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Abstract

In this paper we study secret sharing schemes whose access structure has

three or four minimal quali�ed subsets. The ideal case is completely character-

ized and for the non-ideal case we provide bounds on the optimal information

rate.
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1 Introduction

A secret sharing scheme is a method to distribute a secret value k among a set of
participants P in such a way that only the quali�ed subsets of P are able to recon-
struct the value of k. Secret sharing was introduced by Blakley [1] and Shamir [13].
A comprehensive introduction to this topic can be found in [15, 17, 14]. A secret
sharing scheme is said to be perfect if the non-quali�ed subsets can not obtain any
information about the value of the secret. We are going to consider only uncondi-
tionally secure perfect secret sharing schemes.

The access structure of a secret sharing scheme is the family of quali�ed subsets,
� � 2P . In general, access structures are considered to be monotone, that is, any
superset of a quali�ed subset must be quali�ed. Then, the access structure � is
determined by the family of minimal quali�ed subsets, �0, which is called the basis
of �. We assume that every participant belongs to at least one minimal quali�ed
subset. For example, a (t; n)-threshold access structure consists of all subsets with
cardinality at least t from a set of n participants and its basis is formed by all subsets
with exactly t participants.

�This work was partially supported by the Spanish Ministerio de Ciencia y Tecnolog��a under

project TIC 2000-1044.
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Therefore, in a secret sharing scheme � with access structure �, given a secret
value k 2 K and some random election, a special participant D =2 P, called the
dealer , gives to every participant p 2 P a share sp 2 Sp in such a way that only
the participants that form a subset in � can reconstruct the value of k from their
shares. Any other subset of participants can not obtain any information about k.

The �rst works about secret sharing [1, 13] considered only schemes with thresh-
old access structure. Further works considered the problem of �nding secret sharing
schemes for more general access structures, and Ito, Saito and Nishizeki [9] proved
that there exists a secret sharing scheme for any access structure.

An important problem appears when designing secret sharing schemes for general
access structures: the size of the shares given to the participants. While in the
threshold schemes proposed by Blakley [1] and Shamir [13] the shares have the same
size as the secret, in the schemes constructed in [9] for general access structures the
shares are, in general, much larger than the secret.

Since the security of a system depends on the amount of information that must
be kept secret, the size of the shares given to the participants is an important point
in the design of secret sharing schemes. Therefore, one of the basic parameters in
secret sharing is the information rate �(�;�;K) of the scheme, which is de�ned as
the ratio between the length (in bits) of the secret and the maximum length of the
shares given to the participants. That is, �(�;�;K) = log j K j=maxp2P log j Sp j.

In a secret sharing scheme the length of any share is greater than or equal to
the length of the secret, so the information rate can not be greater than one. Secret
sharing schemes with information rate equal to one are called ideal . We say that
an access structure � � 2P is an ideal access structure if there exists an ideal secret
sharing scheme for �.

It is not possible in general to �nd an ideal secret sharing scheme for a given
access structure �. So, we may try to �nd a secret sharing scheme for � with
information rate as large as possible. The optimal information rate of an access
structure � is de�ned by ��(�) = sup(�(�;�;K)), where the supremum is taken
over all possible sets of secrets K with j K j � 2 and all secret sharing schemes �
with access structure � and set of secrets K. Of course, the optimal information
rate of an ideal access structure is equal to one.

The above considerations lead to two problems that have received considerable
attention: to characterize the ideal access structures, and to �nd bounds on the
optimal information rate.

A necessary condition for an access structure to be ideal was given in [6] in terms
of matroids. A suÆcient condition is obtained from the vector space construction [5],
which is a method to construct ideal secret sharing schemes for a wide family of access
structures. Several techniques have been introduced in [4, 7, 16] in order to construct
secret sharing schemes for some families of access structures, which provide lower
bounds on the optimal information rate. Upper bounds have been found for several
particular access structures by using some tools from Information Theory [2, 3, 8].
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A general method to �nd upper bounds was given in [2] and was generalized in [12].
Nevertheless, both problems are far to be solved. There are some important

open questions about the characterization of ideal access structures, and there ex-
ists a wide gap between the best known upper and lower bounds on the optimal
information rate for most access structures.

Due to the diÆculty of �nding a general solution, those problems have been
studied in several particular classes of access structures: access structures on a set
of four participants [15]; access structures on a set of �ve participants [11]; access
structures de�ned by graphs [2, 3, 4, 6, 7, 8, 16]; and bipartite access structures [12].
The ideal access structures in all these families have been completely characterized.
The optimal information rate of almost all access structures on a set of at most �ve
participants has been determined. Bounds on the optimal information rate, which
are tight in some cases, have been given for the other families.

There exist remarkable coincidences in the results obtained for all these classes
of access structures: the ideal access structures coincide with the vector space ones,
and there is no access structure � whose optimal information rate is such that
2=3 < ��(�) < 1. A natural question that arises at this point is to determine to
which extent these results can be generalized.

In the present paper, we study these problems in another family of access struc-
tures: the access structures with exactly three or four minimal quali�ed subsets. We
obtain similar results as in the previously considered families. Namely, ideal access
structures with three or four minimal quali�ed subsets are completely characterized.
Besides, we prove that also in these families the ideal access structures coincide with
the vector space ones, and that there is no access structure with optimal information
rate between 2=3 and 1. Moreover, we prove that the optimal information rate of
any non-ideal access structure with three minimal quali�ed subsets is equal to 2=3.
Finally, we show that the optimal information rate ��(�) of any non-ideal access
structure � with four minimal quali�ed subsets is bounded by 1=2 � ��(�) � 2=3.

The organization of the paper is as follows. Some de�nitions and the notation
together with several general results that will be used in the following are given in
Section 2. Section 3 is devoted to access structures with three minimal quali�ed
subsets, while those with four minimal quali�ed subsets are studied in Section 4.

2 Preliminaries

There are several techniques to �nd bounds on the optimal information rate ��(�)
of an access structure � on a set of participants P. The next two propositions
summarize those that will be used later. The �rst one gives us a method to �nd
upper bounds on the optimal information rate, whereas the second one deals with
lower bounds.

The independent sequence method , which was introduced by Blundo, De Santis,
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De Simone and Vaccaro in [2] and was generalized by Padr�o and S�aez in [12], is the
�rst known general method to �nd upper bounds on the optimal information rate.
Let � be an access structure on a set of participants P. We say that a sequence of
subsets ; 6= B1 � � � � � Bm =2 � is made independent by a subset A � P if there
exist X1; : : : ;Xm � A such that Bi[Xi 2 � and Bi�1[Xi =2 � for any i = 1; : : : ;m,
where B0 is the empty set.

Proposition 2.1 ([2, Theorem 3.8] and [12, Theorem 2.1]). Let � be an access
structure on a set of participants P. Let ; 6= B1 � � � � � Bm =2 � be a sequence of
subsets of P that is made independent by A � P. The following statements hold:

1. If A 2 �, then ��(�) � jAj=(m+ 1).

2. If A =2 �, then ��(�) � jAj=m.

A decomposition of an access structure � is a family �0;1; : : : ;�0;r � �0 such that
�0;1[ � � � [�0;r = �0. Several decomposition methods have been presented providing
lower bounds on the optimal information rate. The �-decomposition method given
by Stinson in [16] is one of the most powerful of them. We apply this method only
for decompositions consisting of ideal substructures. Namely, we are going to use
the following result, which is a direct consequence from [16, Theorem 2.1].

