[go: up one dir, main page]

Saltu al enhavo

Lineara sendependeco

Nuna versio (nereviziita)
El Vikipedio, la libera enciklopedio
(Alidirektita el Lineara dependeco)

En lineara algebro, familio de vektoroj el vektora spaco estas lineare sendependa, se neniu el ili povas esti skribata kiel lineara kombinaĵo de finie multaj aliaj vektoroj.

Ekzemple, en la tri-dimensia Eŭklida spaco R3, la tri vektoroj (1, 0, 0), (0, 1, 0) kaj (0, 0, 1) estas lineare sendependaj, dum (2, −1, 1), (1, 0, 1) kaj (3, −1, 2) ne estas tiaj. (La tria vektoro estas la sumo de la unuaj du.)

Vektoroj, kiuj ne estas lineare sendependaj, nomiĝas lineare dependaj.

Estu v1, v2, ..., vn vektoroj. Ili nomiĝas lineare dependaj, se ekzistas nombroj a1, a2, ..., an, ne ĉiuj egalaj al nulo, tiel ke:

(Noto: La nulo dekstre estas la nula vektoro, ne la nombro nulo.)

Se tiaj nombroj ne ekzistas, tiam la vektoroj nomiĝas lineare sendependaj.

Tiu ĉi kondiĉo povas esti reformulata kiel sekvas: Se a1, a2, ..., an estas nombroj tiaj ke

tiam am = 0 por m = 1, 2, ..., n.


Pli ĝenerale, V estu vektora spaco super kampo K, kaj {vm}mM estu familio de elementoj el V. La familio estas lineare dependa super K, se tie ekzistas familio {aj}jJ de nenulaj eroj de K tia ke

kie la indeksa aro J estas nemalplena, finia subaro de M.

Aro X de elementoj de V estas lineare sendependa, se la respektiva familio {x}xX estas lineare sendependa.


La koncepto de lineara sendependeco estas grava, ĉar aro de vektoroj, kiuj estas lineare sendependaj kaj generas la vektoran spacon, formas bazon de la vektora spaco.

Vidu ankaŭ

[redakti | redakti fonton]

Eksteraj ligiloj

[redakti | redakti fonton]