
compared with previous works, it uses much less bilinear pairings among all the algorithms.
More specifically, all algorithms but Setup, which involves no pairing, need only one pairing
computation. In terms of functionality, it is the holder of the private key associated with an i-
dentity rather than the Private Key Generator (PKG) to share the private key. Finally, the formal
proof of security is provided in the random oracle model. In a short word, we construct the first

2

provably secure IBTD scheme with constant pairing computations.
The rest of the paper is organized as follows. We first review some preliminaries mainly

including the basic property of pairings, the computational assumption on which our scheme
is (indirectly) based, and the security notion of IBTD schemes in Section 2. We then present
our IBTD scheme in Section 3, prove its security in Section 4 and compare it with other IBTD
schemes in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Bilinear Pairing and Complexity Assumption

This section briefly reviews the definition of bilinear pairings and the related complexity
assumption.

Definition 1. Let G and GT be two groups of prime order q and let P be a generator of G, where
G is additively represented and GT is multiplicatively. A map e : G × G → GT is said to be
a bilinear pairing and the group G is called a bilinear group, if the following three conditions
hold:

(1) e is bilinear, i.e. e(aP, bP) = e(P, P)ab for all a, b ∈ Z∗q;

(2) e is non-degenerate, i.e. e(P, P) , 1, where 1 is the identity of GT ;

(3) e is efficiently computable.

Next, we review the Bilinear Diffie-Hellman (BDH) problem, which was introduced by Bone-
h and Franklin [2].

Definition 2. Let G and GT be two groups of prime order q, P be a generator of G and e :
G ×G→ GT is an bilinear pairing. Let ABDH be an attacker modelled as a probabilistic Turing
machine taking the security parameter k as input. Suppose that a, b, and c are uniformly chosen
at random from Zq and aP, bP, and cP are computed. Given (G,GT , q, e, P, aP, bP, cP), ABDH is
required to compute e(P, P)abc. We define ABDH’s success probability by

S uccBDH
ABDH (k) = Pr [ABDH outputs e(P, P)abc]

The attacker ABDH is said to be a (t, ε)-solver for the BDH problem if the success probability
S uccBDH

ABDH is lowerly bounded by ε (i.e. ≥ ε) and the running time is bounded by t. The BDH
problem is said to be (t, ε)-intractable if there is no (t, ε)-solver for it.

2.2. Security Model

As in [8], we review the syntax and security definitions of IBTD schemes below with slight
modification.

Definition 3. The identity-based (t, n)-threshold decryption scheme consists of the following
algorithms.

• System initialization algorithm Setup (1k): Given a security parameter 1k, this algorithm
outputs the system common parameters cp and the master secret key s. cp is made public,
while s is kept secret.

3

• Private key extraction algorithm EX (cp, s, ID): Given identity ID and master key s, this
algorithm computes the private key DID. It is then secretly sent to the corresponding entity.

• Private key distribution algorithm DK(cp, ID,DID, t, n): Given a private key DID, the
number of decryption servers n and a threshold parameter t, this algorithm generates n
shares {si}

n
i=1 of DID and some public parameters, mainly including a set of verification

keys {S i}
n
i=1. The key share s1, s2, . . . , sn are sent to the decryption server Γ1,Γ2, . . . ,Γn

respectively. These public parameters are used to check the validity of each private key
share and decryption share.

• Encryption scheme E(cp, ID,M): Given a plaintext M ∈ {0, 1}l and an identity ID, this al-
gorithm generates a ciphertext C. Here note that, usually, the validity of the ciphertext can
be publicly verified and the invalid ciphertexts will be rejected in the following algorithms.

• Decryption share generation algorithm D(cp, si,C): Given a ciphertext C and a private
key share si, this algorithm first checks the validity of the ciphertext C. If C is invalid, it
outputs ”Invalid Ciphertext”. Otherwise, it outputs the decryption share δi.

• Decryption share verification algorithm SV(cp, {S i}
n
i=1,C, δi): Given a ciphertext C, a set

of verification keys {S i}
n
i=1, and a decryption share δi, this algorithm first checks the validity

of the ciphertext C. If C is invalid, it outputs ”Invalid Ciphertext”. Otherwise, it outputs
“Valid Share” or “Invalid Share”.

• Share combining algorithm SC (cp,C, {δi}i∈Φ): Given a ciphertext C and a set of decryp-
tion shares {δi}i∈Φ (without loss of generality, we assume that there are at least t valid
ciphertext sahres in {δi}i∈Φ) , this algorithm first checks the validity of the ciphertext C. If
C is invalid, it outputs ”Invalid Ciphertext”. Otherwise, it then chooses t valid decryption
shares by using decryption share verification algorithm SV and last outputs the plaintext
M.

Following the work by Baek and Zheng, We now present the security notion for the IBTD
scheme against chosen-ciphertext attack [8], which we call “IBTD-IND-CCA”.

Definition 4. Let AIBT D be an attacker assumed to be a probabilistic Turing machine and con-
sider the following game GIBT D involving AIBT D and its challenger CIBT D.

Phase 1. AIBT D chooses to corrupt a fixed set of t − 1 out of n decryption servers.
Phase 2. The challenger CIBT D runs the PKG’s key/common parameter generation algorithm

taking a security parameter k as input, gives AIBT D the resulting common parameter cp and keeps
the master key s secret.

Phase 3. AIBT D issues a number of private key extraction queries, each of which is denoted
by ID. On receiving the identity query ID, the challenger CIBT D runs the private key extraction
algorithm to compute the corresponding private key DID for AIBT D.

Phase 4. AIBT D issues a target identity query ID∗. On receiving ID∗, CIBT D runs the private
key extraction algorithm to obtain a private key DID∗ associated with ID∗. CIBT D then runs
the private key distribution algorithm on input DID∗ with parameter (t, n) and obtains a set of
private/verification key pairs {si, S i}. Next, CIBT D gives AIBT D the t − 1 private keys of corrupted
decryption servers and the verifications keys of all the decryption servers. However, the n− t + 1
private keys of uncorrupted servers are kept secret from AIBT D.