Proposition 2.2 Let � be an access structure on a set of participants P having
basis �0. Let �0;1; : : : ;�0;r � �0 be a decomposition of �. Let �i be the access
structure with basis �0;i on the set Pi =

S
A2�0;i A. Let us suppose that, for any

i = 1; : : : ; r, there exists an ideal secret sharing scheme �i with access structure �i

and set of secrets a �nite �eld K. Then, the optimal information rate of � veri�es

��(�) �
minf�A : A 2 �0g

maxfrp : p 2 Pg
;

where �A = j fi 2 f1; : : : ; rg : A 2 �0;ig j and rp = j fi 2 f1; : : : ; rg : p 2 Pig j.

The vector space construction is a useful method to construct ideal schemes
that was introduced by Brickell [5]. Let P be a set of n participants, � an access
structure on P, D 62 P the dealer, and let K be a �nite �eld. We say that � is a
K-vector space access structure if there exists a vector space E over K and a map
 : P [ fDg �! E such that  (x) 6= 0 for x 2 P [ fDg, and such that A 2 � if and
only if the vector  (D) can be expressed as a linear combination of the vectors in
the set  (A) = f (p) : p 2 Ag. In this situation, the map  : P[fDg �! E is said
to be a realization of the K-vector space access structure �. An ideal secret sharing
scheme with set of secrets K = K can be constructed for any K-vector space access
structure �: given a secret value k 2 K, the dealer takes at random an element
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v 2 E such that v �  (D) = k, and gives the share sp = v �  (p) to the participant
p 2 P, (see [5] or [15] for proofs).

We say that � is a vector space access structure if it is a K-vector space access
structure for some �nite �eld K. An ideal scheme for � constructed in the above
way is called a vector space secret sharing scheme. Of course, any vector space
access structure is ideal. For instance, (see [13] and [15]), the Shamir's scheme can
be seen as a vector space secret sharing scheme over K = GF (q) for any prime
power q > j P j. Therefore (t; n)-threshold access structures are vector space access
structures.

The following lemmas provide some properties of vector space access structures
that will be used in this paper. The �rst one is about decomposition of access
structures. The second one deals with an extension operation on access structures
that consists of substituting a participant by a set of new ones. Finally, Lemma 2.5
presents another extension operation consisting of adding a set of new participants
to every minimal quali�ed subset.

Lemma 2.3 Let � be an access structure on a set of participants P. Assume that
there exists a decomposition �0;1; : : : ;�0;r of � such that P1; : : : ;Pr form a partition
of P, where Pi =

S
A2�0;i A. Let us denote by �i the access structure on the set

of participants Pi having basis �0;i. Then, if �1; : : : ;�r are vector space access
structures over a �nite �eld K, so it is the access structure �.

Proof. We assume that �1; : : : ;�r are K-vector space access structures. So, for
1 � i � r there exists a realization  i : Pi [ fDig ! Ei of �i. We can suppose that
Ei = K �E0

i and that  i(Di) = (1; 0) 2 K�E0
i. Let us consider the K-vector space

E = K�E0
1�� � ��E

0
r and the map  : P[fDg ! E de�ned by  (D) = (1; 0; : : : ; 0)

and, if p 2 Pi,  (p) = (�p; 0; : : : ; vp; : : : ; 0) 2 K � E0
1 � � � � � E0

i � � � � � E0
r, where

 i(p) = (�p; vp) 2 K � E0
i. It is not diÆcult to check that  is a realization of � as

a K-vector space access structure. �

Lemma 2.4 Let � be an access structure on a set P = fp1; : : : ; pmg of m par-
ticipants with basis �0. On the set Pe = Bp1 [ � � � [ Bpm of n = n1 + � � � + nm
participants, where Bpi = fpi;1; : : : ; pi;nig, we consider the access structure �e with
basis �e

0 = fAe : A 2 �0g, where A
e = [p2ABp. Then, if � is a vector space access

structure over a �nite �eld K, so it is the access structure �e.

Proof. We may assume that there is an integer s 2 f1; : : : ;mg such that ni > 1 if
i � s and ni = 1 otherwise. Let  : P [ fDg ! E be a realization of the K-vector
space access structure �. Let fes;2; : : : ; es;ns ; : : : ; em;2; : : : ; em;nmg be a basis of the
vector space Kn�m = Kns�1 � � � � �Knm�1. We de�ne the map  e : Pe [ fDg !
E � Kn�m by  e(D) = ( (D); 0), by  e(pi;1) = ( (pi); 0) whenever i < s, by
 e(pi;1) = ( (pi);

P
j=2;:::;ni ei;j) in the case i � s, and by  e(pi;j) = (0; ei;j) if
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2 � j � ni. It is not hard to check that  e is a realization of �e as a K-vector space
access structure. �

Lemma 2.5 Let � be an access structure on a set of participants P with basis �0.
Let P 0 be a set with P \P 0 = ;, and consider the access structure �0 on P [P 0 with
basis �00 = fA[P 0 where A 2 �0g. Then, if � is a vector space access structure over
a �nite �eld K, so it is the access structure �0.

Proof. Let  : P [fDg ! E be a realization of the K-vector space access structure
�. Let us suppose that P 0 = fp01; : : : ; p

0
mg and let us consider the vector space

E0 = E �Km. Let fe1; : : : ; emg be a basis of Km. We take the map  0 : P [ P 0 [
fDg ! E0 = E �Km de�ned by  0(p) = ( (p); 0) for every p 2 P,  0(p0i) = (0; ei)
for every p0i 2 P 0 and  0(D) = ( (D); e1 + � � � + em). Then, it is clear that  

0 is a
realization of �0 as a K-vector space access structure. �

We �nish this section with the following proposition that will be used later.

Proposition 2.6 Let � be an access structure on a set of participants P with one
or two minimal quali�ed subsets. Then � is a K-vector space access structure for
any �nite �eld K. As a consequence, � is an ideal access structure.

Proof. The result is clear if j�0 j = 1 since, in such a case, � is the (n; n)-threshold
access structure, which is a K-vector space access structure for any �nite �eld K.
So we may assume that j�0 j = 2. Let us denote �0 = fA1; A2g. From Lemma 2.5,
we can suppose that A1 \A2 = ;. Now, the result follows applying Lemma 2.3 with
�0;1 = fA1g and �0;2 = fA2g. �

3 Access structures with three minimal quali�ed sub-

sets

The purpose of this section is to prove Propositions 3.2 and 3.3. The �rst one gives
us a complete characterization of the access structures with three minimal quali�ed
subsets that can be realized by an ideal secret sharing scheme. The second one deals
with the optimal information rate in the non-ideal case. At the end of this section
we point out some examples in order to illustrate our results.

The next lemma is a key point in the proof of these results. This lemma de-
termines some forbidden situations in an ideal access structure with three minimal
quali�ed subsets. We need the following notation. Let � be an access structure on
a set of participants P having basis �0 = fA1; : : : ; Arg. For every x 2 P, we de�ne
the incidence vector of x as �(x) = (x1; : : : ; xr), where xi = 1 if x 2 Ai and xi = 0
otherwise.
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Lemma 3.1 Let � be an access structure on a set of participants P with basis �0
having three elements, A1; A2; A3. Then the optimal information rate of � veri�es
��(�) � 2=3 if there exist four elements a; b; c; d 2 P whose incidence vectors are
�(a) = (1; 0; 1), �(b) = (0; 1; 1), �(c) = (1; c2; 0) and �(d) = (0; 1; 0).

