U-statistic Type Tests for Structural Breaks in Linear Regression Models
William Pouliot and
Jose Olmo
Working Papers from Department of Economics, City University London
Abstract:
This article introduces a U-statistic type process that is based on a kernel function which can depend on nuisance parameters. It is shown here that this process can accommodate very easily anti-symmetric kernels very useful for detecting changing patterns in the dynamics of time series. This theory is applied to structural break hypothesis tests in linear regression models. In particular, the flexibility of these processes will be exploited to introduce a simultaneous and joint test that exhibit statistical power against changes in either intercept or slope. In contrast to the literature, these tests are able to distinguish between rejections due to changes in intercept from rejections due to changes in slope; allow control of global errors rate; and are explicitly designed to have power when the distribution error is asymmetric. These tests can also incorporate different weight functions devised to detect changes early as well as later on in the sample, and show very good performance in small samples. These tests, therefore, outperform CUSUM type tests widely employed in this literature.
Keywords: Change-Point tests; CUSUM test; Linear regression models; Stochastic processes; U-statistics (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://openaccess.city.ac.uk/id/eprint/1590/1/0815_olmo-pouliot.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cty:dpaper:08/15
Access Statistics for this paper
More papers in Working Papers from Department of Economics, City University London Department of Economics, Social Sciences Building, City University London, Whiskin Street, London, EC1R 0JD, United Kingdom,. Contact information at EDIRC.
Bibliographic data for series maintained by Research Publications Librarian ().