Phase 5. AIBT D issues arbitrary private key extraction queries and arbitrary decryption share
generation queries with respect to any uncorrupted decryption server. We denote each of these

4

queries by ID and (C, k) respectively. On receiving ID, the challenger CIBT D runs the private
key extraction algorithm to obtain a private key associated with ID and returns it to AIBT D. The
only restriction here is that AIBT D is not allowed to query the target identity ID∗ to the private
key extraction algorithm. On receiving (C, k), the challenger CIBT D runs the decryption share
generation algorithm to get the decryption share δk with respect to the ciphertext C, the target
identity ID∗ and the uncorrupted servers Γk and sends it to AIBT D.

Phase 6. AIBT D outputs two equal-length plaintexts (M0,M1). Then the challenger CIBT D

chooses a random bit β and computes a target ciphertext C∗ = E(cp, ID∗,Mβ) for AIBT D.
Phase 7. As in Phase 5, AIBT D issues arbitrary private key extraction queries and arbitrary

decryption share generation queries and the challenger CIBT D deals with these queries with the
additional restriction that the target ciphertext C∗ is not allowed to query in this phase.

Phase 8. AIBT D outputs a guess β ∈ {0, 1}.
We define the attacker AIBT D’s advantage by

AdvIBT D
AIBT D (k) = |Pr[β = β] − 1

2 |.

AIBT D is said to be the (t, qe, qd, ε)-attacker if AdvIBT D
AIBT D (k) is at least ε when the running time,

the times of private key extraction queries and decryption share generation queries are at most
t, qe, qd respectively. The IBTD scheme is said to be IBTD-IND-CCA (t, qe, qd, ε)-secure if there
is no (t, qe, qd, ε)-attacker against it.

2.3. Non-Interactive Zero Knowledge Proof for the Equality of Two Discrete Logarithms

To make the validity of the ciphertexts and the decryption shares checkable, we shall use a
non-interactive zero-knowledge proof system for the equality of two discrete logarithm [17, 7].

Let G be a group of order q with generators g, g. Let EDLogg,g be the language of pairs
(u, u) ∈ G2 such that logg u = logg u. Let (u, u) ∈ EDLogg,g be given, so there exists r ∈ Zq

such that u = gr, u = gr. To construct the non-interactive zero knowledge proof (c, d) for the
equality logg u = logg u, the prover randomly selects t ∈ Zq, and computes w = gt,w = gt, c =

H(u, u,w,w), d = t − rc, where H is a cryptographic hash function taken as a random oracle.
The verifier accepts (c, d), if and only if c = H(u, u, gduc, gduc). In the random oracle model, this
protocol is a non-interactive zero-knowledge proof for the language EDLogg,g.

3. Construction

We now describe our ID-based threshold decryption (IBTD) scheme. We claim that our
IBTD scheme is based on the ID-based encryption scheme due to Boneh and Franklin [2]. We
call our IBTD scheme “IdThdBm”, meaning “ID-based threshold decryption scheme from the
bilinear map”. IdThdBm consists of the following algorithms.

• Setup (k): Given a security parameter k, this algorithm performs as follows.

(1) It generates two groups G and GT of the same prime order q ≥ 2k, chooses a genera-
tor P of G and specifies the bilinear map e : G ×G→ GT .

(2) It specifies the hash functions H1 : {0, 1}∗ → G, H2 : GT → {0, 1}l, H3 : G×{0, 1}l →
G, H4 : G4 → Zq and H5 : G4

T → Zq, where l denotes the length of a plaintext, which
is a funciton of k.

5

(3) It chooses the PKG’s master key s uniformly at random from Zq, computes the PKG’s
public key Ppub = sP.

(4) It returns the common parameters cp = (G,GT , q, P, e, Ppub,H1,H2,H3,H4,H5) and
keeps the master key s secret.

• EX (cp, s, ID): Given an identity ID, this algorithm computes QID = H1(ID) and returns
the private key DID = sQID associated with ID.

• DK(cp, ID,DID, t, n) where 1 ≤ t ≤ n < q: Given a private key DID, the number of
decryption servers n and a threshold parameter t, the algorithm shares DID as follows.

(1) It randomly chooses a0, a1, . . . , at−1 ∈ Zq, constructs the polynomial over Zq

F(x) = a0 + a1x + a2x2 + . . . + at−1xt−1

and sets s = a0.

(2) It computes two public parameters S = e(P, P), DID = DID − sQID.

(3) It computes each decryption server Γi’s private key share si = F(i), and verification
key S i = S si for 1 ≤ i ≤ n.

(4) It secretly sends the private key share si to server Γi for 1 ≤ i ≤ n and publishes
S 1, S 2, . . . , S n, S , DID among the n decryption servers (not system-widely). Here
note that it can be easily seen that Γi is able to check the validity of all these parame-
ters.

Remark 1. Here note that, as one of our techniques to avoid using pairing computation,
e(P, P) is added in the public parameters. As a result, at many places in the following algo-
rithms DK,D,SV,SC, the complex computation for the bilinear pairing can be replaced
by one simple exponentiation.

Remark 2. Here note that the private key DID ∈ G is indirectly shared through sharing
the element s ∈ Zp by the conventional Shamir sharing method. In other words, DID can
be recovered by any t shares si and the public parameter DID. Obviously, our method
is much more efficient than the Baek and Zheng’s direct sharing method which heavily
involves pairing computation. The more interesting feature is that this indirect key sharing
method will result in much less pairings in the following algorithms. For more details,
please refer to Section 5.

• E (cp, ID,M): Given a plaintext M ∈ {0, 1}l and an identity ID, this algorithm does as
follows.

(1) It chooses a random integer r from Zq, and computes QID = H1(ID), K = e(rQID, Ppub),
V = H2(K) ⊕ M, where K plays the role of a temporary encryption key.

(2) It computes U = rP, P = H3(U,V), U = rP.

(3) To prove logP U = logP U, it randomly chooses t ∈ Zq and presents the non-
interactive proof (c, d):

W = tP,W = tP, c = H4(U,U,W,W), d = t − rc.

(4) It returns the ciphertext C = (U,V,U, c, d).
6

Here note the following points.

(i) The validity of the ciphertext C = (U,V,U, c, d) can publicly verified by checking
the equation:

c = H4(U,U, dP + cU, dP + cU), where P = H3(U,V).