Proof. Let us consider the subsets B1 = P n fa; b; c; dg, B2 = P n fa; b; dg and
B3 = P n fa; bg. Observe that A3 � B1 [ fa; bg, A1 � B2 [ fag and A2 � B3 [ fbg.
Therefore, the subsets B1[fa; bg, B2[fag and B3[fbg are quali�ed. On the other
hand, we have that Ai 6� B3, Ai 6� B2 [ fbg and Ai 6� B1 [ fag for any i = 1; 2; 3.
So, these three subsets are not quali�ed. Hence, if fa; bg 2 �, then the sequence
; 6= B2 � B3 is made independent by the set fa; bg. While, if fa; bg =2 �, then
B1 6= ; and fa; bg makes independent the sequence ; 6= B1 � B2 � B3. In both
cases, we can apply Proposition 2.1 and we get ��(�) � 2=3. �

Proposition 3.2 Let � be an access structure on a set of participants P with basis
�0 having three elements. Let us denote �0 = fA1; A2; A3g. Then, the following
conditions are equivalent:

1. � is a vector space access structure.

2. � is an ideal access structure.

3. ��(�) > 2=3.

4. Ai [Aj = P if i 6= j, or A�(1) \A�(2) = A�(1) \A�(3) for some permutation �.

Proof. A vector space access structure is ideal and, hence, its optimal information
rate is equal to one. Then, we only have to show that (3) implies (4) and that (4)
implies (1).

We are going to prove �rst that, assuming ��(�) > 2=3, then either Ai [Aj = P
if i 6= j, or there exists a permutation � on f1; 2; 3g such that A�(1) \ A�(2) =
A�(1) \A�(3).

Let us suppose that ��(�) > 2=3. We show now that, if A1 [ A2 = P, then
A1 [ A3 = P and A2 [ A3 = P. Otherwise, we may assume that A1 [ A3 6= P. In
such a case, there exist four di�erent elements a; b; c; d 2 P such that: a 2 A3 n A2,
so a 2 A1; b 2 A3 n A1, so b 2 A2; c 2 A1 n A3; and d 2 P n (A1 [ A3), so
d 2 A2. Therefore, the incidence vectors of these elements are �(a) = (1; 0; 1),
�(b) = (0; 1; 1), �(c) = (1; c2; 0) and �(d) = (0; 1; 0). Hence, from Lemma 3.1 we get
��(�) � 2=3, which is a contradiction.

Let us consider now the case whenever Ai [ Aj 6= P if i 6= j. In such a case,
we must prove that, if ��(�) > 2=3, then there exists a permutation � such that
A�(1) \ A�(2) = A�(1) \ A�(3). If not, there is at most one pair fi; jg � f1; 2; 3g
such that Ai \ Aj = A1 \ A2 \ A3. Then, we may assume that both A1 \ A3 and
A2\A3 are di�erent from A1\A2\A3 and, hence, A1\A3 6� A2 and A2\A3 6� A1.
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Let us consider the following participants: a 2 (A1 \ A3) n A2, b 2 (A2 \ A3) n A1,
c 2 P n (A2 [ A3), and d 2 P n (A1 [ A3). Since �(a) = (1; 0; 1), �(b) = (0; 1; 1),
�(c) = (1; 0; 0) and �(d) = (0; 1; 0), from Lemma 3.1 we have that ��(�) � 2=3, a
contradiction. This completes the proof of (3) implies (4).

To �nish we must demonstrate that (4) implies (1). That is, assuming that
Ai [ Aj = P if i 6= j or A�(1) \ A�(2) = A�(1) \ A�(3) for some permutation �, we
want to prove that the access structures � can be realized by a vector space secret
sharing scheme. We have to distinguish two cases.

Case 1: Ai[Aj = P if i 6= j. From Lemma 2.5 we may assume that A1\A2\A3 =
;. In such a case the incidence vector of any participant is one of the following:
�1 = (1; 1; 0), �2 = (1; 0; 1) or �3 = (0; 1; 1). Let Bi � P be the set of participants
with incidence vector �i. Since Ai 6� Aj if i 6= j, we have that Bi 6= ; for any
i = 1; 2; 3. So, fB1; B2; B3g is a partition of P such that A1 = B1[B2, A2 = B1[B3,
and A3 = B2 [B3. Therefore � = (e�)e where e� is the access structure on the set of
participants eP = fp1; p2; p3g with basis e�0 = ffp1; p2g; fp1; p3g; fp2; p3gg. Since e�
is the (2; 3)-threshold access structure, it is a vector space access structure. Hence,
from Lemma 2.4, it follows that � is so.

Case 2: A�(1) \ A�(2) = A�(1) \ A�(3) for some permutation �. Without loss
of generality we may assume that A1 \ A2 = A1 \ A3. On the other hand, from
Lemma 2.5 we may assume that A1 \ A2 \ A3 = ;. So we have that A1 \ A2 =
A1 \ A3 = ;. Let �0;1 = fA1g and �0;2 = fA2; A3g. Applying Lemma 2.3 and
Proposition 2.6 it follows that � is a vector space access structure. �

Proposition 3.3 Let � be an access structure on a set of participants P such that
its basis �0 has three elements. Assume that � is not realizable by an ideal secret
sharing scheme. Then ��(�) = 2=3.

Proof. We assume that � is not realizable by an ideal secret sharing scheme. Hence
applying Proposition 3.2 it follows that ��(�) � 2=3. Therefore we must demonstrate
that ��(�) � 2=3. Let us denote �0 = fA1; A2; A3g. Let �0;1 = fA2; A3g, �0;2 =
fA1; A3g and �0;3 = fA1; A2g. Observe that �0;1;�0;2;�0;3 � �0 is a decomposition
of �. Let �i be the access structure with basis �0;i on the set Pi = Aj [ Ak, where
fi; j; kg = f1; 2; 3g. From Proposition 2.6, for any �nite �eld K, there exists an ideal
secret sharing scheme with access structure �i and set of secrets K. On one hand,
for every participant p 2 P we have that rp = j fi 2 f1; 2; 3g such that p 2 Pig j � 3.
Therefore maxfrp : p 2 Pg � 3. On the other hand we have that if A 2 �0 then
�A = j fi 2 f1; 2; 3g such that A 2 �0;ig j = 2. Hence, from Proposition 2.2 it follows
that ��(�) � 2=3 as we wanted to prove. �

We conclude this section by providing some examples. The �rst one is a direct
application of our results. In the second one, instead of applying our results directly
to a given access structure, we apply them to its dual. See [10] for the de�nitions
and results about dual access structures.
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Example 3.4 Let � be the access structure on P = fx; y; zg having basis �0 =
fA1; A2; A3g where A1 = fx; yg; A2 = fy; zg; A3 = fx; zg. On the set of six partic-
ipants P 0 = fx; y; z; a; b; cg we consider the access structures �01 and �02 de�ned by
(�01)0 = fA1[fag; A2[fbg; A3[fcgg, and (�

0
2)0 = fA1[fa; bg; A2[fb; cg; A3[fa; cgg.

Then, applying the above propositions it follows that ��(�) = ��(�02) = 1 while
��(�01) = 2=3. Furthermore, we get that � and �2 are vector space access structures.

Example 3.5 On the set P = fp1; p2; p3; p4; p5; p6; p7g of seven participants we con-
sider the access structure � with basis �0 = ffp2; p4; p7g; fp2; p5; p7g; fp1; p3g; fp1; p4g,
fp1; p5g; fp1; p6g; fp3; p6g; fp3; p7g; fp2; p6gg. The dual access structure �� of � has
three elements in its basis. Namely, (��)0 = fA1; A2; A3g where A1 = fp1; p2; p3g,
A2 = fp3; p4; p5; p6g andA3 = fp1; p6; p7g. SinceAi[Aj 6= P if i 6= j, A1\A2 = fp3g,
A1\A3 = fp1g and A2\A3 = fp6g, hence it follows that �

� has optimal information
rate equal to 2/3. Therefore ��(�) = 2=3 and, in particular, � is not an ideal access
structure.

