Equation-by-Equation Estimation of a Multivariate Log-GARCH-X Model of Financial Returns
Christian Francq and
Genaro Sucarrat
MPRA Paper from University Library of Munich, Germany
Abstract:
Estimation of large financial volatility models is plagued by the curse of dimensionality: As the dimension grows, joint estimation of the parameters becomes infeasible in practice. This problem is compounded if covariates or conditioning variables (``X") are added to each volatility equation. In particular, the problem is especially acute for non-exponential volatility models (e.g. GARCH models), since there the variables and parameters are restricted to be positive. Here, we propose an estimator for a multivariate log-GARCH-X model that avoids these problems. The model allows for feedback among the equations, admits several stationary regressors as conditioning variables in the X-part (including leverage terms), and allows for time-varying covariances of unknown form. Strong consistency and asymptotic normality of an equation-by-equation least squares estimator is proved, and the results can be used to undertake inference both within and across equations. The flexibility and usefulness of the estimator is illustrated in two empirical applications.
Keywords: Exponential GARCH; multivariate log-GARCH-X; VARMA-X; Equation-by-Equation Estimation (EBEE); Least Squares (search for similar items in EconPapers)
JEL-codes: C13 C22 C32 C51 C58 (search for similar items in EconPapers)
Date: 2015-10-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/67140/1/MPRA_paper_67140.pdf original version (application/pdf)
Related works:
Journal Article: An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns (2017)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:67140
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().