(ii) Informally speaking, U and the above zero-knowledge proof can be seen as the digital
signature of the message V under the public key U;

• D (cp, si,C): Given the private key si of a decryption server Γi and a ciphertext C =

(U,V,Z, U, c, d), the decryption server Γi uses his private key si to generate a decryption
share δi as follows.

(1) It verifies the validity of the ciphertext C by checking the equation c = H4(U,U, dP+

cU, dP + cU), where P = H3(U,V). If C cannot pass this test, it outputs “Invalid
Ciphertext”.

(2) Otherwise, Γi computes Z = e(QID,U), Zi = Z si .

(3) To show the equality of the two discrete logarithms logZ Zi = logS S i, it randomly
chooses ti ∈ Zq and computes the zero knowledge proof (ci, di):

Zi = Zti ,S i = S ti , ci = H5(Zi, S i, Zi, S i), di = ti − sici, .

(4) At last, it outputs the decryption share δi = (Zi, ci, di).

• SV(C, {S i}
n
i=1, S , δi): Given a ciphertext C = (U,V,U, c, d), a set of verification keys

{S 1, . . . , S n}, the additional parameter S (recall that S = e(P, P)) and a decryption share δi,
this algorithm does as follows.

(1) It checks whether c = H4(U,U, dP + cU, dP + cU), where P = H3(U,V). If C does
not pass the above test, then this algorithm returns “Invalid Ciphertext”.

(2) Otherwise, it parses δi as (Zi, ci, di) and checks the equality

ci = H5(Zi, S i,Zdi Zci
i , S

di S ci
i), where Z = e(QID,U).

If δi does not pass this test, returns “Invalid Shares”. Otherwise, it accept δi as valid
share.

• SC (cp,C, {δi}i∈Φ): Given a ciphertext C = (U,V,U, c, d) and a set of decryption shares
{δi}i∈Φ where |Φ| ≥ t and δi = (Zi, ci, di), this algorithm does as follows.

(1) It checks whether c = H4(U,U, dP + cU, dP + cU), where P = H3(U,V). If C has
not passed the above test, this algorithm returns “Invalid Ciphertext”.

(2) For i ∈ Φ, it checks the validity of each decryption share δi ∈ Φ by the equation
ci = H5(Zi, S i,Zdi Zci

i , S
di S ci

i), where Z = e(QID,U), until it finds the t-th valid one.
Without loss of generality, we assume that there exist at least t valid ciphertext shares
and Φ denotes the subset of t valid ones.

(3) It computes the temporary key K = e(DID,U)
∏
i∈Φ

Z
cΦ

0,i
i and returns the plaintext M =

H2(K) ⊕ V , where the Lagrange coefficients cΦ
0,i =

∏
j∈Φ, j,i

− j
i− j satisfies s =

∑
i∈Φ

cΦ
0,isi .

7

Here note the correctness of the above IBTD scheme, since

K = e(DID,U)
∏
i∈Φ

Z
cΦ

0,i
i

= e(DID − sQID, rP)
∏
i∈Φ

e(QID, rP)sicΦ
0,i

= e(sQID, rP)e(QID, rP)−se(QID, rP)s

= e(sQID, rP)
= e(rQID, Ppub).

4. Security Proof

Following the proof method in [8], to prove the security of the proposed IBTD scheme
IdThdBm, we derive a non-ID-based threshold decryption scheme called “ThdBm” from IdThdB-
m, which will be described shortly. We then show that the TD-IND-CCA security of the scheme
ThdBm, which will be defined after the description of ThdBm, implies the IBTD-IND-CCA se-
curity of the scheme IdThdBm. Next, we show that the intractability of the BDH problem implies
the TD-IND-CCA security of the ThdBm scheme. At last, we obtain the provable security result.

Due to the similarity to Definition 3 for IBTD schemes (Essentially, A TD scheme is just a
IBTD scheme without key extraction), here we shortly states the syntax of TD (threshold decryp-
tion) schemes as follows. A TD scheme in the non-ID-based setting consists of a key/common
parameter generation algorithm GK, an encryption algorithm E, a decryption share generation
algorithm D, a decryption share verification algorithm SV, and a share combining algorithm
SC. We first simply present the following TD scheme ThdBm derived from the IBTD scheme
IdThdBm as follows.

• GK(k, t, n): Given a security parameter k, the number of decryption servers n and a thresh-
old parameter t, the dealer does as follows.

(1) It generates two groups G and GT of the same prime order q ≥ 2k, chooses a genera-
tor P of G and specifies the bilinear map e : G ×G→ GT .

(2) It specifies the hash functions H2 : GT → {0, 1}l, H3 : G×{0, 1}l → G, H4 : G4 → Zq

and H5 : G4
T → Zq, where l denotes the length of a plaintext.

(3) It randomly chooses s from Zq and Q from G, and then sets the private key D = sQ,
the public key Ppub = sP and the common parameters cp = (G,GT , q, P, e, Ppub,Q,
H2, H3, H4,H5).

(4) It randomly chooses a0, a1, . . . , at−1 ∈ Zq and constructs the polynomial over Zq

F(x) = a0 + a1x + a2x2 + . . . + at−1xt−1

and sets s = a0.

(5) It computes two public parameters S = e(P, P), DID = DID − sQ.

(6) It computes each decryption server Γi’s private key share si = F(i), verification key
S i = S si for 1 ≤ i ≤ n.

8

(7) It secretly sends the distributed private key si to server Γi for 1 ≤ i ≤ n and publishes
S 1, S 2, . . . , S n, S, D and the public parameters cp.

• E(cp,M): Given a plaintext M ∈ {0, 1}l, this algorithm chooses r, t uniformly at random
from Zq, and subsequently computes K = e(rQ, Ppub) . It then computes U = rP,V =

H2(K)⊕M, P = H3(U,V), U = rP, c = H4(U,U, tP, tP), d = t− rc and returns a ciphertext
C = (U,V,U, c, d).

• D (cp, si,C): Given a private key si of one decryption server and a ciphertext C = (U,V,
U, c, d), the decryption server Γi uses his private key si to generate a decryption share
δi as follows. It verifies the validity of the ciphertext C by checking the equation c =

H4(U,U, dP + cU, dP + cU), where P = H3(U,V). If C is valid, then Γi computes
Zi = Z si and generates the zero knowledge proof (ci, di,Zi, S i) for the equality of the t-
wo discrete logarithms logZ Zi = logS S i, where Z = e(Q,U), Zi = Zti ,S i = S ti , ci =

H5(Zi, S i,Zti , S ti), di = ti − sici, and ti is randomly chosen from Zq. At last, it outputs the
decryption share δi = (Zi, ci, di).