4 Access structures with four minimal quali�ed subsets

A complete characterization of ideal access structures with four minimal quali�ed
subsets is provided in this section by Propositions 4.2, 4.3, 4.4, 4.5 and 4.7. Besides,
these propositions state that ideal access structures coincide with the vector space
ones and with those having optimal information rate greater than 2=3. Bounds on
the optimal information rate are given for the non-ideal case in Proposition 4.8.
Finally, some examples are presented.

As in the case of three minimal quali�ed subsets, we need a lemma determining
some forbidden situations in an ideal access structure.

Lemma 4.1 Let � be an access structure on a set of participants P such that its
basis �0 has four elements, A1; A2; A3; A4. Then, the optimal information rate of �
veri�es ��(�) � 2=3 if there exist elements a; b; c; d 2 P whose incidence vectors are
in one of the following situations:

1. �(a) = (1; 0; 1; 1), �(b) = (0; 1; 1; 1), �(c) = (1; c2; 0; c4), �(d) = (0; 1; 0; d4).

2. �(a) = (1; 0; 1; 1), �(b) = (0; 1; 1; b4), �(c) = (1; c2; 0; c4), �(d) = (0; 1; 0; 1).

3. �(a) = (1; 0; 1; a4), �(b) = (0; 1; 1; 1), �(c) = (1; c2; 0; c4), �(d) = (0; 1; 0; 1).

4. �(a) = (1; 0; 1; a4), �(b) = (0; 1; 1; b4), �(c) = (1; c2; 0; c4), �(d) = (0; 1; 0; d4)
and, besides, there exists a participant x 2 P with �(x) = (0; 0; 0; 1).

Proof. Let us suppose that one of the �rst three conditions holds. We consider
the subsets B1 = P n fa; b; c; dg, B2 = P n fa; b; dg and B3 = P n fa; bg. Since
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A3 � B1[fa; bg, A1 � B2[fag and A2 � B3[fbg, we have that these three subsets
are quali�ed. On the other hand, one can check that, for any i = 1; 2; 3; 4, Ai 6� B3,
Ai 6� B2 [ fbg and Ai 6� B1 [ fag, and hence these three subsets are not quali�ed.
Therefore, if fa; bg 2 �, then the sequence ; 6= B2 � B3 is made independent by the
set fa; bg. While, if fa; bg =2 �, then B1 6= ; and the set fa; bg makes independent
the sequence ; 6= B1 � B2 � B3. We apply Proposition 2.1 in both cases in order
to conclude that ��(�) � 2=3.

The proof is �nished by checking that ��(�) � 2=3 if the fourth condition holds.
In this case, we consider the subsets B1 = P n fa; b; c; d; xg, B2 = P n fa; b; d; xg and
B3 = P n fa; b; xg. As before, the subsets B1 [ fa; bg, B2 [ fag and B3 [ fbg are
quali�ed, while B3, B2 [ fbg and B1 [ fag are not quali�ed. At this point, we �nish
the proof by applying Proposition 2.1 in the same way as in the previous case. �

We begin the characterization of ideal access structures with four minimal qual-
i�ed subsets by studying, in Propositions 4.2 and 4.3, the case in which the set of
participants can be covered by two minimal quali�ed subsets.

Proposition 4.2 Let � be an access structure on a set of participants P with basis
�0 having four elements, �0 = fA1; A2; A3; A4g. Assume that � = jffi; jg such that
Ai [Aj = Pgj � 2. Then, the following conditions are equivalent:

1. � is a vector space access structure.

2. � is an ideal access structure.

3. ��(�) > 2=3.

4. � = 6 or � = 2, and if � = 2 then there exists a permutation � on f1; 2; 3; 4g
such that A�(1) [A�(2) = A�(3) [A�(4) = P and A�(1) \A�(2) = A�(3) \A�(4).

Proof. We only must show that (3) implies (4) and that (4) implies (1). In order to
demonstrate the �rst implication we shall proceed by proving three claims. Assume
that ��(�) > 2=3.

Claim 1 . If A1 [A2 = A2 [A3 = P, then A1 [A3 = P.
Proof: First let us show that A2\A3\A4 6� A1. Otherwise we consider the following
participants: a 2 A4 n A2, so �(a) = (1; 0; 1; 1); b 2 A3 n A1, so �(b) = (0; 1; 1; 0);
c 2 A1 n A3, so �(c) = (1; 1; 0; c4); and d 2 A4 n A1, so �(d) = (0; 1; 0; 1). Applying
Lemma 4.1 (2) it follows that ��(�) � 2=3, a contradiction. Therefore we have
that, if A1 [ A2 = A2 [ A3 = P, then A2 \ A3 \ A4 6� A1. We want to prove that
A1 [ A3 = P. In order to do it let us consider a 2 A4 n A2, so �(a) = (1; 0; 1; 1);
b 2 (A2 \A3 \A4) nA1, so �(b) = (0; 1; 1; 1); and c 2 A1 nA3, so �(c) = (1; 1; 0; c4).
If A1 [ A3 6= P then there exists d 2 P n (A1 [ A3), hence �(d) = (0; 1; 0; d4), and
applying Lemma 4.1 (1) it follows that ��(�) � 2=3, a contradiction.
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Claim 2 . If A1 [ A2 = A1 [ A3 = A2 [ A3 = P, then Ai [ A4 = P for any
i = 1; 2; 3.
Proof: It is enough to show that ��(�) � 2=3 if A1 [A4 6= P. Let us suppose that
A1[A4 6= P. Let a 2 A4 nA2, so �(a) = (1; 0; 1; 1); b 2 A4 nA1, so �(b) = (0; 1; 1; 1);
c 2 A1 n A4, so �(c) = (1; c2; c3; 0); and d 2 P n (A1 [A4), so �(d) = (0; 1; 1; 0). By
changing the roles of A3 and A4 in Lemma 4.1 (2) it follows that ��(�) � 2=3.

Claim 3 . If A1 [A2 = A3 [A4 = P and Ai [Aj 6= P otherwise, then A1 \A2 =
A3 \A4.
Proof: If A1 \ A2 6= A3 \ A4, then we can suppose that A3 \ A4 6� A1 \ A2.
Since A1 [ A2 = P hence, without loss of generality, we may assume that there
exists a participant a 2 (A1 \ A3 \ A4) n A2, so �(a) = (1; 0; 1; 1). Besides, we
consider the following participants: b 2 P n (A1 [ A4), so �(b) = (0; 1; 1; 0); c 2
P n (A2 [ A3), so �(c) = (1; 0; 0; 1); and d 2 P n (A1 [ A3), so �(d) = (0; 1; 0; 1).
Applying Lemma 4.1 (2) it follows that ��(�) � 2=3, a contradiction.

These claims complete the proof of (3) implies (4). To �nish, assuming that (4)
holds, we must demonstrate that the access structures � can be realized by a vector
space secret sharing scheme. We distinguish two cases.

