[go: up one dir, main page]

Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > NADER BSHOUTY:
All reports by Author Nader Bshouty:

TR24-121 | 16th July 2024
Nader Bshouty

Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Revisions: 1

Consider the model where we can access a parity function through random uniform labeled examples in the presence of random classification noise. In this paper, we show that approximating the number of relevant variables in the parity function is as hard as properly learning parities.

More specifically, let $\gamma:{\mathbb R}^+\to ... more >>>


TR23-141 | 19th September 2023
Nader Bshouty, Gergely Harcos

A Tight Lower Bound of $\Omega(\log n)$ for the Estimation of the Number of Defective Items

Let $X$ be a set of items of size $n$ , which may contain some defective items denoted by $I$, where $I \subseteq X$. In group testing, a {\it test} refers to a subset of items $Q \subset X$. The test outcome is $1$ (positive) if $Q$ contains at least ... more >>>


TR23-006 | 20th January 2023
Nader Bshouty

Superpolynomial Lower Bounds for Learning Monotone Classes

Revisions: 1

Koch, Strassle, and Tan [SODA 2023], show that, under the randomized exponential time hypothesis, there is no distribution-free PAC-learning algorithm that runs in time $n^{\tilde O(\log\log s)}$ for the classes of $n$-variable size-$s$ DNF, size-$s$ Decision Tree, and $\log s$-Junta by DNF (that returns a DNF hypothesis). Assuming a natural ... more >>>


TR22-104 | 18th July 2022
Nader Bshouty

On One-Sided Testing Affine Subspaces

Revisions: 1

We study the query complexity of one-sided $\epsilon$-testing the class of Boolean functions $f:F^n\to \{0,1\}$ that describe affine subspaces and Boolean functions that describe axis-parallel affine subspaces, where $F$ is any finite field. We give a polynomial-time $\epsilon$-testers that ask $\tilde O(1/\epsilon)$ queries. This improves the query complexity $\tilde O(|F|/\epsilon)$ ... more >>>


TR22-098 | 12th July 2022
Nader Bshouty

Non-Adaptive Proper Learning Polynomials

We give the first polynomial-time *non-adaptive* proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for $s$-sparse polynomial over $n$ variables, makes $q=(s/\epsilon)^{\gamma(s,\epsilon)}\log n$ queries where $2.66\le \gamma(s,\epsilon)\le 6.922$ and runs in $\tilde O(n)\cdot poly(s,1/\epsilon)$ time. We also show that for any $\epsilon=1/s^{O(1)}$ any non-adaptive ... more >>>


TR22-013 | 5th February 2022
Nader Bshouty, Oded Goldreich

On properties that are non-trivial to test

In this note we show that all sets that are neither finite nor too dense are non-trivial to test in the sense that, for every $\epsilon>0$, distinguishing between strings in the set and strings that are $\epsilon$-far from the set requires $\Omega(1/\epsilon)$ queries.
Specifically, we show that if, for ... more >>>


TR20-123 | 17th August 2020
Nader Bshouty

An Optimal Tester for k-Linear

A Boolean function $f:\{0,1\}^n\to \{0,1\}$ is $k$-linear if it returns the sum (over the binary field $F_2$) of $k$ coordinates of the input. In this paper, we study property testing of the classes $k$-Linear, the class of all $k$-linear functions, and $k$-Linear$^*$, the class $\cup_{j=0}^kj$-Linear.
We give a non-adaptive distribution-free ... more >>>


TR19-156 | 7th November 2019
Nader Bshouty

Almost Optimal Testers for Concise Representations

Revisions: 1

We give improved and almost optimal testers for several classes of Boolean functions on $n$ inputs that have concise representation in the uniform and distribution-free model. Classes, such as $k$-Junta, $k$-Linear Function, $s$-Term DNF, $s$-Term Monotone DNF, $r$-DNF, Decision List, $r$-Decision List, size-$s$ Decision Tree, size-$s$ Boolean Formula, size-$s$ Branching ... more >>>


TR09-067 | 18th August 2009
Hanna Mazzawi, Nader Bshouty

On Parity Check $(0,1)$-Matrix over $Z_p$

Revisions: 1

We prove that for every prime $p$ there exists a $(0,1)$-matrix
$M$ of size $t_p(n,m)\times n$ where
$$t_p(n,m)=O\left(m+\frac{m\log \frac{n}{m}}{\log \min({m,p})}\right)$$ such that every
$m$ columns of $M$ are linearly independent over $\Z_p$, the field
of integers modulo $p$ (and therefore over any field of
characteristic $p$ and over the real ... more >>>




ISSN 1433-8092 | Imprint