We suggest a generalization of Karchmer-Wigderson communication games to the multiparty setting. Our generalization turns out to be tightly connected to circuits consisting of threshold gates. This allows us to obtain new explicit constructions of such circuits for several functions. In particular, we provide an explicit (polynomial-time computable) log-depth monotone formula for Majority function, consisting only of 3-bit majority gates and variables. This resolves a conjecture of Cohen et al. (CRYPTO 2013).
We added a direct exposition of our explicit logarihmic-depth MAJ_3-formula for Majority function to Appendix.
We suggest a generalization of Karchmer-Wigderson communication games to the multiparty setting. Our generalization turns out to be tightly connected to circuits consisting of threshold gates. This allows us to obtain new explicit constructions of such circuits for several functions. In particular, we provide an explicit (polynomial-time computable) log-depth monotone formula for Majority function, consisting only of 3-bit majority gates and variables. This resolves a conjecture of Cohen et al. (CRYPTO 2013).