Content deleted Content added
No edit summary Tags: Reverted 2017 wikitext editor |
|||
Line 127:
*: <math>f'(x) = 0. </math>
* ''[[Linearity of differentiation|Sum rule]]'':
*: <math>(\alpha f + \beta g)' = \alpha f' + \beta g' </math> for all functions <math>f</math> and <math>g</math> and
* ''[[Product rule]]'':
*: <math>(fg)' = f 'g + fg' </math> for all functions <math>f</math> and <math>g</math>. As a special case, this rule includes the fact <math>(\alpha f)' = \alpha f'</math> whenever <math>\alpha</math> is a constant because <math>\alpha' f = 0 \cdot f = 0</math> by the constant rule.
|