Case � = 6: We have that Ai [ Aj = P if i 6= j and, from Lemma 2.5, we may
assume that A1 \ A2 \ A3 \ A4 = ;. In such a case the incidence vector of any
participant is one of the following: �1 = (1; 1; 1; 0), �2 = (1; 1; 0; 1), �3 = (1; 0; 1; 1)
or �4 = (0; 1; 1; 1). Observe that the subsets Bi = fp 2 P such that �(p) = �ig
are not empty because Ai 6� Aj if i 6= j. Hence we have that fB1; B2; B3; B4g
is a partition of P. Furthermore, A1 = B1 [ B2 [ B3, A2 = B1 [ B2 [ B4,
A3 = B1 [ B3 [ B4 and A4 = B2 [ B3 [ B4. Therefore � = e�e where e� is the
access structure on the set of participants eP = fp1; p2; p3; p4g with basis e�0 =
ffp1; p2; p3g; fp1; p2; p4g; fp1; p3; p4g; fp2; p3; p4gg. Since e� is a (3; 4)-threshold access
structure, hence it is a vector space access structure. Therefore applying Lemma 2.4
it follows that � is so.

Case � = 2: Without loss of generality we may assume that A1 [ A2 = A3 [
A4 = P. On the other hand, from Lemma 2.5 we may assume that A1 \ A2 \
A3 \ A4 = ;. So we have that A1 \ A2 = A3 \ A4 = ;. Hence, the incidence
vector of any participant is one of the following: �1 = (1; 0; 1; 0), �2 = (1; 0; 0; 1),
�3 = (0; 1; 1; 0) or �4 = (0; 1; 0; 1). Let Bi = fp 2 P such that �(p) = �ig. As
before, fB1; B2; B3; B4g is a partition of P, and now we have that A1 = B1 [ B2,
A2 = B3 [ B4, A3 = B1 [ B3 and A4 = B2 [ B4. Therefore � = (e�)e where e� is
the access structure on the set of participants eP = fp1; p2; p3; p4g with basis e�0 =
ffp1; p2g; fp3; p4g; fp1; p3g; fp2; p4gg. Since e� corresponds to a complete bipartite
graph, hence it is a vector space access structure. Therefore, from Lemma 2.4, it
follows that � is so, as we wanted to prove. �

Proposition 4.3 Let � be an access structure on a set of participants P with basis
�0 having four elements, �0 = fA1; A2; A3; A4g. Assume that A1 [A2 = P and that
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Ai [Aj 6= P in any other case. Then, the following conditions are equivalent:

1. � is a vector space access structure.

2. � is an ideal access structure.

3. ��(�) > 2=3.

4. A1[A3[A4 = A2[A3[A4 = P and Ai\Aj\Ak � A` if fi; j; k; `g = f1; 2; 3; 4g.

Proof. As in the previous proposition, we only must show that (3) implies (4)
and that (4) implies (1). First we are going to prove that if ��(�) > 2=3 then
A1 [A3 [A4 = A2 [A3 [A4 = P and Ai \Aj \Ak � A` if fi; j; k; `g = f1; 2; 3; 4g.
We proceed by �ve steps.

Step 1 . Ak 6� Ai [A` if i 2 f1; 2g and fk; `g = f3; 4g.
Proof: It is enough to show that A3 6� A2 [ A4. Assume that A3 � A2 [ A4. We
are going to prove �rst that, in such a case, �(p) 6= (0; 1; 1; 1) for any participant
p 2 P. Otherwise we consider a 2 A3 n A2, so �(a) = (1; 0; 1; 1); b 2 P with
�(b) = (0; 1; 1; 1); c 2 P n (A2 [ A4), so �(c) = (1; 0; 0; 0); and d 2 P n (A1 [ A3),
so �(d) = (0; 1; 0; d4). Applying Lemma 4.1 (1) it follows a contradiction. To
�nish the proof of Step 1 now we take the following participants: a 2 A3 n A2, so
�(a) = (1; 0; 1; 1); b 2 A3 n A1, so �(b) = (0; 1; 1; b4) and hence �(b) = (0; 1; 1; 0);
c 2 P n (A2 [ A4), so �(c) = (1; 0; 0; 0); and d 2 A4 n A1, so �(d) = (0; 1; d3; 1) and
hence �(d) = (0; 1; 0; 1). Applying Lemma 4.1 (2) it follows a contradiction.

Step 2 . A1 [A3 [A4 = A2 [A3 [A4 = P.
Proof: We only must check that A2 � A1[A3[A4 and that A1 � A2[A3[A4. We
demonstrate the �rst statement being the second one proved in the same way. Let us
suppose that there exists x 2 A2 n (A1[A3[A4), so �(x) = (0; 1; 0; 0). From Step 1
there exist participants a 2 A3 n (A2 [A4), so �(a) = (1; 0; 1; 0); b 2 A4 n (A2 [A3),
so �(b) = (1; 0; 0; 1); c 2 A3 n (A1 [A4), so �(c) = (0; 1; 1; 0); and d 2 A4 n (A1[A3),
so �(d) = (0; 1; 0; 1). By changing the roles of A1 and A3 and the roles of A2 and
A4 in Lemma 4.1 (4) it follows that ��(�) � 2=3, a contradiction.

Step 3 . A1 \A2 \A3 � A4 and A1 \A2 \A4 � A3.
Proof: We demonstrate the �rst statement being the second one proved in the same
way. If A1\A2\A3 6� A4 then there exists a participant b such that �(b) = (1; 1; 1; 0).
On the other hand from Step 1 we have that Ak 6� Ai [ A` if i 2 f1; 2g and
fk; `g = f3; 4g. Therefore we can consider a 2 A4 n (A1 [A3), so �(a) = (0; 1; 0; 1);
c 2 A4 n (A2[A3), so �(c) = (1; 0; 0; 1); and d 2 A3 n (A2[A4), so �(d) = (1; 0; 1; 0).
By considering the order �0 = fA4; A3; A2; A1g in Lemma 4.1 (3), it follows that
��(�) � 2=3, a contradiction.

Step 4 . A1 \A3 \A4 � A2 or A2 \A3 \A4 � A1.
Proof: Otherwise there exist participants a; b 2 P such that �(a) = (1; 0; 1; 1) and
�(b) = (0; 1; 1; 1). Let us consider c 2 A1 n A3, so �(c) = (1; c2; 0; c4), and let
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d 2 P n (A1 [ A3), so �(d) = (0; 1; 0; d4). Applying Lemma 4.1 (1) it follows that
��(�) � 2=3, a contradiction.

Step 5 . A1 \A3 \A4 � A2 and A2 \A3 \A4 � A1.
Proof: Otherwise we may assume that A1\A3\A4 6� A2 and A2\A3\A4 � A1. We
consider the following participants: a 2 (A1 \ A3 \ A4) n A2, so �(a) = (1; 0; 1; 1);
b 2 A3 n A1, so �(b) = (0; 1; 1; 0); c 2 A1 n A3, so �(c) = (1; c2; 0; c4); and d 2
A4 n A1, so �(d) = (0; 1; 0; 1). Applying Lemma 4.1 (2) it follows that ��(�) � 2=3,
a contradiction.

This completes the proof of (3) implies (4).
To �nish we must demonstrate that (4) implies (1). So let � be an access

structure on a set of participants P with basis �0 = fA1; A2; A3; A4g. Assume
that A1 [ A2 = P and Ai [ Aj 6= P in any other case, and that A1 [ A3 [ A4 =
A2 [ A3 [ A4 = P and Ai \ Aj \ Ak � A` if fi; j; k; `g = f1; 2; 3; 4g. We want to
prove that � can be realized by a vector space secret sharing scheme.