• SV(C, {S i}
n
i=1, S , δi): Given a ciphertext C = (U,V,U, c, d), a set of verification keys

{S 1, . . . , S n}, the parameter S and a decryption share δi, this algorithm first verifies the va-
lidity of C by checking c = H4(U,U, dP+cU, dP+cU), where P = H3(U,V), and then the
validity of δi = (Zi, ci, di) by checking ci = H5(Zi, S i,Zdi Zci

i , S
di S ci

i), where Z = e(QID,U).

• SC(cp,C, {δi}i∈Φ): Given a ciphertext C = (U,V,U, c, d) and a set of decryption shares
{δi}i∈Φ where |Φ| ≥ t and δi = (Zi, ci, di), this algorithm first checks the validity of C by
checking c = H4(U,U, dP + cU, dP + cU), where P = H3(U,V). It then constructs the
subset Φ of t valid ciphertext shares through the checking equation ci = H5(Zi, S i,Zdi Zci

i ,

S di S ci
i), where Z = e(QID,U). At last, it computes the session key K = e(D,U)

∏
i∈Φ

Z
cΦ

0,i
i and

returns the plaintext M = H2(K) ⊕ V , where the Lagrange coefficients cΦ
0,i =

∏
j∈Φ, j,i

− j
i− j

satisfies s = cΦ
0,isi .

Next, we review the security notion for the threshold decryption scheme against chosen-
ciphertext attack [7, 8], which we call “TD-IND-CCA”.

Definition 5. Let AT D be an attacker assumed to be a probabilistic Turing machine. Suppose
that a security parameter k is given to AT D as input. Now, consider the following game GT D in
which the attacker AT D interacts with the challenger CT D.

Phase 1: AT D chooses to corrupt a fixed subset of t − 1 servers.
Phase 2: CT D runs the key/common parameter generation algorithm GK, and gives AT D

the resulting private key shares of the corrupted servers, the verification keys of all servers, the
public key and other common parameters.

Phase 3: AT D adaptively interacts with the uncorrupted decryption servers, submitting ci-
phertexts and obtaining decryption shares.

Phase 4: AT D chooses two equal-length plaintexts (M0,M1). Then CT D chooses a random
bit β and returns a target ciphertext C∗ = E(cp,Mβ) to AT D.

Phase 5: AT D adaptively interacts with the uncorrupted decryption servers, submitting ci-
phertexts and obtaining decryption shares. However, the target ciphertext C∗ is not allowed to
query to the decryption servers.

9

Phase 6: AT D outputs a guess β ∈ {0, 1}.
We define the attacker AT D’s advantage by

AdvT D
AT D (k) = |Pr[β = β] − 1

2 |.

AT D is said to be the (t, qd, ε)-attacker if the advantage AdvT D
AT D (k) is at most ε when the running

time and the times of decryption share generation queries are at most t, qd respectively. The TD
scheme is said to be TD-IND-CCA (t, qd, ε)-secure if there is no (t, qd, ε)-attacker against it.

Lemma 1. Suppose that AIBT D is the (t, qe, qd, ε)-attacker against the IBTD-IND-CCA security
of the IBTD scheme IdThdBm in the random oracle model, where qH1 queries to the random
oracles H1 are issued. Then there exists a (t′, qd, ε

′)-attacker AT D against the TD-IND-CCA
security of the TD scheme ThdBm, where t′ = t + (qe + qH1)O(T1), ε′ > 1

qH1
ε, and T1 denotes the

time for computing one scalar multiplication in G.

Proof. To construct AT D using AIBT D as a subroutine, we will simulate the challenger CIBT D

of AIBT D as in the game GIBT D and make use of AIBT D’s output as follows.
Phase 1. If AIBT D chooses to corrupt the t − 1 decryption servers during the attack, then AT D

correspondingly chooses to corrupt t − 1 decryption servers for ThmBm.
Phase 2. AT D sets cpIBT D=(G,GT , q, P, e, Ppub, H1, H2, H3, H4,H5) as the common parame-

ters of IdThdBm and sends them to AIBT D, where (G,GT , q, P, e, Ppub,Q, H2, H3, H4,H5) is the
ThdBm’s common parameters cpT D obtained from the challenger CT D, and the hash function H1
is taken as the random oracle which is controlled by AT D as follows.

AT D randomly chooses an index µ from the range {1, 2, . . . , qH1 }. By IDµ, we denote the µ-th
query of AIBT D to the random oracle H1. We hope IDµ would be a target identity ID∗ that AIBT D

outputs in Phase 4. Whenever H1 is queried at ID, AT D performs the following:

• If the query ID exists in the entry < (ID, τ),QID >∈ L1, return QID to AIBT D. (Note that
the initially empty list L1 is the “input-output” table for the simulation of H1.)

• Otherwise, do the following.

– If ID = IDµ, set QID = Q, append < (IDµ,⊥),QIDµ
> to L1 and return QID to AIBT D.

(Note that Q is from AT D’s common parameter cpT D.)

– Else ID , IDµ, do the following.

∗ Choose τ uniformly at random from Zq.
∗ Append < (ID, τ),QID > to L1.
∗ Compute QID = τP and return QID to AIBT D.

Phase 3. If AIBT D issues ID as a private key extraction query, AID performs the following:

• If the query ID exists in the entry < (ID, τ),QID >∈ L1, extract τ from it, compute DID =

τPpub , and return DID to AIBT D.

• Otherwise, do the following.

– If ID = IDµ, terminate the whole game.

– Else (ID , IDµ), do the following.

∗ Choose τ uniformly at random from Zq.
10

∗ Compute QID = τP and save < (ID, τ),QID > into L1.
∗ Compute DID = τPpub and return DID to AIBT D.

Phase 4. AIBT D issues a target identity query ID∗. On receiving ID∗, AT D obtains from its
challenger CT D the private key shares (without loss of generality, denoted by {si}

t−1
i=1) of corrupted

decryption servers, all verification keys {S i}
n
i=1 and the parameter S ,D, and then sends them

to AIBT D as the corresponding information for the identity ID∗. In other words, Q is taken as
H1(ID∗).

