A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data
Clifford Lam and
Phoenix Feng
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
In high-frequency data analysis, the extreme eigenvalues of a realized covariance matrix are biased when its dimension p is large relative to the sample size n. Furthermore, with non-synchronous trading and contamination of microstructure noise, we propose a nonparametrically eigenvalue-regularized integrated covariance matrix estimator (NERIVE) which does not assume specific structures for the underlying integrated covariance matrix. We show that NERIVE is positive definite in probability, with extreme eigenvalues shrunk nonlinearly under the high dimensional framework p=n ! c > 0. We also prove that in portfolio allocation, the minimum variance optimal weight vector constructed using NERIVE has maximum exposure and actual risk upper bounds of order p. Incidentally, the same maximum exposure bound is also satisfied by the theoretical minimum variance portfolio weights. All these results hold true also under a jump-diffusion model for the log-price processes with jumps removed using the wavelet method proposed in Fan and Wang (2007). They are further extended to accommodate the existence of pervasive factors such as a market factor under the setting p3=2=n ! c > 0. The practical performance of NERIVE is illustrated by comparing to the usual two-scale realized covariance matrix as well as some other nonparametric alternatives using different simulation settings and a real data set.
Keywords: High frequency data; Microstructure noise; Non-synchronous trading; Integrated covariance matrix; Minimum variance portfolio; Nonlinear shrinkage (search for similar items in EconPapers)
JEL-codes: C13 C14 C5 (search for similar items in EconPapers)
Date: 2018-09-01
New Economics Papers: this item is included in nep-mst, nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Published in Journal of Econometrics, 1, September, 2018, 206(1), pp. 226-257. ISSN: 0304-4076
Downloads: (external link)
http://eprints.lse.ac.uk/88375/ Open access version. (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:88375
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().