From Lemma 2.5 we may assume that A1 \A2 \A3 \A4 = ;. So we have that
Ai\Aj\Ak = ; for any di�erent i; j; k 2 f1; 2; 3; 4g. Therefore, the incidence vector
of any participant is one of the following: �1 = (1; 1; 0; 0), �2 = (1; 0; 1; 0), �3 =
(0; 1; 1; 0), �4 = (1; 0; 0; 1) or �5 = (0; 1; 0; 1). Let us consider Bi = fp 2 P such that
�(p) = �ig. Since Ai[Aj 6= P for any di�erent i; j 2 f1; 2; 3; 4g with fi; jg 6= f1; 2g,
hence it follows that Bi 6= ; for any i. Therefore fB1; B2; B3; B4; B5g is a partition of
P, and A1 = B1[B2[B4, A2 = B1[B3[B5, A3 = B2[B3, A4 = B4[B5. In such
a case we have that � = e�e where e� is the access structure on the set of participants
eP = fp1; p2; p3; p4; p5g with basis e�0 = ffp1; p2; p4g; fp1; p3; p5g; fp2; p3g; fp4; p5gg.
If e� is a vector space access structure hence, from Lemma 2.4, it follows that � is so.
Therefore, in order to �nish the proof we must demonstrate that e� can be realized
by a vector space access structure.

Let K be any �nite �eld and let E = K3. Then we de�ne the map  : eP [
fDg �! E by  (D) = (1; 0; 0),  (p1) = (1; 1; 1),  (p2) = (1; 0; 1),  (p3) = (0; 0; 1),
 (p4) = (1; 1; 0), and  (p5) = (0; 1; 0). For any subset A � eP we have that, A 2 e�
if and only if the vector  (D) can be expressed as a K-linear combination of the
vectors in the set  (A) = f (p) : p 2 Ag, as we wanted to prove. �

The characterization of ideal access structures with four minimal quali�ed sub-
sets is completed by the following three propositions, which consider the case that
the set of participants is not covered by any pair of minimal quali�ed subsets.

Proposition 4.4 Let � be an access structure on a set of participants P with basis
�0 having four elements, �0 = fA1; A2; A3; A4g. Assume that Ai [ Aj 6= P for any
i; j 2 f1; 2; 3; 4g and that Ai [ Aj [ Ak = P for any di�erent i; j; k 2 f1; 2; 3; 4g.
Then, the following conditions are equivalent:

1. � is a vector space access structure.
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2. � is an ideal access structure.

3. ��(�) > 2=3.

4. Ai \Aj \Ak � A` if fi; j; k; `g = f1; 2; 3; 4g.

Proof. Let us show that (3) implies (4). That is, assuming ��(�) > 2=3 we want to
demonstrate that Ai \ Aj \ Ak � A` if fi; j; k; `g = f1; 2; 3; 4g. By symmetry it is
enough to show that A2\A3\A4 � A1. First notice that since Ai[Aj [Ak = P for
any di�erent i; j; k 2 f1; 2; 3; 4g, hence it follows that Ak 6� Ai [Aj for any di�erent
i; j; k 2 f1; 2; 3; 4g. So we can consider the following participants: a 2 A3n(A2[A4),
so �(a) = (1; 0; 1; 0); c 2 A1 n (A3[A4), so �(c) = (1; 1; 0; 0); and d 2 A2 n (A1[A3),
so �(d) = (0; 1; 0; 1). If A2 \ A3 \ A4 6� A1, then we can take b 2 P with �(b) =
(0; 1; 1; 1). Applying Lemma 4.1 (3) it follows that ��(�) � 2=3, a contradiction.

We have to prove now that (4) implies (1). That is, assuming that (4) holds we
want to prove that the access structures � can be realized by a vector space secret
sharing scheme.

Applying Lemma 2.5 we may assume that A1 \ A2 \ A3 \ A4 = ;. So Ai \
Aj \Ak = ; for any di�erent i; j; k 2 f1; 2; 3; 4g. Hence, the incidence vector of any
participant is one of the following: �1 = (1; 0; 1; 0), �2 = (1; 0; 0; 1), �3 = (1; 1; 0; 0),
�4 = (0; 1; 0; 1), �5 = (0; 1; 1; 0) or �6 = (0; 0; 1; 1). We de�ne Bi = fp 2 P
such that �(p) = �ig. From our assumptions it is not hard to check that Bi 6= ;.
Therefore, fB1; B2; B3; B4; B5; B6g is a partition of P, and A1 = B1 [ B2 [ B3,
A2 = B3[B4[B5, A3 = B1[B5[B6 and A4 = B2[B4[B6. So we have that � = e�e

where e� is the access structure on the set of participants eP = fp1; p2; p3; p4; p5; p6g
with basis e�0 = ffp1; p2; p3g; fp3; p4; p5g; fp1; p5; p6g; fp2; p4; p6gg. We are going to
prove that e� is a K-vector space access structure, where K is a �nite �eld with
characteristic 2. Let us consider E = K4 and  : eP [ fDg �! E the map de�ned
by  (D) = (1; 0; 0; 0),  (p1) = (1; 0; 1; 0),  (p2) = (0; 1; 1; 0),  (p3) = (0; 1; 0; 0),
 (p4) = (1; 1; 1; 1),  (p5) = (0; 0; 1; 1) and  (p6) = (0; 0; 0; 1). Let A � eP. It is easy
to check that A 2 e� if and only if  (D) 2 h (p) : p 2 Ai. Therefore e� is a K-vector
space access structure and hence, from Lemma 2.4, it follows that � is so. �

Proposition 4.5 Let � be an access structure on a set of participants P with basis
�0 having four elements, �0 = fA1; A2; A3; A4g. Assume that Ai [ Aj 6= P for any
i; j 2 f1; 2; 3; 4g, and that Ai [ Aj [ Ak 6= P for any di�erent i; j; k 2 f1; 2; 3; 4g.
Then, the following conditions are equivalent:

1. � is a vector space access structure.

2. � is an ideal access structure.

3. ��(�) > 2=3.

14



4. For any di�erent i; j; k 2 f1; 2; 3; 4g there exists a permutation � on fi; j; kg
such that A�(i) \A�(j) = A�(i) \A�(k).

Proof. We demonstrate that (3) implies (4). Assume that ��(�) > 2=3.
First let us show that, if Ai \ Aj 6= Aj \ Ak, then Ai \ Ak � Aj for any

three di�erent i; j; k 2 f1; 2; 3; 4g. We can suppose that fi; j; kg = f1; 2; 3g, and
that A1 \ A2 6= A2 \ A3. So, without loss of generality, we may assume that
A2 \ A3 6� A1. In such a case we want to prove that A1 \ A3 � A2. Otherwise,
there exists a 2 (A1 \ A3) n A2, and hence �(a) = (1; 0; 1; a4). Besides, we can
consider the following participants: b 2 (A2 \ A3) n A1, so �(b) = (0; 1; 1; b4); c 2
P n (A2[A3[A4), so �(c) = (1; 0; 0; 0); d 2 P n (A1 [A3[A4), so �(d) = (0; 1; 0; 0);
and x 2 P n (A1 [A2[A3), so �(x) = (0; 0; 0; 1). Applying Lemma 4.1 (4) it follows
that ��(�) � 2=3, a contradiction.

Now let us show that, for any di�erent i; j; k 2 f1; 2; 3; 4g, there exists a permu-
tation � on fi; j; kg such that A�(i) \ A�(j) = A�(i) \ A�(k). We can suppose that
fi; j; kg = f1; 2; 3g. Assume that A1 \ A2 6= A2 \ A3 and that A1 \ A3 6= A2 \ A3.
Therefore, from above, it follows that A1 \ A3 � A2 and A1 \ A2 � A3. Hence we
get that A1 \A3 = A1 \A2.