Phase 5. AIBT D issues arbitrary private key extraction queries and arbitrary decryption share
generation queries to the uncorrupted decryption servers. AT D answers the key extraction queries
as in Phase 3. AT D uses its own decryption share generating oracle, provided by CT D, to answer
those decryption share generation queries.

Phase 6. If AIBT D submits a pair of two equal-length plaintexts (M0,M1), then AT D provides
(M0,M1) to its challenger CID, and obtains a target ciphertext C∗ such that

C∗ = (U,V,U, c, d),

where U = rP,V = H2(e(rQID∗ , Ppub)) ⊕ Mβ, and r and β are chosen uniformly at random from
Zq and {0, 1} respectively. AT D simply returns the C∗ to AIBT D as a target ciphertext.

Phase 7. AIBT D issues arbitrary private key extraction queries and arbitrary decryption share
generation queries to the uncorrupted decryption servers. AT D answers these queries as in Phase
5 with additional restriction that AIBT D is not allowed to query C∗ to any of the uncorrupted
decryption servers.

Phase 8. Finally, if AIBT D submits its guess β̄, then AT D returns β̄ to CT D.

Now we complete the description of the attacker AT D. Next, we show that the above con-
structed attacker AT D perfectly simulates the challenger CIBT D, when it does not terminates the
game. Firstly, due to the randomness of τ ∈ Zq and Q, the above simulation of the random oracle
H1 is perfect. Secondly, for ID , IDµ, DID is rightly simulated, since DID = τPpub = τsP =

sQID. Thirdly, the decryption shares and the target ciphertext are also perfectly simulated, since
there is no difference between the IBTD scheme IdThdBm and the TD scheme ThdBm when
their public keys, ID and Q respectively, satisfy the equation H1(ID) = Q.

Since AT D perfectly simulates the challenger CIBT D, when it does not terminates the game.
So we have that the advantage of AT D against the TD scheme ThdBm is equal to the advantage
of AIBT D against the IBTD scheme IdThdBm, when AT D does not abort. On the other hand, the
probability that the attacker AT D does not terminate is 1

qH1
, since µ has been uniformly chosen

from [1, qH1]. So we have

ε′ ≥ 1
qH1
ε.

Finally, we analyze the running time t′ of the TD-IND-CCA attacker AT D. Note that t′ mainly
consists of the time for simulation of the random oracle H1 and the private key extraction oracle
EX, as well as that for the attacker AIBT D. Since the simulation of H1 and Ex mainly consists of
1 or 2 scalar multiplications in G, so t′ is lower-bounded by tIDCCA + (qe + qH1)O(T), where T
denotes the running time for computing one scalar multiplication. The proof is complete. .

Lemma 2. Suppose that there exists a (t′, qd, ε
′)-attacker AT D against the TD-IND-CCA security

of the scheme ThdBm. Then there exists a (t′′, ε′′)-solver ABDH for the BDH problem, where

11

t′′ = t′ + max{qH2 , qH3 , qH4 , qH5 , qd}O(T2), ε′′ ≥ 2ε
qH2
.

The above T2 is the biggest one among the running time for pairing, exponentiation in G and
GT .

Proof. To construct ABDH using AT D in the game GT D as a subroutine, we will simulate the
view of AT D and make use of its answers as follows. Assume that ABDH obtains the parameters
G,GT , q, P, e, and problem denoted by aP, bP, cP, and is required to compute e(P, P)abc.

Phase 1. AT D chooses a fixed set Φ′ of t − 1 decryption servers it wants to corrupt. Without
loss of generality, assume Φ′ = {1, 2, . . . , t − 1}.

Phase 2. In this phase, ABDH does as follows.

• ABDH randomly selects s̃ ∈ Zq sets

Ppub = sP = bP,Q = cP,D = s̃Q, S 0 = e(Ppub − s̃P, P).

Here note that if the unknown value s − s̃ is denoted by s, then we have

D = sQ − sQ, S 0 = e(P, P)s.

• Next, for 1 ≤ i ≤ t−1, ABDH randomly picks an element si ∈ Zq as the key share of Γi, and
sets the verification key S i = S si , where S = e(P, P). Let F(x) ∈ Zq[x] be the polynomial
of degree (t − 1), which is implicitly defined by

F(0) = s, F(i) = si for 1 ≤ i ≤ t − 1.

Hence, we have

S i = e(P, P)F(i), i = 0, 1, 2, . . . , t − 1.

• For every integer k ∈ [t, n], ABDH simulates the k-th verification key S k = S F(k) =

e(P, P)F(k) as follows.

– ABDH sets Φ′ = {0, 1, . . . , t − 1} and then computes the Lagrange coefficients

cΦ′

k, j =
∏

s, j,0≤s≤t−1

k−s
j−s , j = 0, 1, . . . , t − 1.

– According to Lagrange interpolation formula F(k) =
t−1∑
j=0

cΦ′

k, jF(j), ABDH then com-

putes

S k = S
cΦ′

k,0

0 S
cΦ′

k,1

1 . . . S
cΦ′

k,t−1

t−1 .

• At last, ABDH sends D, S , S 1, S 2, . . . , S n, s1, . . . , st−1 and cp to AT D, where cp = (G, GT , q,
P, e, Ppub,Q, H2, H3, H4,H5) and H2, H3, H4,H5 are random oracles controlled by ABDH

as follows.

– H2-queries. AT D can issue H2 queries at any time. ABDH maintains an initially empty
list L2 of tuples < Ki,Ri >. For the the query Ki, AT D does as follows.

12

∗ If the query Ki already appears on the L2 list in a tuple < Ki,Ri >, then ABDH

responds with H2(Ki) = Ri.
∗ Otherwise, ABDH picks a random string Ri ∈ {0, 1}l, adds the tuple < Ki,Ri > to

L2 and responds to AT D with H2(Ki) = Ri.

– H3-queries. Initially, ABDH sets

U∗ = aP, V∗
R
← {0, 1}l, H3(U∗,V∗) = t∗P,

where “
R
←” means “is randomly chosen from”, and then adds < t∗, (U∗,V∗) > to the

empty list L3. For a query H3(Ui,Vi), ABDH does as follows.