This completes the proof of (3) implies (4).
To �nish we must demonstrate that (4) implies (1). That is, assuming that (4)

holds we want to prove that the access structures � can be realized by a vector space
secret sharing scheme. We have to distinguish two cases.

Case 1: A�(1) \ (A�(2) [A�(3) [A�(4)) = ; for some permutation � on f1; 2; 3; 4g.
We can suppose that A1 \ (A2 [ A3 [ A4) = ;. By condition (4), there exists a
permutation � on f2; 3; 4g such that A�(2) \ A�(3) = A�(2) \ A�(4). In such a case
we consider �0;1 = fA2; A3; A4g and �0;2 = fA1g. From Propositions 2.6 and 3.2 we
get that �0;1 and �0;2 de�ne K-vector space access structures for some �nite �eld
K. Hence applying Lemma 2.3 it follows that � is so.

Case 2: A�(1) \ (A�(2) [A�(3) [A�(4)) 6= ; for any permutation � on f1; 2; 3; 4g.
Furthermore, by Lemma 2.5, we can suppose that A1 \A2 \A3 \A4 = ;.

We prove �rst that, in this case, for any di�erent i; j; k 2 f1; 2; 3; 4g there exists
a permutation � on fi; j; kg such that A�(i) \A�(j) = A�(i) \A�(k) = ;. Otherwise,
we may assume that fi; j; kg = f1; 2; 3g and that A1 \ A2 = A1 \ A3 6= ;. Let us
take ` 2 f2; 3g. Then, since condition (4) holds, we have A1 \ A` = A` \ A4 or
A1 \ A` = A1 \ A4 or A1 \ A4 = A` \ A4. By assumption, A1 \ A2 \ A3 \ A4 = ;
and A1 \ A2 = A1 \ A3 6= ;. Hence it follows that A1 \ A4 = A` \ A4. Therefore,
A1\A4 = A2\A4 = A3\A4 = ; and, hence, A4\(A1[A2[A3) = ;, a contradiction.

We conclude the proof by checking that, in this case, � is a vector space access
structure. Since A1 \ (A2 [ A3 [ A4) 6= ;, we can suppose that A1 \ A4 6= ;. So,
from above with fi; j; kg = f1; 3; 4g and fi; j; kg = f1; 2; 4g, we get that A1 \ A3 =
A3 \A4 = ; and A1 \A2 = A2 \A4 = ;. Hence, (A1 [A4)\ (A2 [A3) = ;. In such
a case we consider �0;1 = fA1; A4g and �0;2 = fA2; A3g. Applying Lemma 2.3 and
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Proposition 2.6 it follows that � is a vector space access structures over any �nite
�eld K, as we wanted to prove. �

At this point, only one case is left to conclude the characterization of ideal access
structures with four minimal quali�ed subsets. We are going to use the following
lemma to solve it.

Lemma 4.6 Let � be an access structure on a set of participants P with basis
�0 = fA1; A2; A3; A4g and having optimal information rate ��(�) > 2=3. Assume
that Ai[Aj 6= P for any i; j 2 f1; 2; 3; 4g. Then, for any di�erent i; j; k 2 f1; 2; 3; 4g
we have that, if Ai � Aj [Ak then Ai [Aj = Ai [Ak = Aj [Ak.

Proof. We can suppose that fi; j; kg = f1; 2; 3g and that A3 � A1 [ A2. We must
demonstrate that A2 � A1 [ A3 and A1 � A2 [ A3. By symmetry it is enough
to show that A2 � A1 [ A3. To do it let us consider the following participants:
x 2 P n (A1 [ A2), so �(x) = (0; 0; 0; 1); a 2 A3 n A2, so �(a) = (1; 0; 1; a4);
b 2 A3 n A1, so �(b) = (0; 1; 1; b4); and c 2 A1 n A3, so �(c) = (1; c2; 0; c4). If
A2 6� A1 [ A3 then there exists d 2 P such that �(d) = (0; 1; 0; d4) and hence,
applying Lemma 4.1 (4) it follows that ��(�) � 2=3, a contradiction. �

Proposition 4.7 Let � be an access structure on a set of participants P with basis
�0 having four elements, �0 = fA1; A2; A3; A4g. Assume that Ai [ Aj 6= P for any
i; j 2 f1; 2; 3; 4g, that A1 [ A2 [ A3 = P, and that A2 [ A3 [ A4 6= P. Then, the
following conditions are equivalent:

1. � is a vector space access structure.

2. � is an ideal access structure.

3. ��(�) > 2=3.

4. A2 [A3 = A2 [A4 = A3 [A4 and A1 \ (A2 [A3) � A2 \A3 \A4.

Proof. In order to demonstrate that (3) implies (4), we are going to prove �rst that
A2[A3 = A2[A4 = A3[A4. If A4 � A1[A3 or A4 � A1[A2 then from Lemma 4.6
it follows that A1 [ A3 = A1 [ A4 = A3 [ A4, or A1 [ A2 = A1 [ A4 = A2 [ A4.
Therefore A1 � A3 [ A4 or A1 � A2 [ A4 which leads us to a contradiction since
A2 [ A3 [ A4 6= P. So we have that there exist participants a 2 A4 n (A1 [ A3)
and b 2 A4 n (A1 [ A2). Hence, their incidence vectors are �(a) = (0; 1; 0; 1) and
�(b) = (0; 0; 1; 1). On the other hand A2 [A3 [A4 6= P, so there exists x 2 P with
�(x) = (1; 0; 0; 0). Assume that A2 6� A3 [ A4 and that A3 6� A2 [ A4. In such a
case let us consider c 2 A2 n (A3 [A4) and d 2 A3 n (A2 [A4), so �(c) = (c1; 1; 0; 0)
and �(d) = (d1; 0; 1; 0). Therefore by considering the order �0 = fA2; A3; A4; A1g in
Lemma 4.1 (4) it follows that ��(�) � 2=3, a contradiction. So either A2 � A3 [A4
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or A3 � A2 [ A4. In any case we can apply Lemma 4.6 and, hence, we get that
A2 [A3 = A2 [A4 = A3 [A4 as we wanted to prove.

Next we prove that A1\B � A2\A3\A4, whereB = A2[A3 = A2[A4 = A3[A4.
If A1 \B 6� A2 \A3 \A4 then there exists a 2 A1 \B such that a 62 A2 \A3 \A4.
Since a 2 B, there are two di�erent i; j 2 f2; 3; 4g such that a 2 Ai \Aj and, hence,
a =2 A`, where ` 2 f2; 3; 4g n fi; jg. Without loss of generality, we can suppose that
a 2 A3 \ A4 and that a =2 A2. Therefore, a has incidence vector �(a) = (1; 0; 1; 1).
Now observe that A2 6� A1 [ Ai for i = 3; 4. In e�ect, if A2 � A1 [ Ai then, from
Lemma 4.6, A1[A2 = A1[Ai = A2[Ai, hence A1 � A2[Ai, and so A2[A3[A4 = P,
a contradiction. At this point we consider b 2 A2 n (A1 [ A4), so �(b) = (0; 1; 1; 0);
c 2 P n (A2 [ A3 [ A4), so �(c) = (1; 0; 0; 0); and d 2 A2 n (A1 [ A3), so �(d) =
(0; 1; 0; 1). Applying Lemma 4.1 (2) it follows that ��(�) � 2=3, a contradiction.

This completes the proof of (3) implies (4). To �nish we must demonstrate that
(4) implies (1). That is, assuming that (4) holds we want to prove that the access
structures � can be realized by a vector space secret sharing scheme.

Applying Lemma 2.5 we may assume that A1 \ A2 \ A3 \ A4 = ;. So we have
that A2[A3 = A2[A4 = A3[A4 and A1\(A2[A3) = ;. In such a case we consider
�0;1 = fA1g and �0;2 = fA2; A3; A4g. From Proposition 2.6 and Proposition 3.2 we
get that �0;1 and �0;2 de�ne K-vector space access structures for some �nite �eld
K. Hence applying Lemma 2.3 it follows that � is so. �

The characterization of ideal access structures with four minimal quali�ed sub-
sets has been completed with Proposition 4.7. Next, we present bounds on the
optimal information rate for the non-ideal case.

Proposition 4.8 Let � be an access structure on a set of participants P such that
its basis �0 has four elements. Assume that � is not realizable by an ideal secret
sharing scheme. Then 1=2 � ��(�) � 2=3.

Proof. We assume that � is not realizable by an ideal secret sharing scheme. Hence
applying the above propositions it follows that ��(�) � 2=3. Now we must show
that ��(�) � 1=2. In order to do it let us consider �0;1;�0;2 � �0 = fA1; A2; A3; A4g
the decomposition of � de�ned by �0;1 = fA1; A2g and �0;2 = fA3; A4g. Let �i be
the access structure with basis �0;i on the set Pi = A2i�1[A2i, where i = 1; 2. From
Proposition 2.6, for any �nite �eld K, there exists an ideal secret sharing scheme
with access structure �i and set of secrets K. Besides, for every participant p 2 P
we have that rp = j fi 2 f1; 2g such that p 2 Pig j � 2 and that �A = j fi 2 f1; 2g
such that A 2 �0;ig j = 1 for any A 2 �0. Therefore, from Proposition 2.2 it follows
that ��(�) � 1=2, as we wanted to prove. �

To �nish, we provide some examples of access structures with four minimal
quali�ed subsets. Namely, we present access structures in each one of the following
situations: 1=2 � ��(�) � 3=5, 3=5 � ��(�) � 2=3, ��(�) = 2=3 and ��(�) = 1.
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Example 4.9 Let � be the access structure on the set of six participants P =
fp1; p2; p3; p4; p5; p6g with basis �0 = fA1; A2; A3; A4g where A1 = fp1; p2; p3g, A2 =
fp2; p3; p5g, A3 = fp2; p6g, and A4 = fp1; p3; p4g. Observe that Ai [ Aj 6= P for
any di�erent i; j, that A2 [ A3 [ A4 = P and that A1 [ A2 [ A3 6= P. Then, since
A1 [ A2 6= A1 [ A3, from Propositions 4.7 and 4.8, we obtain 1=2 � ��(�) � 2=3.
In this case, we can �nd a better upper bound: ��(�) � 3=5. In order to do
it, let us consider the subsets B1 = fp4g, B2 = fp4; p5g, B3 = fp4; p5; p6g and
B4 = fp4; p5; p6; p1g. Equally, we take the subsets X1 = fp1; p3g, X2 = fp2; p3g,
X3 = fp2g and X4 = fp3g. It is not diÆcult to check that the sequence ; 6= B1 �
B2 � B3 � B4 is made independent by the set A = fp1; p2; p3g. Since A 2 �, we
have, from Proposition 2.1, that ��(�) � 3=5.

Example 4.10 Let us consider now the access structure � on a set of seven partic-
ipants P = fp1; p2; p3; p4; p5; p6; p7g having minimal quali�ed subsets A1 = fp1; p5g,
A2 = fp2; p6g, A3 = fp3; p7g and A4 = fp4; p5; p6; p7g. In this case, Ai[Aj[Ak 6= P
for any di�erent i; j; k 2 f1; 2; 3; 4g and A1 \A4 = fp5g, A1 \A2 = ; and A2 \A4 =
fp6g. Therefore, from Proposition 4.5, we have that � is not ideal and, hence,
1=2 � ��(�) � 2=3. In this case we can improve the lower bound by checking that
��(�) � 3=5. In e�ect, we consider the decomposition of � given by the six sub-
structures �0;fi;jg = fAi; Ajg, where i 6= j, and we obtain ��(�) � 3=5 by applying
Propositions 2.2 and 2.6.

Example 4.11 Let � be the access structure on the set of seven participants P =
fp1; p2; p3; p4; p5; p6; p7g with basis �0 = fA1; A2; A3; A4g where A1 = fp1; p2; p4; p5g,
A2 = fp2; p3; p5; p6g, A3 = fp1; p3; p4; p6g, and A4 = fp2; p5; p7g. We have that
A3 [ A4 = P and that Ai [ Aj 6= P otherwise. Besides, A1 [ A2 [ A3 6= P.
Therefore, from Proposition 4.3, � is not an ideal access structure and so its optimal
information rate is bounded by 1=2 � ��(�) � 2=3. We are going to prove now that
��(�) = 2=3. Let us consider the decomposition of � given by �0;1 = fA1; A2; A3g,
�0;2 = fA1; A2; A4g and �0;3 = fA3; A4g. From Propositions 2.6 and 3.2, we have
that the access structures �1, �2 and �3, having basis �0;1, �0;2 and �0;3, respectively,
areK-vector space access structure for some �nite �eldK. Applying Proposition 2.2,
we have that ��(�) � 2=3.

Example 4.12 Let � be the access structure on P = fp1; p2; p3; p4; p5; p6g de�ned
by �0 = ffp1; p2; p3g; fp3; p4; p5g; fp1; p5; p6g; fp2; p4; p6g; fp1; p4g; fp2; p5g; fp3; p6gg.
The dual access structure �� of � has basis (��)0 = fA1; A2; A3; A4g where A1 =
fp1; p2; p3g; A2 = fp3; p4; p5g; A3 = fp1; p5; p6g; A4 = fp2; p4; p6g. Here we have that
Ai [Aj 6= P for any i; j 2 f1; 2; 3; 4g, while Ai [Aj [Ak = P and Ai \Aj \Ak = ;
for any di�erent i; j; k 2 f1; 2; 3; 4g. Hence, applying Proposition 4.4 it follows that
�� is a vector space access structure and so it is �. In particular, ��(�) = 1.
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5 Conclusion and open problems

The characterization of ideal access structures and the search for bounds on the op-
timal information rate are two of the main open problems in secret sharing. These
problems are studied in this paper for the access structures with three or four min-
imal quali�ed subsets.

We completely characterize the ideal access structures in this family. One of
the results we obtain in this paper is that the ideal access structures, in the family
we consider, coincide with the vector space ones and, besides, there is no access
structure whose optimal information rate is such that 2=3 < ��(�) < 1. This
situation is the same as in other families of access structures considered in previous
works. An interesting open problem is to �nd out to which extent these results can
be generalized. For instance, as far as we know, no access structure with optimal
information rate between 2=3 and 1 has been found.

Besides, we prove that the optimal information rate of any non-ideal access
structure with three minimal quali�ed subsets is equal to 2=3, and we provide bounds
on the optimal information rate for the non-ideal access structures with four minimal
quali�ed subsets. Namely, we prove that 1=2 � ��(�) � 2=3 for any non-ideal access
structure � with four minimal quali�ed subsets. While the upper bound is tight,
we do not know if the lower bound is so. Moreover, another open problem is the
determination of the optimal information rate of all access structures with four
minimal quali�ed subsets.
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