∗ If the query Ui,Vi already appears on the L3 list in a tuple < ti, (Ui,Vi) >, then
ABDH responds with tiPpub in the case (Ui,Vi) , (U∗,V∗), or tiP in the other case
(Ui,Vi) = (U∗,V∗).

∗ If (Ui,Vi) does not appears in L3, ABDH randomly selects ti ∈ Zq, adds <
ti, (Ui,Vi) > to the L3, and returns the answer sets H3(Ui,Vi) = tiPpub.

– H4-queries. This random oracle H4 is simulated in the same way as simulating the
random oracle H2. Roughly speaking, when AT D queries the random oracle H4 at a
distinct point (Ui,U i,Wi,W i), ABDH choose ci at random as the answer and maintains
an initially empty list L4 of tuples < ci, (Ui,U i,Wi,W i) >.

– H5-queries. This random oracle H5 is simulated in the same way as simulating the
random oracles H2,H4. Roughly speaking, when AT D queries the random oracle
H5 at a distinct point (Zi, S i,Zi, S i), ABDH choose ci at random as the answer and
maintains an initially empty list L5 of tuples < ci, (Zi, S i,Zi, S i)) >.

Phase 3. Assume that AT D asks for the k-th decryption share of the ciphertext C = (U,V , U,
c, d) due to the uncorrupted server Γk, where t ≤ k ≤ n.

• ABDH searches the list L3 for a tuple < t′, (U,V) > containing (U,V). If it is nonexistent,
ABDH returns “Invalid Ciphertext”.

• ABDH searches the list L4 for a tuple < c, (U,U,W,W) > containing (U,U, dP + cU, dP +

cU), where P = H3(U,V). If it does not appears in L4, ABDH returns “Invalid Ciphertext”.

• Although ABDH cannot get r from U = rP, he can assume U = rP and simulates the
decryption of C. In fact, ABDH can computes the temporary key K = e(Q,U)

1
t′ , since

K = e(D,U) = e(sQ, rP) = e(Q, rsP) = e(Q, r(t′Ppub))
1
t′ = e(Q, rP)

1
t′ = e(Q,U)

1
t′ .

• Just like simulating the verification keys S k in Phase 2, k ∈ [t, n], ABDH simulates the k-th
decryption share δk as follows.

– ABDH computes

Z = e(Q,U),Z0 = KZ−s̃, Zi = Z si = e(siQ,U), i = 0, 1, 2 . . . , t − 1.

Here note that Z0 = Z s, since

Z0 = KZ−s̃ = Z sZ−s̃ = Z s−s̃ = Z s.

13

– ABDH computes Zk = ZF(k) through

Zk = Z
cΦ′

k,0

0 Z
cΦ′

k,1

1 . . . Z
cΦ′

k,t−1

t−1 ,

where

cΦ′

k, j =
∏

s, j,0≤s≤t−1

k − s
j − s

, j = 0, 1, 2, . . . , t − 1,

F(k) =

t−1∑
j=0

cΦ′

k, jF(j).

– ABDH randomly selects ck, dk ∈ Zq, and sets the k-th decryption share δk = (Zk, ck, dk).
At last, ABDH appends < ck, (Zk, S k,Zdk Zck

k , S
dk S ck

k) > to the list L5, where Z =

e(Q,U). Now, it can be seen that this simulated ciphertext C can pass the validi-
ty checking.

Phase 4. AT D chooses two equal-length plaintexts (M0,M1) and provides them to ABDH .
ABDH provides to AT D the target ciphertext C∗ = (U∗,V∗,U

∗
, c∗, d∗) as below.

• U∗,V∗ are defined in the initial step of simulating the random oracle H3 and we have

P
∗

= H3(U∗,V∗) = t∗P.

• The other parts U
∗
, c∗, d∗ is defined as:

U
∗

= t∗U∗, c∗
R
← Zq, d∗

R
← Zq.

• At last, ABDH appends < c∗, (U∗,U
∗
, d∗P + c∗U∗, d∗P

∗
+ c∗U

∗
) > to the list L4.

Here note that U
∗

= aP
∗
, since

U
∗

= t∗U∗ = a(t∗P) = aH3(U∗,V∗).

Phase 5: ABDH simulates the decryption share oracle for AT D as in Phase 3. However, the
target ciphertext C∗ is not allowed to query to the decryption servers.

Phase 6: AT D outputs a guess β ∈ {0, 1}. ABDH ignores β, picks a tuple < Ki,Ri > from L2
randomly, and then output Ki as the solution to the given instance aP, bP, cP of the BDH problem.

Now we complete the description of the attacker ABDH . Then we show that AT D’s view in the
above simulation is identical to its view in the real attack, as long as AT D does not issue a query
for H2(e(P, P)abc).

• In Phase 2, we show the following points.

– The four random oracles H2,H3,H4,H5 are perfectly simulated, since all the respons-
es are uniform and independent in the respective ranges.

– The parameters s, F(x) are distributed as in the real attack. Then the other parameters
D, S 1, S 2, . . . , S n, s1, . . . , st−1 are also perfectly simulated, since they are defined by
s, F(x).

14

– Obviously, the other parameters, such as Ppub,Q, S , are generated as in the real at-
tack.

• In Phase 3, observe that for the queried ciphertext C = (U,V , U, c, d), if AT D does not
queries H3(U,V) or H4(U,U, dP + cU, dP + cU), he can not get these values by himself
and so can not make the ciphertext C valid (Here we ignore the negligeable probability
that AT D obtains these values through purely random guess). So, if C is valid, then these
queries have been made and hence the simulation in Phase 3 is obviously successful.

• In Phase 4, observe that if ABDH does not issue a query for H2(e(P, P)abc), he does not
knows any information of H2(e(P, P)abc). In this case, the target ciphertext C∗ is distributed
as in the real attack.

Then we analyze the success probability of ABDH . Let H be the event that algorithm AT D

issues a query for H2(e(P, P)abc) at some point during the simulation above (this implies that
at the end of the simulation e(P, P)abc appears in some tuple on the L2). We also study event
H in the real attack game, namely the event that AT D issues a query for H2(e(P, P)abc) when
communicating with a real challenger and a real random oracle for H2. In the real attack, if the
event H does not occur, the decryption of C∗ is independent of AT D’s view and hence Pr[β =

β′|H does not occur] = 1
2 . By definition of AT D, we know that in the real attack Pr[β = β′]− 1

2 ≥

ε. We show that these two facts imply that Pr[H] ≥ 2ε. To do so we first derive simple upper
and lower bounds on Pr[β = β′]:

Pr[β = β′] = Pr[β = β′|¬H] Pr[¬H] + Pr[β = β′|H] Pr[H]

≤
1
2

Pr[¬H] + Pr[H] =
1
2

+
1
2

Pr[H],

Pr[β = β′] ≥ Pr[β = β′|¬H] Pr[¬H] =
1
2
−

1
2

Pr[H].

It follows that ε ≤ | Pr[β = β′] − 1
2 | ≤

1
2 Pr[H]. Therefore, in the real attack Pr[H] ≥ 2ε. On

the hand, observe that, we have showed that AT D’s view in the above simulation is identical to its
view in the real attack beforeH occurs. Hence, we can claim that Pr[H] in the simulation above
is equal to Pr[H] in the real attack. Furthermore, at the end of the simulation e(P, P)abc appears
in some tuple on the L2 with probability greater than 2ε. So we get the last probability

Pr[ABDH outputs e(P, P)abc] ≥ 2ε
qH2

.

Finally, we roughly analyze the running time t′′ of the algorithm ABDH . The running time t′′

mainly consists of the time t′ of the attacker AT D and that for simulating random oracle queries
and decryption share queries. The computation for each query, random oracle query or decryp-
tion share query, is a certain number of exponentiations in G or GT or pairings. So we have
t′′ = t′ + max{qH2 , qH3 , qH4 , qH5 , qd}O(T), where T is the biggest one among the running time for
pairing, exponentiation in G and GT . The proof is complete.

From Lemma 1,2, we obtain the following the theorem

Theorem 1. Under the BDH assumption, the proposed IBTD scheme is TD-IND-CCA secure
in the random oracle. Concretely, suppose that AIBT D is the (t, qe, qd, ε)-attacker against the
IBTD-IND-CCA security of the IBTD scheme IdThdBm in the random oracle model, where qH1

queries to the random oracles H1 are issued. Then there exists a (t′′, ε′′)-solver ABDH for the
BDH problem, where

15

t′′ = t + (qe + qH1)O(T1) + max{qH2 , qH3 , qH4 , qH5 , qd}O(T2), ε′′ ≥ 2ε
qH2 qH1

.

The parameters T1,T2, qH1 , qH2 , qH3 , qH4 , qH5 , qe, qd are defined as in lemma 1,2.

5. Comparison

At first, we introduce some aspects which will be considered during comparing ID-based
threshold decryption schemes.

• Number of pairings in all relative algorithms. There are many kinds of concrete construc-
tions of bilinear pairings, using Tate pairing, Weil Pairing or their variants, on supersin-
gular elliptic curves or ordinary elliptic curves such as MNT curves, Freedman curves
and Barreto-Naehrig curves. Furthermore, there are appearing various new techniques on
pairing implementation with all kinds of optimizations. Hence, it is impossible to simply
conclude how much the speed difference is between the scalar multiplication in the group
G (or the exponentiation in GT) and the bilinear pairing, since the speed difference will
get changed with the difference of the type of pairing, the security parameters, the type of
underlying curves, the parameters of curves such as embedding degrees and so on. All in
all, it remains reasonable to say that the scalar multiplication in G (or the exponentiation in
GT) is remarkably faster than the pairing operation for most pairing-based cryptographic
schemes. So we take the number of pairings as the main efficiency index, and try to use as
less pairings as possible .

• Who (PKG or the user himself) is the dealer to distribute the private key of the identity.
First, note that, in many applications of IBTD schems, the object of splitting the private
key of the identity is to help the user to distribute his power for decryption. In such cases,
it is obviously preferable to adopt the IBTD scheme which can help the user to distribute
his private key without bothering PKG. Second, note that it is trivial to transform the IBTD
scheme supporting the user himeslf to distribute his private key to the one supporting the
PKG to distribute the user’s private key. All in all, it is more flexible, if we can provide the
function for user to distribute his private key by himself in the IBTD scheme.

• Random oracle Model or Standard model. From the purely theoretical viewpoint, it is
preferable to adopt the scheme secure in the standard model. Now, the only IBTD scheme
in the standard model is the one proposed by Kiltz and Galindo [18]. However, at the
price of standard model, in their IBTD scheme, the public key involves k elements in the
group G, where k is the security parameter, and the underlying mathematical assumption
(BDDH) is a stronger than BDH. Additionally, it also involves more pairings and can
not support the user to distribtue his private keys. Hence, it is not appropriate to simply
conclude that the IBTD scheme in the standard model is better than that in random oracle
model. By the way, we mention that we tried but failed to find the way for applying our
technique to the identity based encryption in the standard model [19].

In terms of security and functionality, we compare our IBTD scheme with other schemes as
follows. Like the schemes in [8, 14], our scheme is provably secure in the random oracle model
(ROM) under the BDH assumption, while the IBTD scheme proposed in [18] is provably secure
in the standard model (SM) under the BDDH assumption (Bilinear Decision Diffie-Hellman).

16

Like the scheme in [8], the user himself in our scheme can share the private key, while the user
in the schemes of[14, 18] has to depend on the PKG to share the private key.

In terms of efficiency, the comparison between our IBTD scheme and other ones is as follows.
In the field of pairing based cryptography, the number of involved pairings in algorithms is the
most important efficiency index. As explained in Remark 1, 2, we make use of some techniques
to avoid using pairings. Among these techniques, the indirect method to share the private key in
group is the main one . As a result, our identity-based (t, n)-threshold decryption scheme is much
more efficient than others as showed in the above table. Especially, observe that the number of
pairings in the algorithms DK,SC in [8, 18, 14] linearly increases with the parameter t or n,
while the number of pairings in our scheme is a constant, more exactly, 0 or 1.

At last, we present Table 1 for comparison of different IBTD schemes in terms of number of
pairings, length of decryption shares, security model (Random oracle model or standard model),
assumption and dealer (the one who generates the key shares, user or PKG).

Table 1: Comparison of different IBTD schemes

Scheme Number of Pairings Dec. Share Model Assume DealerE DK D SV SC
BZ04 1 n 5 4 ≥ 2+2t G3

T × Zq ×G ROM BDH User
LCL07 1 n 3 2 ≥ 2t GT × Zq ×G ROM BDH PKG
GK06 0 0 2 6 ≥ 5+4t G3 SM BDDH PKG
Ours 1 1 1 1 1 GT × Z2

q ROM BDH User

6. Application and Extension

First, our IBTD scheme is very suitable, when the user wants to share his private key out
among a number of decryption servers in such a way that any committee member can success-
fully decrypt the ciphertext if, and only if, the committee member obtains a certain number of
decryption shares from the decryption servers. In this case, unlike the IBTD schemes [14, 18],
the user can perform this process without asking the PKG to do so.

Second, our IBTD scheme can be used as a building block to construct a mediated ID-based
encryption scheme [8]. The idea is to split a private key associated with the receiver Bob’s ID into
two parts, and give one share to Bob and the other to the Security Mediator (SEM). Accordingly,
Bob can decrypt a ciphertext only with the help of the SEM. As a result, instantaneous revocation
of Bob’s privilege to perform decryption is possible by instructing the SEM not to help him
any more. Using Beak’s method for contructing mediated ID-based encryption scheme, a more
efficient one can be similarly constructed based on our IBTD scheme.

Third, since the main compuation is the common group operations in the group G or GT and
only very few pairings are involved during the decrypting procedure, our IBTD scheme is very
efficeint and hence is suitable for some resource-restricted applications.

7. Conclusion

In this paper, we proposed a new identity-based threshold decryption (IBTD) scheme from
bilinear pairings. With this scheme, the user can by himeself distribute the private key among

17

decryption servers, without bothering PKG in the sharing procedure. It uses much less bilinear
pairings than other IBTD schemes in the involved algorithms. The advantage in efficiency make
it suitable for some applications where the computation resource is limited, such as wireless net-
works and smart cards. All these properties are due to our new basic technique by which the
private key in the bilinear group is indirectly shared through simply sharing an element in the
finite field. As the future work, it is interesting to explore further applications of this new tech-
nique in threshold cryptography, such as ID-based threshold decryption in the standard model
and hierarchical threshold decryption schemes.

References

[1] A. Shamir, Identity-based cryptosystems and signature schemes, in: Proceedins of Crypto 84, LNCS 196, Springer-
Verlag, 1984, pp. 47-53.

[2] D. Boneh, M. Franklin, Identity-Based encryption from the Weil pairing, in: Proceedings Crypto 2001, LNCS
2139, Springer-Verlag, 2001, pp. 213-229.

[3] M. C. Gorantla, R. Gangishetti, A. Saxena, A Survey on ID-Based Cryptographic Primitives, http:// eprint.iacr.org
/2005 /094.pdf

[4] Y. Desmedt and Y. Frankel. Threshold cryptosystems. in: Proceedings of CRYPTO’89, LNCS 435, Springer-
Verlag, 1990, pp. 307-315.

[5] Y. Desmedt and T. Lange. Pairing Based Threshold Cryptography Improving on Libert-Quisquater and Baek-
Zheng. In: Proceedings of Financial Cryptography and Data Security 2006, LNCS 4107, Springer-Verlag, pp.154-
159.

[6] A. Santis, Y. Desmedt, Y. Frankel, and M. Yung, How to share a function securely, in: Proceedings of 26th ACM
STOC, ACM Press, 1994, pp. 522-533.

[7] V. Shoup, R. Gennaro, Securing Threshold Cryptosystems against Chosen Ciphertext Attack, Journal of Cryptolo-
gy, Vol. 15, Springer-Verlag, 2002, pp. 75-96.

[8] J. Baek, Y. Zheng, Identity-based threshold decryption, in: Proceedings of PKC04, LNCS 2947, Springer, 2004,
pp. 262-76.

[9] D. Boneh, X. Ding, G. Tsudik, C. Wong, A Method for Fast Revocation of Public Key Certicates and Security
Capabilities, in: Proceedings of the 10th USENIX Security Symposium, USENIX, 2001, pp.297-310.

[10] D. Boneh, X.Boyen, S.Halevi, Chosen ciphertext secure public key threshold encryption without random oracles,
in: Proceedings of RSA-CT06, LNCS 3860, Springer-Verlag, 2006, pp. 226-43.

[11] D. Boneh, X. Boyen, Efficient selective-ID identity based encryption without random oracles, in: Proceedings of
Eurocrypt 2004, volume 3027 of LNCS, Springer-Verlag, 2004, pp. 522-533.

[12] B. Libert, J. Quisquater, Efficient Revocation and Threshold Pairing Based Cryptosystems, in: Proceedings of the
twenty-second annual symposium on Principles of distributed computing, ACM Press, 2003, pp.163-171.

[13] Z. Chai, Z. Cao, R. Lu, ID-based threshold decryption without random oracles and its application in key escrow,
in: Proceedings of the 3rd international conference on Information security, ACM Press, 2004, pp.119-124.

[14] L. Long, K. Chen, S. Liu, ID-based threshold decryption secure against adaptive chosen-ciphertext attack, Com-
puters and Electrical Engineering, 2007, 33 (3) 166-176.

[15] C. Zhao, F. Zhang, Research and Development on Efficient Pairing Computations, Journal of Software, 2009, 20
(11) 3001-3009.

[16] A. Shamir, How to Share a Secret, Communications of the ACM, 1979, 22(11) 612-613.
[17] D. Chaum, T. Pedersen, Wallet databases with observers, in: Proceedings of Advances in Cryptology-Crypto 92,

LNCS 740, Springer-Verlag,1992, pp.89-105.
[18] D. Galindo and E. Kiltz, Chosen-Ciphertext Secure Threshold Identity-Based Key Encapsulation Without Random

Oracles, in: Proceedinsg of Security and Cryptography for Networks, LNCS 4116, Springer-Verlag, 2006, pp.173-
185.

[19] Brent Waters. Efficient identity-based encryption without random oracles. In: Proceedings of EUROCRYPT 2005,
LNCS 3494, Springer-Verlag, pp.114-127.

18

